
 Azure Functions Demo- Part 1

Overview

1.Create Function- using Azure Portal

2. Create Function - using Azure CLI

3.Create Function - using Visual studio IDE

4. Chaining of Microservices

1.Create Function- Azure Portal

1.Login to your Microsoft Azure Portal https://portal.azure.com/
Click >” Create a resource”, then click “Compute” and choose “Function APP”

2.Enter the function APP name and choose one of the consumption plans. All other details are can be
default.

Resource groups provide a way to monitor, control access, provision and manage billing for collections
of assets that are required to run an application. Azure Resource Manager (ARM) is the technology that
works behind the scenes so that you can administer assets using these logical containers.
A resource group is simply an identifier that Azure Resource Manager applies to resources to group
them together.

Hosting Plan- Pay per execution dynamically, predefined capacity allocation with predictable costs
1.Consumption plan
2.AppService Plan

Check the option, pin to dashboard.

3. Once the function is created you can see the status of the function as “Running” and you set a custom
trigger to test your application. Let’s add webhook+API,

4.Click on the Function URL icon to view the access your function URL

Testing the function through HTTP call

1.Inbuilt testing tool

2.Testing from a web browser
Function URL:
https://myfirstdemocc.azurewebsites.net/api/HttpTriggerCSharp1?code=NGDVjoDBBUilOnRRKMBqAw
MPGMwCT4nUg8twyNEcf2Ey3oaYDPpgqg==&name=Friends
Query string - “&name=<some_name>”

Click on the View files on the right corner, to check the log file.

2. Create Function - Azure CLI

Open the Azure CLI from the Azure Portal

1.Create a resource group

az group create --name <myFirstDemoCCtest> --location <westus>

2.Create an azure storage

az storage account create --name <myfirstdemostorage1> --location <westus> --resource-group
<myFirstDemoCCtest> --sku Standard_LRS

Note: storage name should be within 3 to 24 characters of small letters and numbers.

3. Command to create a function
az functionapp create --deployment-source-url https://github.com/Azure-Samples/functions-quickstart
--resource-group myFirstDemoCCtest --consumption-plan-location westus --name myFirstDemoCCTest
--storage-account myfirstdemostorage1

4.Delete a resource group

az group delete --name myResourceGroup

5. Follow the same steps given in section-1 to test your function.
Get your URI - https://myfirstdemocctest.azurewebsites.net/api/HttpTriggerCSharp1?na

3.Create Function - Visual studio IDE
Prerequisite
Install the “Azure development” SDK in your Visual studio IDE

1.Create new project, Under C# choose Cloud, azure functions and name your function as you wish and
then click OK. Then, on the next screen choose HTTP Trigger.

You will get a sample function open as below

All C# orchestration functions must have a parameter of type DurableOrchestrationContext , which

exists in the Microsoft.Azure.WebJobs.Extensions.DurableTask assembly.

You can execute and test the function.

Advantages
We can have checkpoint set for debugging.

Testing the function

Add the query string along with the URI,
http://localhost:7071/api/Function1

Query string - “&name=<some_name>”

Publish your function to Azure portal

1.Right click on your project and click publish, once you click publish, it will ask you to you login into your
Azure account.

2.You can customize your app name at this point and click create

You will see a confirmation page, like below:

You can test your function using a web browser or a fiddler tool

4. Chaining of Microservices

Function chaining refers to the pattern of executing a sequence of functions in a particular
order. Often the output of one function needs to be applied to the input of another function.

 ref-https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview#pattern-1-function-
chaining

Prerequisites
1.Azure Development SDK in Visual Studio IDE
2.Install the Durable Functions extension and samples (Azure Functions)
 The Durable Functions extension for Azure Functions is provided in the NuGet package
Microsoft.Azure.WebJobs.Extensions.DurableTask.

3.Install and run “Azure Storage Emulator”.

Steps for creating Chaining microservices
1.Create new project, Under C# choose Cloud, azure functions and name your function as you wish and
then click OK.

Then choose an empty project.

2.Right click on your solution file, click add and add a new Azure function

3.Then you will get options of triggers as below, choose “Durable Functions Orchestration”

4.Once you click ok, Sample Durable function will appear. You can execute and test the same.

5.You will find the function URI in the execution window.

6. Test the function via HTTP call and once you access your function URI, you will get the
statusQueryGetUri.
You can access the same to test your function.

7.You can publish this function to Azure portal the same way we did it in Section 3- Creation Function
through Visual Studio IDE.

8.After publishing your function to Azure portal, check for “Get function URI” option under
Function1_HTTPStart.

Local Storage Emulator Log - You can find the status of your function here and it will be helpful for
debugging.

Create a function triggered by timer

1.Go to function Apps. Click on +. Click on Timer trigger

2.Choose the language (C#, JavaScript) and name for the trigger and click create.

The parameter in schedule 0 */1* * * will trigger the function for every 1 minutes. You can
change the parameter as necessary (0*/5*** =for every 5 min, 0 0*/1* * * =for every 1 hour)

3.Choose the trigger created (TriggerTest) and click run.

You can see the results in log file. The function will be every 1 min.

Create a function triggered by GitHub webhook
Prerequisite:
Git Hub account with one repository

1.Go to function Apps. Click on +. Click on GitHub webhook.

2. Choose the language (C#, JavaScript) and name for the function and click
create.

Once the function is created copy the Get function URL and Get GitHub secret.

3.Log in to your GitHub account and click on a repository and click on
settings and webhook and Add webhook

Payload URL: copy the Get function URL
content type: application/json
Secret: copy paste GitHub secret

For events select Issue comments and Issues. Click Add Webhook. After adding go to Issues
tab and click on New Issue.

Create Issue and give comments.

After submitting go to webhook in GitHub and click Recent Deliveries and check the response
sent. You can see the comments written.

Go to Function and check logs and you can see that function is triggered and executed.

Add messages to an Azure Storage queue using Functions

1.Create a sample HTTP trigger function.

2. Click on the Integrate option in the created function and + New Output

Select Azure Queue Storage and

Give all the inputs and save it

Add the below code

outputQueueItem.Add("Name passed to the function: " + name); before return statement and
add ICollector<string> outputQueueItem in the parameter list.

Run the function. After running go to Storage accounts click on the function App name and
select queues.

and select the created queue

You can see the message passed from the function.

Reference:

[1] Microsoft Azure docs: https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-
install

[2] Create function in Java/ Maven- https://docs.microsoft.com/en-us/azure/azure-functions/functions-
create-first-java-maven

[3]Add Messages to Queue- https://docs.microsoft.com/en-us/azure/azure-functions/functions-
integrate-storage-queue-output-binding

[4] Timer Trigger- https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-scheduled-
function

[5]GitHub Webhook- https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-github-
webhook-triggered-function

