
Dynamo: Amazon’s Highly Available
Key-value Store

Authors:

Guiseppe Decandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels.

Presented by:

Yashaswi Tamta

Jugal Gandhi

Jonathan McFadden

Outline

● Overview
● Introduction
● Background
● Related work
● Key contributions
● Implementations
● Experiences
● Summary and Advantages
● Conclusion

2

Overview

● Failure in large scale servers and network
components is inevitable.

● Hence, reliability at massive scale is one of the
biggest challenges around.

This paper presents a solution:

DynamoDB - a highly available key-value store system

3

Overview

● For large companies like amazon, even a slightest
outage has significant financial consequences.

● Highly reliable systems provide an ‘always-on’
experience, imperative in real time applications.

4

Introduction
To provide robust solutions for:

5

Introduction

● In DynamoDB data is partitioned and replicated

using consistent hashing, and consistency is facilitated by
object versioning.

● The consistency among replicas during updates is
maintained by a quorum-like technique and a
decentralized replica synchronization protocol.

6

Introduction 1

● Partitioning:

Dynamo’s partitioning scheme completely relies
on consistent hashing.

● Replication:

Each data item is replicated on N hosts, where N is
a parameter configured ‘per instance’

7

Introduction 2

● Data versioning:

Treats the result of each modification as a new
and immutable version of the data.

● Handling failures:

Dynamo does this by, using ‘sloppy quorum’ and
‘hinted handoff’.

8

Background

● Traditional system use relational databases which
retrieve and store state using a primary key.

● This excess functionality requires expensive
hardware and skilled personnel for its operation.

9

Related work
● Peer to Peer systems:

Here a search query is flooded through the
network to find as many peers as possible that
share the data.

● Distributed file systems and Database:

Utilizes distributed stores of data items or chunks
of data items across loosely coupled systems.

10

Related work

Dynamo differs from the previous works:

● Dynamo is targeted at applications that need an
‘always writable’ data store

● Dynamo is built for an infrastructure within a
single admin domain

● Dynamo is built for latency sensitive applications

11

Related work

● ACID transactions are not supported compared to
a less familiar but fully ACID compliant
ConcourseDB [1]

● There’s no multi-key index: you can either have
one hash key or a hash-key + range key
combination

12

Key contributions

● The main advantage of dynamo is that its client
applications can tune the values of N, R, and W to achieve
their desired levels of performance

- Values of R and W impact object availability, durability,
and consistency.

● Despite some design limitations dynamoDB offers zero
maintenance and effortless scaling

13

Implementations - 1

Three main software components:

● Local persistent engine
○ plug-in architecture supports different storage engines
○ storage engine chosen based on application’ object size distribution
○ BerkeleyDB: objects in the order of tens of kilobytes
○ MySQL: larger objects

● Request coordination
○ built on top of an event-driven messaging infrastructure
○ coordinator executes the read and write operations in behalf of client

● Membership and Failure Detection

14

Implementations - 2

● Dynamo is used by a number of services with different usage
patterns:
● Business logic specific reconciliation: Many-node replication, with client

handling reconciliation. e.g. shopping cart logic.
● Timestamp based reconciliation: “Last write wins”. e.g. customer session

service.
● High-performance read engine: Services with a high read-request rate, small

number of updates. e.g. product catalogs.

● Value in allowing applications to tune R and W (affecting
consistency, durability, availability)
● Common: (N:3, R:2, W:2)
● High-performance read: (N:3, R:1, W:3)
● High-performance write: (N:3, R:3, W:1)

15

Experiences - 1

● Average and 99.9th percentile latencies
● latencies exhibit a diurnal pattern
● write latencies higher than read because they results in disk access
● affected by several factors such as variability in request load, object sizes,

and locality patterns
● To achieve higher-performance on writes, an optional writer thread can be

used to buffer writes.

16

Experiences - 2

● Fraction of Out-of-Balance Nodes

17

Experiences - 3
● Load Distribution Strategies

T random tokens per node
and partition by token value

T random tokens per node
and equal sized partitions

Q/S tokens per node,
equal-sized partitions

● New nodes need to “steal”
key ranges from exiting
nodes.

● Data partitioning and Data
placement schemes
intertwined.

● Decoupling of partitioning
and partition placement

● Enabling the possibility of
changing the placement
scheme at runtime

● When a node leaves, its
tokens are randomly
distributed to remaining.

● Similar strategy followed
when a new node is added.

18

Experiences - 4

● Load Balancing Efficiency

19

Experiences - 5

● Coordination
● There are two ways of locating a node to service a request:

● A load-balancer can determine the node for a given key/ request. The burden is on the
load-balancer/system

● The client can periodically sample a random node (every 10 seconds), grab its membership
state and use that to query nodes directly.

20

Summary and Advantages

Problem Technique Advantages
Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation
during reads

Version size is decoupled from
update rates.

Handling temporary failures Sloppy Quorum and hinted
handoff

Provides high availability and
durability guarantee when some of

the replicas are not available.

Recovering from permanent
failures

Anti-entropy using Merkle trees Synchronizes divergent replicas in
the background.

Membership and failure detection Gossip-based membership
protocol and failure detection.

Preserves symmetry and avoids
having a centralized registry for
storing membership and node

liveness information.

21

Conclusions

● Dynamo is a highly available and scalable data store, that
provides customers with the ability to customize their
storage system to meet their desired performance, durability
and consistency SLAs.

● Dynamo allows service owners to customize their storage
system by allowing them to tune the parameters N, R,and W.

● It has been proven as a durable, robust and scalable solution
to delivering at massive-scale. Its success demonstrates that
“an eventual- consistent storage system can be a building
block for highly- available applications“.

22

Questions

???
THANK YOU

23

