
T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

1

MICROSERVICES: YESTERDAY,
TODAY AND TOMORROW

By

Megha G M

Sowmya V

Keerthanaa G S

30-05-2017

1

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manual Mazzara,
Fabrizio Montesi, Ruslan Mustafin, Larisa Safina

OUTLINE

 Introduction to Monolith architecture and the problems it imposed on
software development

 Evolution of microservice architecture to cope up with the problems of
monolith architecture

 Evolution of distributed architectures

 Monolith -> Object Oriented -> Component based (SOA) -> Microservices

 Characteristics of microservices & its impacts on software development

 Interesting future directions of microservices

30-05-2017

2

INTRODUCTION – MONOLITH

 Problems associated with large-scale software development were first
experienced in 1960s

 Last decade has seen a shift towards concept of service-orientation and led
to natural evolution of microservices

 Monolith architecture
 A software application whose modules cannot be executed independently

 Very difficult to use in distributed systems without specific frameworks

 Network Objects, RMI or CORBA might help but to a very little extent

 Issues
 Difficult to maintain and evolve

 Dependency hell – Adding or updating results in inconsistent system

 Small changes require rebooting the whole application

 Limited scalability

 Technology lock in for developers

30-05-2017

3

NEW TECHNOLOGY – MICROSERVICES

 Microservice – a cohesive, independent process
interacting via messages

 Microservice architecture – a distributed application
where all its modules are microservices

 Guideline to design and implement distributed
applications

 Partition the components of a distributed application into
independent entities

 Programming of simple services to implement a single
functionality

 Design and develop a highly maintainable & scalable
software

30-05-2017

4

MICROSERVICE ARCHITECTURE AS A
SOLUTION TO MONOLITH

 Implement limited and specific set of
functionalities

 Fosters continuous integration

 Changing the module doesn’t require rebooting
the whole application

 Microservices extend containerisation

 Scaling

 No lock-in to specific technology

30-05-2017

5

MICROSERVICES EXAMPLE

 Example: A functionality that plots the graph of a function

 Two microservices: Calculator and Displayer

 Another microservice (orchestrator): Plotter

 Takes the function given by a user

 Interacts with the Calculator to compute the graph of the function

 Plotter then requests the Displayer to show the result back to the user

To illustrate how the microservice approach scales,

New microservices can be built on top of this whenever required

Add mathematical elementary & special functions using Calculator as
orchestrator

30-05-2017

6

T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

2

EVOLUTION OF MICROSERVICES (1/5)
YESTERDAY

 1980’s – integration of design & development made it hard to find a clear
distinction between them

 1990’s – Object-oriented software – “patterns”
 Example : Model View Controller(MVC)

 Service-Oriented Computing (SOC) – Component-based software engineering
(CBSE)

 Services offers functionalities to other components, accessible via message passing

30-05-2017

7

EVOLUTION OF MICROSERVICES (2/5)
YESTERDAY

 Benefits of SOC
 Dynamism

 Modularity & reuse

 Distributed development

 Integration of heterogeneous and legacy system

 Second generation of services

 The first “generation” of service-oriented architectures (SOA) was difficult
to adopt due its vague requirements like discoverability and service
contracts

 Microservices – the second iteration of the concept of SOA and SOC.

30-05-2017

8

EVOLUTION OF MICROSERVICES (3/5)
TODAY

 Microservices, a new trend in software architecture

 Composition of small services,

 Introduced in 2011

 Fine grained SOA (Netflix)

 Characteristics

 Size – Service maintainability and extendability

 Bounded context – Related functionalities are combined into services

 Independency – Services are operationally independent

 Modularity – System provides Isolation of different functionalities

 Flexibility – System supports growing business needs

 Evolution – System stays maintainable with changes

30-05-2017

9

EVOLUTION OF MICROSERVICES (4/5)
TODAY

 Team

 1968 - Melvin Conway – design is a copy of the organization's communication
patterns

 Organize cross-functional teams around services

 Amazon CTO Werner Vogels – “you build, you run it” principle

 Total automation – Continuous integration, independent deployment, beneficial in
rapidly changing business environments

 Choreography over orchestration

 Orchestration – requires a conductor

 Choreography – decentralized

 Impact on quality and management

 Availability, Reliability, Maintainability, Performance, Security, Testability

30-05-2017

10

EVOLUTION OF MICROSERVICES (5/5)
TOMORROW
 New issues posed by microservices

 Dependability – building dependable systems with microservices

 Interfaces – need to specify formal message specifications between services

 Behavioural Specifications – To check that the services have compatible actions

 Choreographies – a possible future, still unclear in so many aspects

 Moving Fast with Solid Foundations – start from scratch or reuse existing results?

 Trust and Security

 Greater Surface Attack Area

 Network Complexity

 Trust

 Heterogeneity

30-05-2017

11

AUTHOR’S CONCLUSION

 Microservices architecture gained popularity recently both in
academia and in the industrial world

 Still in its infancy and still there is a lack of agreement on what
microservices actually are

 Few authors presented a revolutionary perspective to
microservices, the author here has given an evolutionary
perspective

 No comprehensive collection of documentation in this field

30-05-2017

12

T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

3

CRITIQUE: STRENGTHS

 Modularity – easy for bug-fixing

 Continuous integration

 Short re-deployment downtimes

 Containerization

 Scaling

 No technology lock-in

 Brings measurable cost savings in both time and speed to market

 Agility

 Efficiency

 Resiliency

 Revenue

30-05-2017

13

CRITIQUE: WEAKNESSES

 Challenges in Microservice architecture

 Developing distributed systems can be complex

 Multiple databases and transaction management can be painful

 Unavailability of an individual service can hinder the performance of the system

 Integration testing is cumbersome as the system size grows

 In-memory calls perform better compared to network message passing

 Deploying microservices can be complex. They may need coordination among multiple
services

 Migration towards microservices involves major back-end refactoring for most companies

30-05-2017

14

CRITIQUE: WEAKNESSES

 Security challenges

 Authentication is necessary in 3rd party services

 The architecture is exposed to attacks

 Involves complex network activity

 Attack on one microservice can bring down the application

 No common security infrastructure for heterogeneous systems

30-05-2017

15

CRITIQUE: EVALUATION

 About the paper

 Survey paper submitted by Cornell University in June 2016

 Cited more than 30 times

 Explains the practical difficulties faced by developers in a Monolith architecture &
introduces microservices and explains how it resolves the issues

 Provides an evolutionary perspective to this technology

 Provides a clear distinction between different technologies that led to
microservices from the scratch

 Paper acknowledges some of the challenges of microservices but there are not a
lot of solutions to these pitfalls

 The architectural details and cost details of the microservices are outside the
scope of this paper

30-05-2017

16

GAPS

 Constraints and limitations which are not discussed by the author

 Microservices architecture is not suitable for everybody

 For many organizations, a well-functioning microservice architecture
may be difficult to reach

 Microservices don't necessarily mesh well with DevOps environments

30-05-2017

17

FUTURE WORKS

 Tools are needed

 For formally specifying message types for data exchange

 To provide guaranteed compatibility of services

 More research contributions are necessary in the domain of the actor model and software agents

 It is unclear how choreographies can be combined with flexible deployment models where
nodes may be replicated or fail at runtime

 Security against attacks

 Microservices have a promising future with respect to IoT

30-05-2017

18

T8 – Microservices: Yesterday, Today, and
Tomorrow

5/30/2017

4

THANK YOU!

30-05-2017

19

QUESTIONS?

30-05-2017

20

