
The Serverless Trilemma

(Function Composition for Serverless Computing)

TCSS562: Group 3
Anisha Agarwal
Chhaya Choudhary
Sanchya Bhagat

1

Talk Outline

The key points of the talk:

> Serverless composition-as-function problem

> The Core (Reactive) Model - Using Apache OpenWhisk

> Problem: The serverless trilemma

> Solution: Trilemma-Safe Sequential Composition

> Critique

2

Paper Overview

The problem?

Composition-as-functions must violate at least one of the 3 constraints:

> Functions should be considered as black boxes;

> Function composition should obey a substitution principle with respect

to synchronous invocation.

> Invocations should not be double-billed.

Why it is problem?

Economics, performance, and synchronous composition.

3

Paper Overview

> Composition via Reflection:

– f1 followed by f2

– running time of f1 will be billed twice: once as f1 and once as part of f2

> Composition via Fusion

– f3 is a function that inlines the code of the sequence members

– violate a black box constraint; e.g. they assume availability of source code,

and that functions are monoglot (written in the same language)

> Composition with Asyncs

– fire-and-forget model of composition

– violate a substitution principle: f3 is no longer a composable serverless

function

> Composition on the Client

– follows a client-scheduled structure these compositions cannot be nested

inside of other compositions that are unaware of that client

4

Introduction

Trilemma-Safe Sequential Composition

Serverless core must offer more than actions, rules, and triggers to satisfy all

the three constraints

> Overview of the OpenWhisk Invocation Flow

- Handling of invocations

- Consists of 4 components: Controller, Invokers, Message Queue and

 System of Record.

> Realizing Completion Triggers with “active ack”

- Microarchitectural strategy of pipeline bypass known as active ack

- Notion of completion triggers

- Used to reduce the latency of request-response invocations,

 orchestrate and optimize invocations.

- Reduction of overhead by blocking calls by 18X.
5

Introduction

> ST-Safe Sequences with active ack

- Active ack strategy to schedule sequences

- Includes 2 changes:

- Specifying the action to be of type Sequence and component

 OpenWhisk actions to form the composition.

 -The controller must handle the invocation of a Sequence action

 differently.

- User does not get double billed

- Very less system overhead by avoiding the use of heavy weight

resources for action invocation.

6

Key Contributions

> A formulation of the serverless trilemma

> A programming model to build new serverless functions

> A solution to the trilemma for the sequential composition of functions

> The implementation in Apache OpenWhisk, an open source serverless

runtime

> Improvement in Latency reduction

– New latency for result passing from the invoker to the controller:

1-2ms on average.

– Old latency for storing and then fetching a document with the system

of record: 26ms and 10ms on average.

7

Background/Related Work

Serverless Computing:

> Functions as a Service

– Micro-services are offered as separated “actions” or “functions”.

– One function generates an output (example JSON) that acts as input

to any other function.

> Event-driven invocations

– The function should invoked based on events.

For example: When a function build completes, it “triggers” the other

function(s).

> Function composition

– Rather than create a single monolithic function, it is often desirable to

separate the concerns of schema alignment and notification.

8

Background -> OpenWhisk

Overview of Key terms:

Source: http://openwhisk.incubator.apache.org/
9

Related Work

> OpenWhisk relies heavily on prior work for lightweight isolated execution
environments. The current implementation exploits technologies
developed for Linux Containers [3].

> AWS Step Functions [4] is an example of composing functions as steps, and
describing a state machine for the overall orchestration of a large
application.

10

The Serverless Trilemma

> This desired sequential combinator as then i.e.

a.then(b).then(c) => c (b (a()))

> Composition by Reflective Action Invocation (Double Billing Constraint)

11

The Serverless Trilemma

> Composition by Fusion of Actions (Black-Box/Polyglot Constraint)

– To avoid the double billing, we can infuse all functions in one source code.

– Challenges: The source to every action is available, and in the same language

> Interlude: The Serverless Substitution Principle

– Compositions-as-actions conform to the the JSON in, JSON out protocol of

actions

– Implies a single entry-single exit structure

– Replace it with async/await pattern

> Client-Side Scheduling (Abnegation)

– since it runs on the Client side scheduler not implemented as an action

– There is no black box, no double billing

– Satisfies substitution

– The approach doesn’t work always

12

Trilemma-safe Sequential Composition

1. Overview

13

Trilemma-safe Sequential Composition

2. Active-ack scheme

14

Trilemma-safe Sequential Composition

3. ST-Safe Sequences with active ack
15

Author’s Conclusions

> Event - driven core of serverless
– Not yet expressive enough to implement compositions of functions, as

serverless functions.
> Continuation-passing style of invocation

– Cannot be expressed against the purely reactive core programming
model that serverless platforms currently offer

> Extension of core to implement sequential composition of functions.
– Available in open-source project Apache OpenWhisk.

16

Critique: Strengths

> Primary strengths of the new approach
– ST-Safe sequence composition
– Optimization strategies to reduce the impact of cold start
– Reduces Overhead
– Better performance
– Cost effective
– Scalable
– Secure

> Strengths of the evaluation
– Use of three constraints: black boxes, substitution principle and

double-billing

17

Critique: Weaknesses

> No reference to the "state of the art"

> Explanation missing for disregarding Composition on the Client as

serverless

> Function composition -

– Is it a standard or a hypothesis for the sake of this paper?

– Are there any other function composition(s) which could have been

explored?

> Comparison of performance and cost with other function-as-a-services

would have been helpful

18

Critique: Evaluation

> Paper’s evaluation is satisfactory.

> Proof for serverless trilemma is missing.

> Less information on performance and cost metrics used.

> Results are hard to believe without proof and numbers.

> Enough information is not available to repeat /reproduce tests.

19

Future Work

> Provide proofs of the serverless trilemma

> To extend the core to handle a larger class of compositions.

> To describe the classes of expressivity in serverless.

> Expansion of sequences for composition patterns:

– Addition of three combinators: Event-Condition-Action (ECA), retry,

and data forwarding.

– ECA: Static Composition versus Combinator

– Retry as Metaprogram

– Forward as Metaprogram

20

Looking to the future: New Combinators

Case Study: the full Travis-to-Slack application includes three new
composition patterns

21

References

1. Baldini, Ioana, et al. "The serverless trilemma: function composition for

serverless computing." Proceedings of the 2017 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software. ACM, 2017.

2. https://medium.com/openwhisk/composing-functions-into-applications-7

0d3200d0fac

3. Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux J. 2014, 239, Article 2 (March2014).

4. Amazon. 2016. AWS Step Functions. (2016).

https://aws.amazon.com/step-functions/

22

Questions

Questions?

23

