
TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.1

Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING Term project questions

 Cloud Computing Concepts and Models (Ch. 4 Erl book)

 Cloud delivery models

 Cloud deployment models

 Cloud Enabling Technology (Ch. 5 Erl book)

 AWS Demo

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

 3/28: It seems goofy to me to dictate vir tual machines for
work which does not necessarily require perfect independency.
Is there some sort of performance improvement accomplished
by doing this?

 Agnostic analysis: application agnostic scaling threshold ?

 Scale horizontally (+ VMs) by simply looking at CPU load…

 Next lectures topics…
 Listed on SCHEDULE page of TCSS 562 Canvas website

 Subject to change

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.3

SURVEY FEEDBACK CLOUD DELIVERY MODELS

Infrastructure

Platform

Software

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.4

CLOUD DELIVERY MODELS

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

User manages:
Application Services

SaaS

IaaS

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.5

 Predefined, ready-to-use, hosting environment

 Infrastructure is further obscured from end user

 Scaling and load balancing may be automatically
provided and automatic

 Variable to no ability to influence responsiveness

 Examples:

 Google App Engine

 Heroku

 AWS Elastic Beanstalk

 AWS Lambda

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.6

PLATFORM-AS-A-SERVICE

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.2

 How service requests influenced infrastructure:

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.7

AWS LAMBDA

Requests per batch 1 10 20 50 100

VMs/request Standard 1 1.72 2.94 5 5.56

VMs/request Oregon 1 2.78 3.12 5 5.56

 Cloud consumer

Wants to extend on-premise environments into the cloud
for “web app” hosting

Wants to entirely substitute an on-premise hosting
environment

 Cloud consumer wants to become a cloud provider and
deploy its own cloud services to external users

 PaaS spares IT administrative burden compared to IaaS

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.8

USES FOR PAAS

 Software applications as shared cloud service
 Nearly all server infrastructure management is

abstracted away from the user
 Software is generally configurable
 SaaS can be a complete GUI/UI based environment
 Or UI-free (database-as-a-service)

 SaaS offerings
 Google Docs
 Office 365
 Cloud9 Integrated Development Environment
 Salesforce

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.9

SOFTWARE-AS-A-SERVICE

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.10

 IaaS

 Storage-as-a-Service

 PaaS

 Integration-as-a-Service

 SaaS

 Database-as-a-Service

 Testing-as-a-Service

 ?

 Security-as-a-Service

 Integration-as-a-Service

October 24, 2016 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L10.11

OTHER CLOUD SERVICE MODELS

 Distinguished by ownership, size, access

 Four common models

 Public cloud

 Community cloud

 Hybrid cloud

 Private cloud

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.12

CLOUD DEPLOYMENT MODELS

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.3

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.13

PUBLIC CLOUDS

 Specialized cloud built and
shared by a particular
community

 Leverage economies of scale
within a community

 Research oriented clouds

 Examples:

 Bionimbus - bioinformatics

 Chameleon

 CloudLab

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.14

COMMUNITY CLOUD

 Compute clusters
configured as
IaaS cloud

 Open source software

 Eucalyptus
 Openstack
 Apache Cloudstack
 Nimbus

 Virtualization:
XEN, KVM, …

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.15

PRIVATE CLOUD

 Extend private cloud typically
with public or community cloud
resources

 Cloud bursting:
Scale beyond one cloud when
resource requirements exceed
local limitations

 Some resources can remain
local for security reasons

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.16

HYBRID CLOUD

 Federated cloud
 Simply means to aggregate two or more clouds together

 Hybrid is typically private-public

 Federated can be public-public, private-private, etc.

 Also called inter-cloud

 Virtual private cloud
 Google and Microsoft simply call these virtual networks

 Ability to interconnect multiple independent subnets of cloud
resources together

 Resources allocated private IPs from individual network subnets can
communicate with each other (10.0.1.0/24) and (10.0.2.0/24)

 Subnets can span multiple availability zones within an AWS region

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.17

OTHER CLOUDS

 Recommended when using Amazon EC2

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.18

SIMPLE VPC

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.4

VPC SPANNING AVAILABILITY ZONES

CLOUD ENABLING
TECHNOLOGY

April 6, 2017
TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.20

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.21

CLOUD ENABLING TECHNOLOGY

 Clouds must be connected to a network

 Internetworking: Users’ network must connect to cloud’s
network

 Public cloud computing relies heavily on the internet

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.22

1. BROADBAND NETWORKS
AND INTERNET ARCHITECTURE

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.23

PRIVATE CLOUD NETWORKING

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.24

PUBLIC CLOUD NETWORKING

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.5

 Cloud consumers and providers typically communicate via the
internet

 This decentralized provisioning and management model is not
controlled by the cloud consumers or providers

 Internetworking (the internet) relies on connectionless packet
switching and route-based interconnectivity

 Routers and switches support communication

 Network bandwidth and latency influence QoS, which is
heavily impacted by network congestion

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.25

INTERNETWORKING KEY POINTS

 Grouping servers together:

 Enables power sharing

 Higher efficiency in shared IT resource usage
(less duplication of effort)

 Improved accessibility and organization

 Key components:
 Virtualized and physical server resources

 Standardized, modular hardware

 Automation support: ease server provisioning,
configuration, patching, monitoring without
supervision

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.26

2. DATA CENTER TECHNOLOGY

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.27

CLUSTER MANAGEMENT TOOLS

 Remote operation / management

 High availabil ity support: **redundant everything**
Includes: power supplies, cabling, environmental control
systems, communication links, duplicate warm replica
hardware

 Secure design: physical and logical access control

 Servers: rackmount, etc.

