
Team 2 - AWS Lambda 4/28/2017

1

Introduction to AWS LAMBDA

Presentation by:

Ratna Kameswari Prabhala (1750211)

Spoorthy Balasubrahmanya (1740013)

Tejaswi Gorrepati (1750154)

AGENDA
 Introduction to AWS Lambda

 History

 Key Features

 Use Cases

 Advantages

 Disadvantages

 Usability

 Cost Discussion

 Possible alternatives

INTRODUCTION
 AWS Lambda is Function As A Service(FaaS).

 It is an event-driven, cloud computing platform service.

 Microservice without servers.

 Allows developers to provision resources for a programming function on a pay

per use basis.

 Runs your function code without you managing or scaling servers.

 Lambda function can be written in Java, Python , Node.js and C#.

Technology Invention
 The first 'pay as you go' code execution platform was Zimki in 2006.

 Iron.io has coined the term serverless in 2011 and 2012.

 AWS Lambda, introduced by Amazon in November 2014, was the

first major provider considered to have a serverless offering.

 IBM announced OpenWhisk as an open source serverless platform.

 Microsoft followed up in 2016 by announcing Azure Functions.

Motivation
 Resources were under-utilized and left idle for longer periods.

 No infrastructure to manage.

 Resource centric service.

 Focus on program execution.

Key Features
 Build Custom Back-end Service :
Create new back-end services for your applications that are triggered on-
demand

 Run Code at Edge Locations :
Run code without provisioning or managing server with lowest network
latency.

 Automatic Scaling :
Automatically scales to support the rate of incoming requests without
requiring you to configure anything.

 Integrated Security Model :
Allows your code to securely access other AWS services through its built-in
AWS SDK and integration with IAM.

 Flexible Resource Model :
Choose the amount of memory you want to allocate to your functions
and AWS Lambda allocates proportional CPU power, network bandwidth,
and disk I/O.

Team 2 - AWS Lambda 4/28/2017

2

Key Features(1)
 Pay Per Use:

Pay only for the requests served and the compute time required to run
the code.

 Build your own code:

We can use any third party library, even native ones.

 Completely Automated Administration:

Manages all the infrastructure to run your code on highly available,
fault-tolerant infrastructure

 Built-in Fault Tolerance:

Protect your code against individual machine or data center facility
failures.

Use Cases
 Event Based Triggers:

• Real Time Stream processing (IOT applications)

• Processing Images uploaded to S3

• Chat Bot applications , e.g. user input(search for weather) is a trigger.

 Scheduled Events:
• Hourly/daily large scale batch processing (Rebuilding indexes for search

engine)

• Automated back-ups.

 Mobile Applications Back End :
 Since mobile apps have resource constraints, expensive processing can be

offloaded to AWS Lambda

 Business Use Cases:
• Netflix

• Zillow (AWS Lambda and AWS Kinesis for calculating mobile metrics)

• Amazon Alexa

Advantages
 Cost

• Sub second billing -

• For e.g. you are charged for every 100ms your function executes and number of times
it executes.

• Better than renting EC2 machines that are billed on hourly basis.

• First 1 million requests per month are free. Subsequent requests are billed at 0.2$ per
million requests

• No need to maintain expensive servers - Handled by AWS platform

• Avoid under-utilization of resources

 Auto Scaling
• Easily scale up and down function instances based on demand. Handled by AWS

platform

• Compare and contrast with EC2 where one has to set up Auto Scaling Groups and
configure Load Balancer.

 Ease of Development and Deployment
• Reduced software complexity

• Easy to deploy and iterate on functions using command line and UI

Disadvantages
 Resource Limits:

• Maximum Execution time cannot exceed 300 seconds

• Concurrent Executions limited to 600 per region

• Deployment Limits:

• Size of Lambda Function Deployment package cannot exceed 50 MB

• Total size of all the deployment packages that can be uploaded per region is 75GB

 Cold Start:

 Delay in executing first request since Lambda has to provision a new instance of the
function for the first time.

 Non persistent:
 Lambda functions are short lived. Any state has to be stored in S3 or AWS relational databases for

extra cost.

 Limited Monitoring Support
 Cloud Watch is the only viable option currently to monitor and debug AWS lambda function.

Usability
 Ease of Use:

 Configuring different event sources has a bit of learning curve.

 Language Support:

 Good coverage: Java, Node.js, Python, .NET

 Documentation

 Documentation is limited for some topics including mobile back end

applications and configuring event sources

Cost Discussion (1)
 Pricing Example:

Memory = 512 MB

No of Executions = 3M

Time per Execution = 1 sec

Total charges (Monthly) = Compute charges + Request charges

Compute charges (Monthly):

compute price is $0.00001667 per GB-s and the free tier provides 400,000 GB-s.

Total compute (seconds) = 3M * (1s) = 3,000,000 seconds

Total compute (GB-s) = 3,000,000 * 512MB/1024 = 1,500,000 GB-s

Total compute – Free tier compute = Monthly billable compute GB- s

1,500,000 GB-s – 400,000 free tier GB-s = 1,100,000 GB-s

Compute charges = 1,100,000 * $0.00001667 = $18.34

Team 2 - AWS Lambda 4/28/2017

3

Cost Discussion (2)
 Request charges (Monthly) :

1. Price =$0.20 per 1 million requests and the free tier provides 1M

requests per month.

 Total requests – Free tier requests = Monthly billable requests

 3M requests – 1M free tier requests = 2M Monthly billable requests

 Monthly request charges = 2M * $0.2/M = $0.40

Total charges = Compute charges + Request charges = $18.34 + $0.40

= $18.74 per month

Possible Alternatives
 Azure Functions (General Availability)

 Google Cloud Function (Beta Release)

 Open Source Alternatives:

• IBM OpenWhisk

• Iron.Io (Alpha 2)

Summary
 AWS Lambda is Function As a Service(FaaS)

 Sub second costs for running functions

 On-Demand Execution and auto scaling

 Faster development and deployment

 Not suitable for long running functions

DEMO

Creating and configuring a lambda function in GUI: Invoking the lambda function in GUI:

Team 2 - AWS Lambda 4/28/2017

4

Creating a lambda function using AWS CLI: Updating & Invoking the lambda function using AWS CLI:

$ aws lambda update-function-configuration --function-name prac-cli --timeout 30

$ aws lambda invoke --function-name prac-cli --payload file://input.txt lambda-
output.txt

