Team 2 - AWS Lambda

Infroduction to AWS LAMBDA

Presentation by:

Ratna Kameswari Prabhala (1750211)
Spoorthy Balasubrahmanya (1740013)
Tejaswi Gorrepati (1750154)

AWS Lambda is Function As A Service(Faas).
Itis an event-driven, cloud computing platform service.
Microservice without servers.

Allows developers to provision resources for a programming function on a pay
per use basis.

Runs your function code without you managing or scaling servers.

Lambda function can be written in Java, Python , Node.js and C#.

Resources were under-utilized and leftidle for longer periods.
No infrastructure fo manage.
Resource centric service.

Focus on program execution.

« Introduction to AWS Lambda
» History

» Key Features

» Use Cases

» Advantages

» Disadvantages

« Usability

» Cost Discussion

» Possible alternatives

The first 'pay as you go' code execution platform was Zimkiin 2006.
Iron.io has coined the term serverlessin 2011 and 2012.

AWS Lambda, infroduced by Amazon in November 2014, was the
first major provider considered fo have a serverless offering.

IBM announced OpenWhisk as an open source serverless platform.

Microsoft followed up in 2016 by announcing Azure Functions.

» Build Custom Back-end Service :

Create new back-end services for your applications that are triggered on-
demand

» Run Code at Edge Locations :

Run code without provisioning or managing server with lowest network
latency.

» Avutomatic Scaling :

Automatically scales to support the rate of incoming requests without
requiring you to configure anything.

» Integrated Security Model :

Allows your code to securely access other AWS services through its built-in
AWS SDK and integration with 1AM.

> Flexible Resource Model :

Choose the amount of memory you want fo allocate to your functions
cmci Aj_\A{\S’/Lgmbdo allocates proportional CPU power, network bandwidth,
and disk =

4/28/2017

Team 2 - AWS Lambda

» Pay Per Use:

Pay only for the requests served and the compute time required fo run
the code.

» Build your own code:

We can use any third party library, even native ones.

» Completely Automated Administration:

Manages all the infrastructure to run your code on highly available,
fault-tolerant infrastructure

» Built-in Fault Tolerance:

Protect your code against individual machine or data center facility
failures.

y 100ms your function and numb:

Better than renting EC2 machines that are billed on hourly basis.

First 1 milion requests per month are free. Subsequent requests are billed at 0.2§ per
million requests

No need fo maintain ive servers - Handled by AWS platform
Avoid und ization of resourc
» Auto Scaling
Up and down function insto

» Ease of Development and Deployment
oftware lexity

leploy and if on funcfio

» Ease of Use:

= Configuring different event sources has a bit of learning curve.
» Language Support:

= Good coverage: Java, Node.js, Python, .NET
» Documentation

= Documentation is limited for some topics including mobile back end

applications and configuring event sources

4/28/2017

Event Based Triggers:
Real Time Stream processing (IOT applications)
Processing Images uploaded to S3
Chat Bot applications , e.g. user input(search for weather) is a frigger.
Scheduled Events:
Hogg!yg/]dcﬂy large scale batch processing (Rebuilding indexes for search
ngine

Automated back-ups.
Mobile Applications Back End :

Since mobile Gpps have resource constraints, expensive processing can be
offloaded fo AWS Lambda

Business Use Cases:

Zillow (AWS Lambda and AWS Kinesis for calculating mobile metrics)
Amazon Alexa

Resource Limit:
Maximum Execution time cannot exceed 300 seconds

sfions limited fo 600 per r

Cold start:

+ Delay in executing first requ
function for the first fime.

Non persistent:

re short lived. Any ored in $3 or AWS relational data

Limited Monitoring Support

ud Watch n curently to monitor and debug AWS lamb

» Pricing Exampls

Memory = 512 MB

No of Executions = 3M

Time per Execution = 1 sec

Total charges (Monthly) = Compute charges + Request charges

Compute charges (Monthly):

compute price is $0.00001667 per GB-s and the free fier provides 400,

Total compute (seconds) = 3M * (1) = 3,000,000 seconds

Total compute (GB-s) = 3,000,000 * 512MB/1024 = 1,500,000 GB-s

Total compute — Free tier compute = Monthly billable compute GB- s
000 GB-5 - 400,000 free fier GB-s = 1,100,000 GB-s

1,100,000 * $0.00001667 = $18.34

Team 2 - AWS Lambda

Request charges (Monthly) :

» Azure Functions (General Availability)

Price =$0.20 per 1 million requests and the free tier provides 1M

requests per month.

Total requests — Free tier requests = Monthly billable requests

» Google Cloud Function (Beta Release)

3M requests — 1M free tier requests = 2M Monthly billable requests

Monthly request charges = 2M * $0.2/M = $|

Total charges = Compute charges + Request charges = $18.34 + $

= $18.74 per month

AWS Lambda is Function As a Service (Faas)

Sub second costs for running functions

On-Demand Execution and auto scaling

Faster development and deployment

Not suitable for long running functions

[T

W senies
[E——

AWS Lambda
Dashboard

Functions.

» Open Source Alternatives:

IBM OpenWhisk

Iron.lo (Alpha 2)

Resource Groups v %
Lambda > Functions > prac-ul

Configuration | Tiggers Tags | Monitoring

Code entry type | Eat code nine
asg.uind - speed;
nsg. tenperatune - tep;

onst sen response - {

© Execution result: succeeded (logs)

The sut returmed by your functon

Summary Log output

ARN - am aws lamba us-vest-2 46568846568 uncton prac-u

(2]

Cote SHAZS5 ILyMFGezPLNANCIOMSHTsnvicy T 4763 below showsth logging calls i your cade. These carespond 0. single row withinthe CloudWelch og

4/28/2017

Team 2 - AWS Lambda 4/28/2017

Crecting a lambda function using AWS CLI: Updating & Invoking the lambda function using AWS CLI:

$ aws lambda update-function-configuration nction-name prac-cli --timeout 30

$ lambd: fi i prac-cli —runtime node;: am::123456:role/service-

role a
role/practice-role ~handl il d P (Replace 123456 with your AWS Account ID)

$ aws lambd i ://input.ixt lambda-
output.txt

Ci\use Docusent

