
TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.1

Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING  Term project questions

 Cloud Computing Concepts and Models (Ch. 4 Erl book)

 Cloud delivery models

 Cloud deployment models

 Cloud Enabling Technology (Ch. 5 Erl book)

 AWS Demo

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

 3/28: It seems goofy to me to dictate vir tual machines for 
work which does not necessarily require perfect independency.  
Is there some sort of performance improvement accomplished 
by doing this?

 Agnostic analysis: application agnostic scaling threshold ?

 Scale horizontally (+ VMs) by simply looking at CPU load…

 Next lectures topics…
 Listed on SCHEDULE page of TCSS 562 Canvas website

 Subject to change

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.3

SURVEY FEEDBACK CLOUD DELIVERY MODELS

Infrastructure

Platform

Software

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.4

CLOUD DELIVERY MODELS

IaaS

User manages:
Application Services, 

Application Infrastructure, 
Virtual Servers

PaaS

User manages:
Application Services 

SaaS

IaaS

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.5

 Predefined, ready-to-use, hosting environment

 Infrastructure is further obscured from end user

 Scaling and load balancing may be automatically 
provided and automatic 

 Variable to no ability to influence responsiveness

 Examples:

 Google App Engine

 Heroku

 AWS Elastic Beanstalk

 AWS Lambda

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.6

PLATFORM-AS-A-SERVICE



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.2

 How service requests influenced infrastructure:

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.7

AWS LAMBDA

Requests  per batch 1 10 20 50 100

VMs/request Standard 1 1.72 2.94 5 5.56

VMs/request Oregon 1 2.78 3.12 5 5.56

 Cloud consumer

Wants to extend on-premise environments into the cloud 
for “web app” hosting

Wants to entirely substitute an on-premise hosting 
environment

 Cloud consumer wants to become a cloud provider and 
deploy its own cloud services to external users

 PaaS spares IT administrative burden compared to IaaS

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.8

USES FOR PAAS

 Software applications as shared cloud service
 Nearly all server infrastructure management is 

abstracted away from the user
 Software is generally configurable
 SaaS can be a complete GUI/UI based environment
 Or UI-free (database-as-a-service)

 SaaS offerings
 Google Docs
 Office 365
 Cloud9 Integrated Development Environment
 Salesforce

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.9

SOFTWARE-AS-A-SERVICE

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.10

 IaaS

 Storage-as-a-Service

 PaaS

 Integration-as-a-Service

 SaaS

 Database-as-a-Service

 Testing-as-a-Service

 ?

 Security-as-a-Service

 Integration-as-a-Service

October 24, 2016 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L10.11

OTHER CLOUD SERVICE MODELS

 Distinguished by ownership, size, access

 Four common models

 Public cloud

 Community cloud

 Hybrid cloud

 Private cloud

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.12

CLOUD DEPLOYMENT MODELS



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.3

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.13

PUBLIC CLOUDS

 Specialized cloud built and
shared by a particular 
community

 Leverage economies of scale 
within a community

 Research oriented clouds

 Examples:

 Bionimbus - bioinformatics

 Chameleon

 CloudLab

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.14

COMMUNITY CLOUD

 Compute clusters 
configured as 
IaaS cloud

 Open source software

 Eucalyptus
 Openstack
 Apache Cloudstack
 Nimbus

 Virtualization:
XEN, KVM, …

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.15

PRIVATE CLOUD

 Extend private cloud typically
with public or community cloud 
resources

 Cloud bursting:
Scale beyond one cloud when
resource requirements exceed
local limitations

 Some resources can remain 
local for security reasons

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.16

HYBRID CLOUD

 Federated cloud
 Simply means to aggregate two or more clouds together

 Hybrid is typically private-public

 Federated can be public-public, private-private, etc.

