© IEEE 2017. The original document can be found using
the DOI 10.1109/MIC.2017.1 or at

http://ieeexplore.ieee.org/abstract/document/7839857/

http://ieeexplore.ieee.org/abstract/document/7839857/

68

View _from the Cloud

David Bermbach ¢ TU Berlin

Editor: George Pallis * gpallis@cs.ucy.ac.cy

Quality of Cloud Services:
Expect the Unexpected

Here, the author presents a number of experiences from several years of bench-

marking cloud services. He discusses how the respectively observed quality

behavior would have affected cloud applications or how cloud consumers could

use the behavior to their advantage.

found widespread adoption in companies of all

sizes. A core focus of these cloud consumers
is typically on cost savings, convenience of man-
aged services, and on-demand capacity changes.
The quality of cloud services, however, is usually
taken “as-is”: based on documentation, advertise-
ments, but also past experiences from a non-cloud
world, cloud consumers typically have implicit
assumptions. For instance, an eventually consis-
tent storage system that claims to have triple rep-
lication in close-by datacenters with high-speed
network interconnection can be assumed to show
low millisecond staleness - that is, relatively good
consistency behavior. As another example, virtual
machines (VMSs) that come in sizes S, M, L, and XL can
be expected to grow in capacity for all resources ~
network bandwidth, disk storage volume, RAM
size, CPU clock speed, or cores - when choosing a
bigger instance type. However, in both examples
this isn’t always the case - in fact, cloud consum-
ers should always expect the unexpected.

This isn’t meant to imply that the unexpected
is always bad for the cloud consumer. Actualily,
observable quality behavior is typically much bet-
ter than what's guaranteed, for example, when
cloud consumers only plan for what's guaranteed,
they’ll never tap the full potential of cloud ser-
vices. Furthermore, violations of guarantees might
still occur. Therefore, not knowing about the qual-
ity of the cloud services used will generally either
lead to unexpected negative surprises through
(seemingly) obscure application behavior or to
inefficiencies when cloud consumers design their
applications only based on explicitly provided
quality guarantees. The only way to avoid this

| n the last few years, cloud computing has

Published by the IEEE Computer Society

&

1089-7801/17/$33.00 © 2017 IEEE

and to get insights into the actual quality of cloud
services is through cloud service benchmarking
{see the related sidebar).

Thus, here I report on a number of experiences
from several years of benchmarking cloud services
and briefly discuss how the respectively observed
quality behavior would have affected cloud appli-
cations or how cloud consumers could use the
behavior to their advantage. This article should
be seen as a call: Don’t make assumptions, make
experiments. For this purpose, I also sketch out
how cloud consumers can use cloud service bench-
marking in their application lifecycle.

Performance of Virtual Machines

In 2011, Alexander Lenk and collcagues' ran a num-
ber of performance experiments on top of Amazon
EC2 instances using the Phoronix test suite. Soon,
they discovered that they had a twin peak distri-
bution of compute performance results: For every
benchmark in the suite, there were some machines
that showed a very good performance while oth-
ers showed a rather poor performance. Through
in-depth analysis of results, they realized that the
performance variance stayed constant over time
and could also not be attributed to different instance
sizes; instead, Amazon had obviously deployed two
different CPU types (AMD Opteron and Intel Xeon).
Depending on the CPU type, the machines either
excelled at floating point or at integer operations.
However, both types came with the same price tag.
Furthermore, the performance difference could only
be identified after having provisioned the instance.
Obviously, this isn't the anticipated behavior that
a cloud consumer would expect from a cloud pro-
vider that offers a standardized product.

{EEE INTERNET COMPUTING

Quality of Cloud Services: Expect the Unexpected

Cloud Service Benchmarking

o fully understand cloud service benchmarking, first we
must consider what a cloud service is, and how to deter-
mine its qualities.

What’s a Cloud Service?

