
T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

1

MICROSERVICES: YESTERDAY,
TODAY AND TOMORROW

By

Megha G M

Sowmya V

Keerthanaa G S

30-05-2017

1

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manual Mazzara,
Fabrizio Montesi, Ruslan Mustafin, Larisa Safina

OUTLINE

 Introduction to Monolith architecture and the problems it imposed on
software development

 Evolution of microservice architecture to cope up with the problems of
monolith architecture

 Evolution of distributed architectures

 Monolith -> Object Oriented -> Component based (SOA) -> Microservices

 Characteristics of microservices & its impacts on software development

 Interesting future directions of microservices

30-05-2017

2

INTRODUCTION – MONOLITH

 Problems associated with large-scale software development were first
experienced in 1960s

 Last decade has seen a shift towards concept of service-orientation and led
to natural evolution of microservices

 Monolith architecture
 A software application whose modules cannot be executed independently

 Very difficult to use in distributed systems without specific frameworks

 Network Objects, RMI or CORBA might help but to a very little extent

 Issues
 Difficult to maintain and evolve

 Dependency hell – Adding or updating results in inconsistent system

 Small changes require rebooting the whole application

 Limited scalability

 Technology lock in for developers

30-05-2017

3

NEW TECHNOLOGY – MICROSERVICES

 Microservice – a cohesive, independent process
interacting via messages

 Microservice architecture – a distributed application
where all its modules are microservices

 Guideline to design and implement distributed
applications

 Partition the components of a distributed application into
independent entities

 Programming of simple services to implement a single
functionality

 Design and develop a highly maintainable & scalable
software

30-05-2017

4

MICROSERVICE ARCHITECTURE AS A
SOLUTION TO MONOLITH

 Implement limited and specific set of
functionalities

 Fosters continuous integration

 Changing the module doesn’t require rebooting
the whole application

 Microservices extend containerisation

 Scaling

 No lock-in to specific technology

30-05-2017

5

MICROSERVICES EXAMPLE

 Example: A functionality that plots the graph of a function

 Two microservices: Calculator and Displayer

 Another microservice (orchestrator): Plotter

 Takes the function given by a user

 Interacts with the Calculator to compute the graph of the function

 Plotter then requests the Displayer to show the result back to the user

To illustrate how the microservice approach scales,

New microservices can be built on top of this whenever required

Add mathematical elementary & special functions using Calculator as
orchestrator

30-05-2017

6

T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

2

EVOLUTION OF MICROSERVICES (1/5)
YESTERDAY

 1980’s – integration of design & development made it hard to find a clear
distinction between them

 1990’s – Object-oriented software – “patterns”
 Example : Model View Controller(MVC)

 Service-Oriented Computing (SOC) – Component-based software engineering
(CBSE)

 Services offers functionalities to other components, accessible via message passing

30-05-2017

7

EVOLUTION OF MICROSERVICES (2/5)
YESTERDAY

 Benefits of SOC
 Dynamism

 Modularity & reuse

 Distributed development

 Integration of heterogeneous and legacy system

 Second generation of services

 The first “generation” of service-oriented architectures (SOA) was difficult
to adopt due its vague requirements like discoverability and service
contracts

 Microservices – the second iteration of the concept of SOA and SOC.

30-05-2017

8

EVOLUTION OF MICROSERVICES (3/5)
TODAY

 Microservices, a new trend in software architecture

 Composition of small services,

 Introduced in 2011

 Fine grained SOA (Netflix)

 Characteristics

 Size – Service maintainability and extendability

 Bounded context – Related functionalities are combined into services

 Independency – Services are operationally independent

 Modularity – System provides Isolation of different functionalities

 Flexibility – System supports growing business needs

 Evolution – System stays maintainable with changes

30-05-2017

9

EVOLUTION OF MICROSERVICES (4/5)
TODAY

 Team

 1968 - Melvin Conway – design is a copy of the organization's communication
patterns

 Organize cross-functional teams around services

 Amazon CTO Werner Vogels – “you build, you run it” principle

 Total automation – Continuous integration, independent deployment, beneficial in
rapidly changing business environments

 Choreography over orchestration

 Orchestration – requires a conductor

 Choreography – decentralized

 Impact on quality and management

 Availability, Reliability, Maintainability, Performance, Security, Testability

30-05-2017

10

EVOLUTION OF MICROSERVICES (5/5)
TOMORROW
 New issues posed by microservices

 Dependability – building dependable systems with microservices

 Interfaces – need to specify formal message specifications between services

 Behavioural Specifications – To check that the services have compatible actions

 Choreographies – a possible future, still unclear in so many aspects

 Moving Fast with Solid Foundations – start from scratch or reuse existing results?

 Trust and Security

 Greater Surface Attack Area

 Network Complexity

 Trust

 Heterogeneity

30-05-2017

11

AUTHOR’S CONCLUSION

 Microservices architecture gained popularity recently both in
academia and in the industrial world

 Still in its infancy and still there is a lack of agreement on what
microservices actually are

 Few authors presented a revolutionary perspective to
microservices, the author here has given an evolutionary
perspective

 No comprehensive collection of documentation in this field

30-05-2017

12

T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

3

CRITIQUE: STRENGTHS

 Modularity – easy for bug-fixing

 Continuous integration

 Short re-deployment downtimes

 Containerization

 Scaling

 No technology lock-in

 Brings measurable cost savings in both time and speed to market

 Agility

 Efficiency

 Resiliency

 Revenue

30-05-2017

13

CRITIQUE: WEAKNESSES

 Challenges in Microservice architecture

 Developing distributed systems can be complex

 Multiple databases and transaction management can be painful

 Unavailability of an individual service can hinder the performance of the system

 Integration testing is cumbersome as the system size grows

 In-memory calls perform better compared to network message passing

 Deploying microservices can be complex. They may need coordination among multiple
services

 Migration towards microservices involves major back-end refactoring for most companies

30-05-2017

14

CRITIQUE: WEAKNESSES

 Security challenges

 Authentication is necessary in 3rd party services

 The architecture is exposed to attacks

 Involves complex network activity

 Attack on one microservice can bring down the application

 No common security infrastructure for heterogeneous systems

30-05-2017

15

CRITIQUE: EVALUATION

 About the paper

 Survey paper submitted by Cornell University in June 2016

 Cited more than 30 times

 Explains the practical difficulties faced by developers in a Monolith architecture &
introduces microservices and explains how it resolves the issues

 Provides an evolutionary perspective to this technology

 Provides a clear distinction between different technologies that led to
microservices from the scratch

 Paper acknowledges some of the challenges of microservices but there are not a
lot of solutions to these pitfalls

 The architectural details and cost details of the microservices are outside the
scope of this paper

30-05-2017

16

GAPS

 Constraints and limitations which are not discussed by the author

 Microservices architecture is not suitable for everybody

 For many organizations, a well-functioning microservice architecture
may be difficult to reach

 Microservices don't necessarily mesh well with DevOps environments

30-05-2017

17

FUTURE WORKS

 Tools are needed

 For formally specifying message types for data exchange

 To provide guaranteed compatibility of services

 More research contributions are necessary in the domain of the actor model and software agents

 It is unclear how choreographies can be combined with flexible deployment models where
nodes may be replicated or fail at runtime

 Security against attacks

 Microservices have a promising future with respect to IoT

30-05-2017

18

T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

4

THANK YOU!

30-05-2017

19

QUESTIONS?

30-05-2017

20