 Also called inter-cloud

 Virtual private cloud
 Google and Microsoft simply call these virtual networks

 Ability to interconnect multiple independent subnets of cloud 
resources together 

 Resources allocated private IPs from individual network subnets can 
communicate with each other (10.0.1.0/24) and (10.0.2.0/24)

 Subnets can span multiple availability zones within an AWS region

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.17

OTHER CLOUDS

 Recommended when using Amazon EC2

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.18

SIMPLE VPC



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.4

VPC SPANNING AVAILABILITY ZONES

CLOUD ENABLING 
TECHNOLOGY

April 6, 2017
TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.20

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.21

CLOUD ENABLING TECHNOLOGY

 Clouds must be connected to a network

 Internetworking: Users’ network must connect to cloud’s 
network

 Public cloud computing relies heavily on the internet

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.22

1. BROADBAND NETWORKS 
AND INTERNET ARCHITECTURE

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.23

PRIVATE CLOUD NETWORKING

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.24

PUBLIC CLOUD NETWORKING



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.5

 Cloud consumers and providers typically communicate via the 
internet

 This decentralized provisioning and management model is not 
controlled by the cloud consumers or providers

 Internetworking (the internet) relies on connectionless packet 
switching and route-based interconnectivity

 Routers and switches support communication

 Network bandwidth and latency influence QoS, which is 
heavily impacted by network congestion

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.25

INTERNETWORKING KEY POINTS

 Grouping servers together:

 Enables power sharing

 Higher efficiency in shared IT resource usage 
(less duplication of effort)

 Improved accessibility and organization

 Key components:
 Virtualized and physical server resources

 Standardized, modular hardware

 Automation support: ease server provisioning, 
configuration, patching, monitoring without
supervision

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.26

2. DATA CENTER TECHNOLOGY

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.27

CLUSTER MANAGEMENT TOOLS

 Remote operation / management

 High availabil ity support: **redundant everything** 
Includes: power supplies, cabling, environmental control 
systems, communication links, duplicate warm replica 
hardware

 Secure design: physical and logical access control

 Servers: rackmount, etc.

 Storage: hard disk arrays (RAID), storage area network (SAN): 
disk array with dedicated network, network attached storage 
(NAS): disk array on network for NFS, etc.

 Network hardware: backbone routers (WAN to LAN 
connectivity), firewalls, VPN gateways, managed 
switches/routers

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.28

DATA CENTER TECHNOLOGY –
KEY COMPONENTS

 Convert a physical IT resource into a vir tual IT resource

 Servers, storage, network, power (vir tual UPSs)

 Virtualization supports:
 Hardware independence

 Server consolidation

 Resource replication

 Resource pooling

 Elastic scalability

 Virtual servers
 Operating-system based virtualization

 Hardware-based virtualization

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.29

3. VIRTUALIZATION TECHNOLOGY

 What is the tradeoff space?

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.30

KEY VIRTUALIZATION TRADEOFF

PERFORMANCE
TRADEOFF

Hardware
Abstraction

Overhead



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.6

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.31

TYPE 1 HYPERVISOR

 Acts as a control program

 Miniature OS that manages VMs

 Runs on bare metal

 Also known as Virtual Machine Monitor (VMM)

 Traps instructions (i.e. device I/O) to implement sharing & 
multiplexing

 User mode instructions run directly on the CPU

 Paravirtualization: I/O drivers

 Requires support to be included in the OS kernel

 Objective: minimize vir tualization overhead

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.32

TYPE 1 HYPERVISOR

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.33

TYPE 2 HYPERVISOR

 Problem: Original x86 CPUs could not trap special 
instructions

 Instructions not specially marked

 Solution: Full Vir tualization

 Trap ALL instructions

 “Fully” simulate entire computer

 Tradeoff: High Overhead

 Benefit: Can virtualize any operating system without 
modification

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.34

TYPE 2 HYPERVISOR

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead
 Paravirtualization: custom OS kernels, I/O passed directly to HW w/ 

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be difficult to migrate 
cross-clouds

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.35

VIRTUALIZATION MANAGEMENT

 Each tenant (like in an apartment) has their own view of the 
application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to
data and configuration that is not their own

 Customizable features
 UI, business process, data model, access control

 Application architecture
 User isolation, data security, recovery/backup by tenant, scalability 

for a tenant, for tenants, metered usage, data tier isolation

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.36

4. MULTITENANT APPLICATIONS



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.7

 Forms the basis for SaaS (applications)

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.37

MULTITENANT APPS - 2

 Web services technology is a key foundation of cloud 
computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

 First generation web services

WSDL – web services description language

 UDDI – university description discovery and integration

 SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface 
REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.38

WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring 
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.39

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined 
set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML, 
ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.40