Much has been written about cloud computing, often focusing
on delivery models or a cloud computing stack. However, with
the availability of container technologies or lambda services, a
differentiation into infrastructure as a service (laaS) and plat-
form as a service (PaaS) seems somewhat outdated. At the same
time, Web APis are widely used and NoSQL systems are much
more similar to cloud storage services than the latter group is
to virtual machines. For our purposes, a cloud service is, thus,
a software system running in the cloud whose functionality is
consumed programmatically by applications over Internet proto-
cols. To applications, such cloud services appear like a black box,
independent of the deployment model used, which is expected
to adapt to application workloads while maintaining quality goals.
Specifically, we consider an open source system such as Apache
Kafka or Apache Cassandra, deployed on top of a compute ser-
vice to be a cloud service as long as it’s used/consumed like a ser-
vice. This means that our understanding of cloud services is less

driven by the deployment model and more by the usage model.

!

i
What’s a Cloud Service Quality? %
A cloud service - that is, the software system behind the service 1
interface, will confront the cloud consumer with a particular |
quality behavior: the cloud service might become unavailable, it |
might be slow to respond, or it might be limited with regards to i
the number of requests that it can handle. These are all exam- 1
ples of qualities — namely, availability, latency, or scalability — |
and an application using the respective service needs to have
mechanisms in place to deal with these qualities (or, rather, deal
with poor quality).

What’s Cloud Service Benchmarking?

Cloud service benchmarking is 2 way to systematicaily study the
quality of cloud services based on experiments. For this purpose,
the benchmark tool creates an artificial load on the cloud service
under test while carefully tracking detailed quality metrics. A key
design goal of cloud service benchmarking is to mimic an appli-
cation as closely as possible to get meaningful results; however,
benchmark runs also aim to extensively stress the service, for
example, through system load or even injected failures.

These benchmark results are an
excellent example where cloud consum-
ers could benefit from their knowledge
on cloud service quality: depending
on the performance requirements of
the respective cloud application, the
cloud consumer could simply start a
new instance, run a short test, and
then determine whether they wanted to
use that instance for their application
or whether to repeat the provisioning
process.

Such unexpected behavior isn't a
thing of the past. In 2015, we men-
tored a student project in which a
group of master's students at Tech-
nische Universitit Berlin ran a number
of performance benchmarks on VMs.
In their cxperiments, they compared
an open stack-based SME cloud pro-
vider to Amazon’s EC2. For their mea-
surcments, they used a subset of the
Phoronix test suite to quantify CPU
compute capacity, RAM, and disk
throughput, but also network band-
width between different VMs of all

JANUARY/FEBRUARY 2017

sizes. What they discovered for the
SME provider was that ~ across differ-
ent VM sizes - compute power, mem-
ory, and disk throughput increased as
expected - that is, an M instance gen-
erally showed better performance than
an S instance. However, independent
of the actual VM size, the available
network bandwidth stayed constant.
Considering the cost of different VM
sizes, this leads to an interesting situ-
ation where for a number of applica-
tions it will be much more attractive to
scale-out using the smallest VM type
instead of scaling up; especially so for
network-bound applications. These
effects would never have been discov-
ered without benchmarking.

Consistency of Cloud

Storage Services

Cloud storage systems and services
are typically replicated; many of them
guarantee so-called eventual con-
sistency. In such systems, an update
operation terminates before writing all

replicas. This implies two things: first,
that other clients can read outdated
data while updates are being propa-
gated; and second, that several clients
might write the same data item con-
currently, thereby leading to conflicts.
Especially in the presence of failures
(such as message loss or crashed
instances), this inconsistency window
- also called staleness - that is, the
time during which outdated data might
still be read, could become rather long.
In general, applications can often tol-
erate staleness quite well; however,
this becomes much easier if staleness
is bounded. To our knowledge, even
today therc’s no cloud provider that
guarantees upper bounds for staleness.
Therefore, in 2011, we developed a
benchmarking approach for consis-
tency and repeatedly measured consis-
tency behavior of the Amazon Simple
Storage Service (S3) over the years.?
Basically, this approach aims to pro-
voke the worst possible consistency
behavior so as to obtain probabilistic

69

View from the Cloud

PR

20,000 -

H
{
1

2 15,000 |

= !