 Storage: hard disk arrays (RAID), storage area network (SAN):
disk array with dedicated network, network attached storage
(NAS): disk array on network for NFS, etc.

 Network hardware: backbone routers (WAN to LAN
connectivity), firewalls, VPN gateways, managed
switches/routers

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.28

DATA CENTER TECHNOLOGY –
KEY COMPONENTS

 Convert a physical IT resource into a vir tual IT resource

 Servers, storage, network, power (vir tual UPSs)

 Virtualization supports:
 Hardware independence

 Server consolidation

 Resource replication

 Resource pooling

 Elastic scalability

 Virtual servers
 Operating-system based virtualization

 Hardware-based virtualization

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.29

3. VIRTUALIZATION TECHNOLOGY

 What is the tradeoff space?

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.30

KEY VIRTUALIZATION TRADEOFF

PERFORMANCE
TRADEOFF

Hardware
Abstraction

Overhead

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.6

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.31

TYPE 1 HYPERVISOR

 Acts as a control program

 Miniature OS that manages VMs

 Runs on bare metal

 Also known as Virtual Machine Monitor (VMM)

 Traps instructions (i.e. device I/O) to implement sharing &
multiplexing

 User mode instructions run directly on the CPU

 Paravirtualization: I/O drivers

 Requires support to be included in the OS kernel

 Objective: minimize vir tualization overhead

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.32

TYPE 1 HYPERVISOR

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.33

TYPE 2 HYPERVISOR

 Problem: Original x86 CPUs could not trap special
instructions

 Instructions not specially marked

 Solution: Full Vir tualization

 Trap ALL instructions

 “Fully” simulate entire computer

 Tradeoff: High Overhead

 Benefit: Can virtualize any operating system without
modification

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.34

TYPE 2 HYPERVISOR

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead
 Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be difficult to migrate
cross-clouds

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.35

VIRTUALIZATION MANAGEMENT

 Each tenant (like in an apartment) has their own view of the
application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to
data and configuration that is not their own

 Customizable features
 UI, business process, data model, access control

 Application architecture
 User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.36

4. MULTITENANT APPLICATIONS

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.7

 Forms the basis for SaaS (applications)

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.37

MULTITENANT APPS - 2

 Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

 First generation web services

WSDL – web services description language

 UDDI – university description discovery and integration

 SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.38

WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.39

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.40

REST: REPRESENTATIONAL STATE TRANSFER

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.41

// SOAP REQUEST

POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.42

// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.8

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.43

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

Demo

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.44

REST CLIMATE SERVICES EXAMPLE

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some
kind of operation on one or more resources.

 Frequently services are CRUD operations
(create/read/update/delete)

 Create a new resource

 Read resource(s) matching criterion

 Update data associated with some resource

 Destroy a particular a resource

 Resources are often implemented as objects in OO
languages

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.45

REST - 2

 Per formance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

 Scalability : to support large numbers of services and
interactions among them

 Simplicity: of the Uniform Interface

 Modifiabil ity : of services to meet changing needs (even while the
application is running)

 Visibility : of communication between services

 Por tabil ity : of services by redeployment

 Reliabi li ty: resists failure at the system level as redundancy of
infrastructure is easy to ensure

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.46

REST ARCHITECTURAL ADVANTAGES

AWS DEMO

April 6, 2017
TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.47

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.48

GIT HUB EDUCATION PACK

TCSS 562: SE for Cloud Computing [Spring 2017]
Institute of Technology, UW-Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.9

 Up to $150,
good for
~ 2 years

 Coupon code
should arrive
in email

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.49

AWS CREDITS

 Course outline:

 eScience center @ UW Seattle

 1-day cloud workshop

 AWS, Azure, Google Cloud

 Deploying a Python DJANGO web application

 Tutorials available

https://cloudmaven.github.io/documentation/
rc_cloud101_immersion.html

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.50

CLOUD 101 WORKSHOP

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.51

AWS MANAGEMENT CONSOLE

 Launch Ubuntu 16.04 VM
 Instances | Launch Instance

 Install the general AWS CLI
 sudo apt install awscli

 Create config file
[default]

aws_access_key_id = <access key id>

aws_secret_access_key = <secret access key>

region = us-east-1

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.52

AWS CLI

QUESTIONS

April 6, 2017 TCSS562: Software Engineering for Cloud Computing [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.53

