
NoSQL Databases Comparison

By

Yashaswi Tamta

Jugal Gandhi

Jonathan McFadden

8/17/2012 SSCRG @ UW Tacoma

What is DynamoDB

● Amazon’s fast, scalable, and reliable NoSQL
database service for cloud.

● Management of database software and the
provisioning of hardware needed to run it

- Helps us to deploy a non-relational database
in minutes.

History of DynamoDB

● DynamoDB is inspired from Dynamo,
Amazon’s first non relational database [1].

● Dynamo, although was the best technology
at the time, but was still a software.

History of DynamoDB

● Developers and clients preferred simplicity
of a web service over the fine-grained
control of a software. -- SimpleDB

● But, SimpleDB had it’s own issues.

History of DynamoDB

● Amazon combined the best parts of Original
Dynamo (incremental scalability,
predictable performance) with best parts of
SimpleDB (ease of administration,
consistency)

● Thus, forming DynamoDB’

History of DynamoDB - Evolution

● More flexibility was achieved by adding
support for Global secondary indexes and
being able to change them on the fly.

● Support for JSON

Features

● Managed- NoSQL database service
○ With Amazon DynamoDB, AWS provides managed

infrastructure.
○ Automatic replication of data over different regions. It

enforces data replication across three availability zones
for high availability, durability and read consistency.
Cross-region replication option is also available.

○ Infinite scalability with data items being stored on
solid-state drives, which provide high I/O performance.

○ Data is backed on S3 storage.
○ Pay-per-use model.
○ Security and access control using Amazon’s IAM service.

Features

● Predictable Performance:
○ Delivers highly predictable performance based on the

quality of service you choose. You can specify how much
provisioned throughput capacity you want to reserve for
reads and writes

○ Two types: Strong Consistency (Read-after-Write) or
Eventual Consistency.

○

Features

● DynamoDB Data Types:
○ DynamoDB uses three basic data model units: Tables,

Items, and Attributes. Tables are collections of Items, and
Items are collections of Attributes. Attributes can be of
following data-types:

○ Scalar – Number, String, Binary, Boolean, and Null.
○ Multi-valued – String Set, Number Set, and Binary Set.
○ Document – List and Map.

Features

● Amazon DynamoDB partitions
○ Stores data in partitions.
○ If your table has a simple primary key (partition key only),

DynamoDB stores and retrieves each item based on its
partition key value.

○ To write an item to the table, DynamoDB uses the value
of the partition key as input to an internal hash function.
The output value from the hash function determines the
partition in which the item will be stored.

Features

● Amazon DynamoDB partitions

● A single partition can support a maximum of 3,000 read capacity units or 1,000
write capacity units. When you create a new table, the initial number of
partitions can be expressed as follows:

(readCapacityUnits / 3,000) + (writeCapacityUnits / 1,000) = initialPartitions
(rounded up)

Features

● DynamoDB Streams and AWS Lambda
Triggers
○ A DynamoDB stream is an ordered flow of information about

changes to items in an Amazon DynamoDB table. When you enable a
stream on a table, DynamoDB captures information about every
modification to data items in the table.

○ Amazon DynamoDB is integrated with AWS Lambda so that you can
create triggers—pieces of code that automatically respond to events
in DynamoDB Streams. With triggers, you can build applications that
react to data modifications in DynamoDB tables.

○ AWS Lambda polls the stream and invokes your Lambda function
synchronously when it detects new stream records.

Features

● Other features
○ Amazon DynamoDB integration with Amazon EMR(Elastic

Map-Reduce) and Redshift: To perform analysis on
datasets.

○ Amazon DynamoDB JavaScript Web Shell: AWS has
introduced a web-based user interface known as the
DynamoDB JavaScript Shell for local development. When
you are ready to deploy your application in production,
you can make some minor changes to your code so that
it uses the Amazon DynamoDB web service.

Use-cases

● Use Case 1: Product Catalog
○ To store product information in DynamoDB. Each product

has its own distinct attributes, so you will need to store
different information about each of these products.

○

Table Name Primary Key

ProductCatalog Partition key: Id
(Number)

Use-cases

● Use Case 2: Forum Application
○ To build an application for message boards, or discussion forums.
○ Each AWS service has a dedicated forum. Anyone can start a new discussion

thread by posting a message in a forum. Each thread might receive any
number of replies. You can model this application by creating three tables:
Forum, Thread, and Reply.

Table Name Primary Key

Forum Partition key: Name (String)

Thread Partition key: ForumName (String)

Sort key: Subject (String)

Reply Partition key: Id (String)

Sort key: ReplyDateTime (String)

Usability

● Easy web based GUI for initial table setup,
including:

● items (columns)
● data-pipelines (for one-time or scheduled

import/export)
● permissions
● provisioning

● All GUI functions are available in the AWS
web console and through the AWS SDK.

Costs

Costs are based on:

● read/sec
● writes/sec
● average item size

Costs are on a sliding scale which is NOT
published; however AWS does provide an
easy-to-use cost estimator. Additionally, writes
are billed at twice the rate of reads.

Possible Alternatives

● MongoDB SaaS
● Prohibitively expensive vs. DynamoDB
● Not easy to use MemCaching or acceleration

● DynamoDB/MongoDB/etc. Container in ECS
● DynamoDB SaaS removes the trouble with

configuring, hosting, and maintaining a container

● Native Install of MongoDB/Cassandra/etc
● Configure and maintain host system
● Configure, install, and maintain software

Conclusions

● For low use databases with small average
item sizes, this is a cost-effective solution.

● As database complexity or use rises, it
becomes less cost-effective

● Using an auto-scaling cluster with ECS and a
EBS volume for data storage is more cost
effective than DynamoDB for high-use
databases, especially if the usage follows a
diurnal cycle.

Demo Questions