% 10,000

ks

& 5000

0 - i
e 8 8 8 8 8 8 8 8 8 8 8

. 5 & & & & & & & ©§& & o
H Q (=] o ol Q < (=] < < < <o
I oy [wn (=) i [~ Ly (= w (=4 wy
¢ = - o o~ ™M ~ <t - Al wn
(a) Seconds since experiment start
; 12,000 rnmr——
, 10,000
| E
x c 8,000 - i - / el
i g"') 6,000 -

k) ded -

3 4,000

2’000 [3 SUNNE—— T S
0 errerr g e e ey ey
0 10 20 30 40 50 60 70
(b) Test no.

Figure 1. Consistency of Amazon Simple Storage Service (53) in a one-week
benchmark run in 2011. (a) At night, S3 showed much lower and more predictable
staleness than during the day. (b) During the day, staleness of S3 followed a saw
pattern. This pattern was independent of the interval between individual tests.

upper bounds on staleness, for example.
The measurement approach comprises
a number of distributed machines (for
instance, 12 is a good number for three
replicas) that continuously poll a tar-
get key. Another machine periodically
updates that target key with the cur-
rent timestamp and a version number
{one test in Figure 1b). Correlation of
values read and the respective current
timestamp can then be used to deter-
mine the staleness. Furthermore, this
data also can be used to determine the
probability of reading stale data as a
function of the duration since the last
update.

S3 guarantees cventual consistency
based on at least three replicas located
in adjacent datacenters. What could be
expected, hence, were staleness val-
ues in the lower two-digit millisecond
range. However, in our first (repeated)
experiments in 2011, we found that
while S3 had acceptable staleness at

70 www.computer.org/internet/

night, it followed an obscure saw pat-
tern during the day. Figures 1a and 1b,
taken from previous work,? show this
behavior measured during a one-week
benchmark run: During the day, the
first update has a 2-second staleness,
the second one a 4-second staleness,
and so on until it drops back down after
close to 2 minutes and starts all over
again. Of course, we contacted Amazon
about this behavior and also continued
to benchmark S3 consistency behavior
over the years: Not only was the ini-
tial behavior totally unexpected — until
our last benchmark run in late 2013,
it continued to change significanty
{see Figure 2%}, thus providing further
proof for our “expect the unexpected”
mantra. Without going into further
details, suffice it to say that dealing
with inconsistencies at the application
level isn’t too difficult - unless there’s
no information on the quality behavior
of underlying cloud services.?

Security of Cloud Storage
Services
Especially when dealing with sensitive
data in cloud environments, security
becomes a key design goal - particu-
larly for data-in-transit security, where
data are encrypted and hashed before
being sent over the Internet. This, how-
ever, can be expected to come with
a performance impact - which has
largely been neglected by researchers
so far: either researchers focus on secu-
ity so that performance impacts are
largely disregarded, or they focus on
performance, then ignoring security or
choosing the weakest option available.

In recent experiments, I've worked
with colleagues to benchmark how
enabling data-in-transit security (for
example, based on TLS) affects the
performance of cloud storage ser-
vices. Interestingly, though, there’s
no clear result, as the impact com-
pletely depends on the concrete sys-
tem. For instance, in previous work,*
we described how Apache Cassandra
configurations with TLS might, in
fact, outperform unsecured configu-
rations (essentially, this means that
the natural performance variability
of cloud resources exceeds and hides
the performance impact of TLS); this,
however, depends on the respective
configuration and setup details. Ama-
zon’s DynamoDB service, on the other
hand, shows no performance impact
at all - aside from computation over-
heads on the application machines,
the performance overhead is shoul-
dered and paid for by Amazon. On
the other hand, we've seen in recent
experiments with Apache HBase that
enabling data-in-transit security
could have a catastrophic impact on
performance, thereby also severely
limiting scalability.” For example, we
could observe that a 12-node HBase
cluster with data-in-transit security
enabled can sustain approximately
the same throughput as an unsecured
6-node cluster.

For application developers, this
should have a strong cffect on the

{EEE INTERNET COMPUTING

service-selection process. For
instance, HBase should be avoided if
security is necessary in cloud deploy-
ments. On the other hand, a hosted
service might be an excellent choice
where maximum security essentially
comes for free as long as you trust the
cloud provider.

