
Migrating to Cloud - Native Architectures Using
Microservices: An Experience Report

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi
Sharif University of Technology, Tehran, Iran - 2015

Sonam Gupta
Srinidhi Ramadurai
Smruthi Sridhar

Agenda
● Paper overview
● Introduction
● Background/Related Work
● Summary of New Technology Benchmark
● Key Contributions
● Authors Evaluations
● Conclusions
● Critique: Strength
● Critique: Weakness
● Critique: Evaluation
● Future Work

2

Paper overview

● Migration of an application named SSaaS (Server Side as a Service) in
PegahTech Co.

● Specific to this project
● Lessons Learnt
● Challenges
● Sections

○ Background behind Microservice Architecture
○ SSaaS existing architecture & Target Architecture after Migration
○ Migration plan & steps followed
○ Lessons Learnt
○ Conclusion

3

Introduction

● Microservices:- Continuous Delivery & DevOps
● Continuous Delivery:- Continuous Integration & Continuous Deployment
● DevOps - Collaboration between Developers and Operations team
● Microservices Architecture Components:

○ Configuration Server
○ Service Discovery
○ Load Balancer
○ Circuit Breaker
○ Edge Server

4

Background

● SSaaS - server side programming part of their applications without knowing
any server side languages

● First functionality - RDBMS as a service
● Future - Chat as a Service, Indexing as a Service, NoSQL as a Service
● Technology stack

○ Java using spring framework
○ Oracle -11
○ dependencies-Maven
○ Deployment-Jetty plugin
○ Repositories -Git.

5

Existing Architecture

● Common Lib

● DeveloperData

● DeveloperServices

● ContentServices

● DeveloperWebsite

6

Reasons to Migrate to Microservices

Requirement for Chat as a service: On demand capability

● Need for reusability

● Need for decentralized data governance

● Need for automated deployment

● Need for built-in scalability

7

Summary of New technology Stack

Components of New Technology Stack:

● Java Spring Boot
● Netflix OSS-Microservice specific components
● Eureka for ServiceDiscovery
● Ribbon for Load Balancer(Internal Load balancer)
● Hystrix -Circuit Breaker
● Zuul-Edge Server.

8

Monolith to MicroService -Related Concepts
● Domain Driven Design
● Bounded Context

 Domain Driven Design

● Supports the structuring of larger systems according to domains
● Each microservice is meant to constitute a domain
● only one microservice has to be changed in order to implement changes or to

introduce new features.
● Example-Promotion service from Monolith e-commerce System

9

Bounded Context

● Divides the large models into different Bounded Contexts
● explicit about their interrelationships.

10

Re Architecting Logic

● Existing system is less Complex
● Re Architected system based on domain of Developer Data
● Put every set of cohesive entities into a service, such that the only one which

can create and update that entity would be that service

Example:

Chat Services service could update or create the chat metadata entities.

11

Features of Target Architecture

● Chat Services service handle its metadata by itself ,not inside Developers
Data.

● Introduce a new Resource Manager service in order to reserve
resources-Oracle is moved from Devlopersdata to this service

● A new service to handle developer's information and its registered services.
● Transforming Developer Data from a library to a service.

12

Steps involved in Migration:

Step 1: Preparing the Continuous Integration Pipeline

● Allows developers to integrate their work with the others' early and often,and
helps to prevent future conflicts

● As no of services increase while shifting to microservice architecture.No of
instances running and deploying increases

● Virtualisation-less effective and costly
● Containerisation -deploy with low overhead and in isolation
● Deploy anywhere where containers are supported without changes to code or

images

13

Docker

● Tool for containers.
● Pool of ready to use images in DockerHub
● Can be pulled and customised based on users needs
● Docker Registry -let organizations to have a private docker image repository

Jenkins 9 - CI server.

 self-hosted Gitlab -code repository.

 Artifactory 11 as the artifact repository.

Step 2-Transforming Developer Data to a Service

14

Introducing Continuous Delivery
 STEP-3:
● Separate source code, configuration, the environment specification to evolve

independently
● Ability to change configuration without redeploying the source code.
● Docker removed the need for specifying environments since the Docker

images produce the same behavior in different environments.
● separated services' code repositories to have a clearer change history and to

separate the build life-cycle of each service.
● Automated deployment on a single server.

15

Introducing Edge Server

STEP 4:

To minimize the impact of internal changes on end-users

16

Introducing Dynamic Service Collaboration

Addition of Service Discovery, Load Balancer and Circuit Breaker to the system

17

Introducing Resource Manager

18

Introducing Chat Services & Developer Info Services

● Developer InfoServices- factoring out developer related entities (e.g.,
Developer) from Developer Data.

● Chat Services for persisting chat service instances metadata and handling
chat service instance creations.

19

Clusterization

containerization-low overhead.

Increase efficiency by introducing lightweight operating systems, like Core-OS 15
and Project Atomic

Google Kubernetes 16,has a good integration with the CoreOS, is a tool for easy
deployments of containers on a cluster.

Using Kubernetes, a container can be easily fetched from a private repository and
deployed to a cluster with different policies.

20

Final Delivery Pipeline

We set up a cluster of CoreOS instances with Kubernetes agents installed

We deployed our services on this cluster instead of a single server.

21

Author’s Evaluation and Challenges Faced

● Deployment in the development environment is difficult
● Service contracts are double important
● Distributed system development needs skilled developers
● Creating service development templates is important

22

Conclusions

● This paper explained the experiences which the author faced during the
migration of an on-premise application to the microservices architectural
style.

● This paper helped us understand the architecture of our system before and
after the migration

● Steps that were followed during this migration process.
● Importance of Continuous Delivery in the process of adopting microservices

23

Critique: Strengths

● Services are loosely coupled and more modular

● Improves Scalability and Flexibility in a efficient manner
○ Services can be scaled independently based on heavy load instead of scaling the entirety of a

monolithic app.

● Fault Isolation

● Freedom of Technology Stack

● Polyglot Programming/ Persistence
○ Leverage mix of programming language /frameworks to take advantage

based on business requirement

24

Critique: Strengths

● Containerization helps in lower overheads than the virtualization and in

isolation

● Decentralized data governance

● Automated Deployment with the help of Continuous Delivery pipeline

25

Critique: Challenges

● Refactoring the design of a system before migration

● Operational Management : Deployment in the development environment is

difficult

● Service Versioning is not a recommended solution.
○ Tolerant Reader : Service Consumer

○ Consumer Driven Contracts (Pact.io) : Service Developer

● Knowledge of Distributed System Development

● Security and Firewall

26

Critique: Evaluation
● IEEE Journal 2016

● Migration in Incremental steps.
○ Re-architecting the current system

○ Introducing new supporting services

○ Enabling Continuous Delivery in the system

● Importance of Continuous Delivery Integration :on-demand software

deployment

● Technology Stack

● Experience Report

27

Gaps

● Worthiness of the migration.

○ Performance Compared to the on-premise

● Cost effectiveness of the migration

28

Future Work

● DevOps Pattern for on-premise to Cloud migration

○ Reusable

○ Generic

29

Thank you

