5/17/2018

Azure Functions

By: Khushboo Baheti, Kiruthiga Gunasekaran, Siri
Sadashiva, Suganya Jeyaram

Azure Functions

Microsoft released Azure Functions in March 2016

Serverless compute service that enables you to run code on-demand without
having to explicitly provision or manage infrastructure

Azure Functions lets you develop serverless applications on Microsoft Azure.

Functions can make development even more productive

5/17/2018

Features

Choice of language : C#, F#, JavaScript

Pay-per-use pricing model : Pay only for the time spent running your code
Bring your own dependencies: NuGet, NPM

Open-source: The Functions runtime is open-source and available on Github

Integrated security: Protect HTTP-triggered functions with OAuth providers
such as Azure Active Directory, Facebook, Google, Microsoft Account.

Flexible development - Code functions in the portal or set up continuous
integration and deploy code through Github,Visual Studio Team Services

Use Case: Automating a furniture factory

<<

Generate Notify Send
Report Operator Email

Email '
Metadata with link HTTP
Report
Set Error Update Check
Status

Status Status

5/17/2018

Use Case: Homebase

Azure

e Cloud

to devi

B
1
I-;b

loT Hub e

/ Battery

w

Stream Analy!

tics L

ice m
T >

SQL Datab.

s
a

ase

' < g
Azure Functions

Advantages

Every function automatically maps to an HTTP endpoint if enabled

Event grid trigger for Azure functions

5/17/2018

Disadvantages

Slower to scale when compared to AWS Lambda

One other aspect is testing. Unlike working in a Paas environment where you
can use the automated tools that are part of your development lifecycle, the
tooling for Visual Studio 2015 is not the best.

Cost Discussion

Consumption Plan:

*Billed based on per-second resource consumption and executions.

*includes a monthly free grant of 1 million requests and 400,000 GB-s of resource consumption per month
*Memory is measured by rounding up to the nearest 128 MB, up to the maximum of 1,536 MB.

*Minimum execution time and memory for a single function execution is 100ms and 128mb.

App Service Plan:

*Best choice if existing, underutilized VMs that are already running other App Service instances.

*App Service Plan can be more cost-effective if function are running continuously.

*The service scales out manually or automatically depending on the options chosen. For example, based on CPU load on a five-minute
window.

5/17/2018

Cost Discussion

Consumption Plan:
* Billed based on per-second resource consumption and executions.
$0.000016/GB-s 400,000 GB-s

$0.20 per million executions 1 million executions
*includes a monthly free grant of 1 million requests and 400,000 GB-s of resource consumption per month

* Memory is measured by rounding up to the nearest 128 MB, up to the maximum of 1,536 MB.

* Minimum execution time and memory for a single function execution is 100ms and 128mb.

App Service Plan:
* Best choice if existing, underutilized VMs that are already running other App Service instances.
* App Service Plan can be more cost-effective if function are running continuously.

* The service scales out manually or automatically depending on the options chosen. For example, based
on CPU load on a five-minute window.

Cost Example

Monthly billing (consumption plan) calculated as follows for a function with
¢ 512 MB memory consumption
¢ 1sec execution time
« 3,000,000 executions in one month

» Resource Consumption Billing Calculation

Execution time: 3,000,000 * 1 sec = 3 million seconds
Resource consumption: 3 million seconds * 0.5 GB = 1.5 million GB-s
Total billable consumption: 1.5 million GB-s - 400,000 GB-s = 1.1 million GB-s
Resource consumption cost: 1.1 million GB-s * $0.000016/GB-s = $17.60

* Executions billing calculation
Billable executions: 3 million — 1 million = 2 million
Execution cost: $0.20 (per million executions) * 2 = $0.40

Total cost: $17.60 + $0.40 = $18

5/17/2018

Cost Example — Worst case

2 threads running continuously, taking 512 MB memory each on B1S VM (1 vCPU, 1 GB RAM)
Cost of running B1S VM = $0.015/hour * 24 * 30 = $10.8

Resource consumption for 2 threads = (3 million GB-s — 400,000 GB-s) * $0.000016/GB-s = $41.6
Execution cost for 2 threads = $0.20 (per million executions) * 5 = S1

Total cost for Azure Function: $41.6 + S1 = $42.6 (~4 times expensive)

Alternatives

* AWS Lambda
¢ Launched in 2014.
* Supports a range of runtime environments including NodelS, Python, Java and C#

* Google Cloud Functions
¢ Launched in 2016.
* Only supports a single runtime environment using NodelS.

* IBM Cloud Functions
* Launched in 2017.
* Based on Apache OpenWhisk and supports Node.js, Python, Swift, Java, and PHP.

5/17/2018

Comparing alternatives

Scalability

Max # of functions

Concurrent executions

Max execution

Supported languages

Deployments

Pricing

Automatic scaling (Consumption Plan)
Manual or metered scaling (App
Service Plan)

Unlimited functions

No limit

5 mins

C#, JavaScript, F#, Python, Batch,
PHP, PowerShell

Visual Studio Team Services,
OneDrive, Local Git repository,
GitHub, Bitbucket, Dropbox, External
repository

1M requests for free then
$0.20/1M invocations, plus
$0.000016/GB-s

Automatic scaling

Unlimited functions

1000 parallel executions per
account, per region (request to
increase)

5 mins

JavaScript, Java, C#, and Python

Only ZIP upload (to Lambda or
s3)

1M requests for free then
$0.20/1M invocations, plus
$0.00001667/GB-sec

Automatic scaling

1000 functions/project

No limit

9 mins

Only JavaScript

ZIP upload, Cloud Storage or
Cloud Source Repositories

1M requests for free then
$0.40/1M invocations, plus
$0.00000231/GB-sec

Conclusion

* Faster development and time to production is less than a day.

* Less overhead in scaling or maintaining applications. Moving from DevOps model to almost No-

Ops.

* A wide range of triggering options.

* Continuous integration: Use Git to push your code, Azure function redeploys automatically.

* Azure Functions does not have limit on concurrent connections unlike AWS Lambda, which can
happen due to latency, retries, throttling from underlying services.

5/17/2018

Demo

* 1.Create Function and testing via HTTP REST call
* using Azure Portal

* Using Azure CLI

* Using Visual Studio IDE

* 2.Durable Functions

* Function Chaining

* Fan-out/Fan-in

* 3. Triggers
. - Create a function triggered by timer
. - Create a function triggered by github webhook

* 4.Integration
. - Add messages to an Azure Storage queue using Functions

5/17/2018

Thank you