Availability of Web APls

As a completely different example
of cloud services, we recently ran a
three-month experiment where we
benchmarked performance and avail-
ability of Web APIs which, as I previ-
ously described, we also consider cloud
services due to their similarity from a
service consumption perspective. A
key aspect of our experiment® was the
geodistribution of clients: because Web
and mobile applications are inherently
distributed - either through a global
user base or through the geomobil-
ity of individual users — we deployed
our benchmarking clients all over the
world. For the experiment, we selected
15 hand-picked Web APIs so as to
cover a wide variety of application
areas, countries, provider sizes, and so
on. Each of the benchmarking clients
periodically called all 15 Web APIs over
both HTTP and HTTPS, and also pinged
the API host. For these calls, we col-
lected detailed results and thus could
track latency and availability.

What we expected to find in the
results was a performance variance
depending on the geolocation of the
client - this was typically the case.
However, what we also expected was
that availability would be comparable
across locations. This was absolutely
not the case. We were surprised to find
that there were scveral APIs that had
an availability of less than 50 percent
for most of the days of our experiment
- however, this was true only in some
regions while they were fully available
in others. For an unknown reason, some
APIs don’t have the same availability
across geographic regions so that end
users of mobile applications built on
top might be confronted with negative

JANUARY/FEBRUARY 2017

Quality of Cloud Services: Expect the Unexpected

Staleness in ms

~ Average
= - Max
- Min
-« Median

s Standard
deviation

Experiment

Figure 2. Consistency behavior of Amazon $3, as determined through one-
week benchmark runs in 2011-2013. Throughout the benchmark runs,

behavior changed significantly.

surprises. Another curious behavior
was that there was approximately a 70
percent chance of the HTTPS endpoint
of an API being available while the
HTTP endpoint of the same APl wasn’t
{and vice versa). This indicates that
Web API providers often have separate
front-end servers per protocol and only
share the backend services.

Both results can be dangerous for
application developers if they aren’t
known. However, they also can be
leveraged, for example, by trying the
respective other protocol in case of
unavailability or by tunneling requests
through additional backend servers in
other geographic regions.

Cloud Service Benchmarking
for Developers

Now that we've seen how cloud ser-
vices show unexpected behavior again
and again, when and how should
application developers use cloud ser-
vice benchmarking?

Generally, a cloud migration or
the development of a cloud-native
application will begin with an initial
assessment phase, where the devel-
opers decide on the target runtime
environment but also on the set of
cloud services that their application
will use. In this phase, it’s useful to
select existing benchmark imple-
mentations that are as similar as
possible to the application workload.
Developers should then use these
benchmark tools to better under-

stand the quality of all options. Of
course, there are often interdepen-
dencies - for instance, developers
might need cloud services that are
offered by only a single provider, or
a federated setup’ might be desir-
able. This should lead to an environ-
ment of handpicked cloud services,
along with initial ideas for dealing
with quality problems.

Afterward, in the (initial) devel-
opment phase we would recommend
implementing micro-benchmarks as
well for the application itself - simi-
lar to unit tests, benchmarks for testing
non-functional properties should
be part of the build process. This
approach is especially well-suited
for microservice-based applications
where modules can be benchmarked
individually. During this phase, it also
makes sense to periodically reassess the
quality of underlying cloud services.
Finally, when the application goes into
production, underlying cloud services
should be carefully monitored using
both monitoring, periodic benchmark-
ing, or indirect monitoring,? where
business key performance indicators
(KPIs) gauge for quality changes in the
underlying cloud services. Whencver
something unusual happens, develop-
ers should reassess the quality of the
cloud services used, but also adapt their
deployment decisions by, for example,
switching providers. Of course, actually
implementing this approach in practice
comes with a number of challenges;

7

Vieu;ﬁ"gm the Cloud_

however, these are beyond the scope of
this article.

n all these examples, we have seen

how completely unexpected behav-
ior recurs in all kinds of cloud services.
Application developers should, there-
fore, never assume that cloud services
behave like traditional on-premises
environments - instead, developers
should expect the unexpected and
prepare for it. This, however, is only
possible through cloud service bench-
marking: Don’t make assumptions,
make experiments.