REST: REPRESENTATIONAL STATE TRANSFER

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.41

// SOAP REQUEST

POST /InStock HTTP/1.1 
Host: www.bookshop.org 
Content-Type: application/soap+xml; charset=utf-8 
Content-Length: nnn

<?xml version="1.0"?> 
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding"> 
<soap:Body xmlns:m="http://www.bookshop.org/prices"> 
<m:GetBookPrice> 
<m:BookName>The Fleamarket</m:BookName> 

</m:GetBookPrice> 
</soap:Body> 
</soap:Envelope>

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.42

// SOAP RESPONSE
POST /InStock HTTP/1.1 
Host: www.bookshop.org 
Content-Type: application/soap+xml; charset=utf-8 
Content-Length: nnn

<?xml version="1.0"?> 
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding"> 
<soap:Body xmlns:m="http://www.bookshop.org/prices"> 
<m:GetBookPriceResponse> 
<m: Price>10.95</m: Price> 

</m:GetBookPriceResponse> 
</soap:Body> 
</soap:Envelope>



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.8

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.43

// WSDL Service Definition 
<?xml version="1.0" encoding="UTF-8"?> 
<definitions  name ="DayOfWeek"  
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.xmlsoap.org/wsdl/">  
<message name="DayOfWeekInput"> 
<part name="date" type="xsd:date"/> 

</message> 
<message name="DayOfWeekResponse"> 
<part name="dayOfWeek" type="xsd:string"/> 

</message> 
<portType name="DayOfWeekPortType"> 
<operation name="GetDayOfWeek"> 
<input message="tns:DayOfWeekInput"/> 
<output message="tns:DayOfWeekResponse"/> 

</operation> 
</portType> 
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType"> 
<soap:binding style="document"  
transport="http://schemas.xmlsoap.org/soap/http"/> 

<operation name="GetDayOfWeek"> 
<soap:operation soapAction="getdayofweek"/> 
<input> 
<soap:body use="encoded"  
namespace="http://www.roguewave.com/soapworx/examples"  
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</input> 
<output> 
<soap:body use="encoded"  
namespace="http://www.roguewave.com/soapworx/examples"   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</output> 
</operation> 

</binding> 
<service name="DayOfWeekService" > 
<documentation> 
Returns the day-of-week name for a given date 

</documentation> 
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding"> 
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/> 

</port> 
</service> 

</definitions> 

Demo

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.44

REST CLIMATE SERVICES EXAMPLE

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some 
kind of operation on one or more resources.

 Frequently services are CRUD operations 
(create/read/update/delete)

 Create a new resource

 Read resource(s) matching criterion

 Update data associated with some resource

 Destroy a particular a resource

 Resources are often implemented as objects in OO 
languages

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.45

REST - 2

 Per formance: component interactions can be the dominant 
factor in user-perceived performance and network efficiency

 Scalability : to support large numbers of services and 
interactions among them 

 Simplicity: of the Uniform Interface

 Modifiabil ity : of services to meet changing needs (even while the 
application is running)

 Visibility : of communication between services

 Por tabil ity : of services by redeployment 

 Reliabi li ty: resists failure at the system level as redundancy of 
infrastructure is easy to ensure

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.46

REST ARCHITECTURAL ADVANTAGES

AWS DEMO

April 6, 2017
TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.47

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.48

GIT HUB EDUCATION PACK



TCSS 562: SE for Cloud Computing [Spring 2017]  
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.9

 Up to $150,
good for 
~ 2 years

 Coupon code 
should arrive 
in email

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.49

AWS CREDITS

 Course outline:

 eScience center @ UW Seattle

 1-day cloud workshop

 AWS, Azure, Google Cloud

 Deploying a Python DJANGO web application

 Tutorials available

https://cloudmaven.github.io/documentation/
rc_cloud101_immersion.html

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.50

CLOUD 101 WORKSHOP

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.51

AWS MANAGEMENT CONSOLE

 Launch Ubuntu 16.04 VM
 Instances | Launch Instance

 Install the general AWS CLI
 sudo apt install awscli

 Create config file
[default]

aws_access_key_id = <access key id>

aws_secret_access_key = <secret access key>

region = us-east-1

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.52

AWS CLI

QUESTIONS

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.53