There are a number of open chal-
lenges that would benefit from future
rescarch efforts. The first is that
benchmarks are typically designed
for reuse. However, especially in the
context of custom microservices, cur-
rently it's unclear how benchmarks
that are part of the build process
can be generalized and reused. After
all, a specific microservice is rather
unique in its nature so that devel-
oping a “standard” benchmark that
doesn’t only test a minimum subset
of features is quite challenging. The
second aspect is moving from fine-
granular benchmarks {(or even micro-
benchmarks) to more high-level
benchmarks. After all, application
developers are often more interested
in the overall quality of an entire
cloud platform than in assessing
individual cloud services - or even
worse: of small subsets of a service
such as disk throughput of a VM. In
this arca, identifying suitable, real-
istic application workloads but also
again the portability of benchmarking
tools is an unsolved major challenge.
The third challenge is on develop-
ing benchmarks that assess multiple
yualities at the same time - currently,
most benchmarks measure only one
quality, usually performance. m

Acknowledgments
I thank Steffen Miiller, Frank Pallas, Stefan Tai,

and Erik Wittern for the joint work leading to the

72 www.computer.org/internet/

experimental results used as a basis for this
article.

References
1. A Lenk et al, “What Are You Paying for?
Performance Benchmarking for Infrastruc-
ture-as-a-Service Offerings,” Proc. IEEE Int'l
Conf. Cloud Computing, 2011, pp. 484-491.
2. D. Bermbach and S. Tai, “Benchmarking
Eventual Consistency: Lessons Learned from
Long-Term Experimental Studies,” Proc.
IEEE Int’l Conf. Cloud Eng., 2014, pp. 47-56.
3. D.Bermbach, “Benchmarking Eventually
Consistent Distributed Storage Systems,” PhDD
thesis, Dept. of Economics and Manage-
ment, Karlsruhe Inst. of Techuology, 2014.
4. S. Miiller et al., “Benchmarking the Perfor-
mance Impact of Transport Layer Security
in Cloud Database Systems,” Proc, IEEE
Int'l Conf. Cloud Eng., 2014, pp. 27-36.
5. F Pallas, J. Giinther, and D. Bermbach, “Pick
Your Choice in HBase: Security or Performance,”
Proc. IEEE Int’l Conf. Big Data, to appear.

IEEE
b computer
society

6. D. Bermbach and E. Wittern, “Benchmark-
ing Web API Quality,” Proc. Int’l Conf. Web
Eng., 2016, pp. 188-206.

7. T. Kurze et al, “Cloud Federation,” Proc.
Int’l Conf. Clouds, Grids, and Virtualiza-
tion, 2011, pp. 32-38.

Bermbach is a senior researcher in the Infor-

David
mation Systems Engineering research group
of TU Berlin. His research interests include
cloud service benchmarking, cloud applica-
tions, and loT platforms, but also middleware
and distributed systems in general. Bermbach
has a PhD with distinction iu computer sci-
ence from Karlsruhe Institute of Technology.
Contact him at db@ise.tu-betlin.de.

Read your subscriptions
through the myCS pub-
lications portal at http://
mycs.computer.org.

myC

$IEEE

2017 B. Ramakrishna Rau Award

Call

for Nominations

‘Honoring contributions to the computer microarchitecture field

New Deadline: 1 May 2017

Established in memory of Dr. B. (Bob) Ramakrishna Rau, the award
recognizes his distinguished career in promoting and expanding the
use of innovative computer microarchitecture techniques, including
his innovation in complier technology, his leadership in academic
and industrial computer architecture, and his extremely high personal

and ethical standards.

WHO IS ELIGIBLE? The candidate will have made an outstanding
innovative contribution or contributions to microarchitecture, use of novel
microarchitectural techniques or compiler/architecture interfacing. It is hoped, but not
required, that the winner will have also contributed to the computer microarchitecture
community through teaching, mentoring, or community service.

AWARD: Certificate and a $2,000 honorarium.
PRESENTATION: Annually presented at the ACM/IEEE International Symposium on

Microarchitecture

NOMINATION SUBMISSION: This award requires 3 endorsements. Nominations are
being accepted electronically: www.computer org/web/awards/rau

CONTACT US: Send any award-related questions to awards@computer.org

www.computer.org/awards

{EEE INTERNET COMPUTING

