IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

NO. 2, JULY-DECEMBER 2013

Is the Same Instance Type Created Equal?
Exploiting Heterogeneity of Public Clouds

Antti Yla-Jaaski, Member, IEEE

Abstract—Public cloud platforms might start with homogeneous hardware; nevertheless, because of inevitable hardware upgrades,
or adding more capacity, the initial homogeneous platform will gradually evolve into heterogeneous as time passes by. The
consequent performance heterogeneity is of concern to cloud users. In this paper, we evaluate performance variations from
hardware heterogeneity and scheduling mechanisms of public clouds. Amazon Elastic Compute Cloud (Amazon EC2) and
Rackspace Cloud are used as the representatives because of their relatively long record and wide usage among small and medium
enterprises (SMEs). A comprehensive set of microbenchmarks and application-level macrobenchmarks have been used to
investigate performance variation. Several major contributions have been made. First, we find out that heterogeneous hardware is
a commonality among the relatively long-lasting cloud platforms, although the level of heterogeneity varies. Second, we observe
that heterogeneous hardware is the primary culprit of performance variation of cloud platforms. Third, we discover that varied CPU
acquisition percentages and different virtual machine scheduling mechanisms exacerbate the performance variation problem,
especially for network related operations. Finally, based on the observations, we propose cost-saving approaches and analyze
Nash equilibrium from cloud user perspective. By using a simple “trial-and-better” approach, i.e., keep good-performing instances

201

Zhonghong Ou, Member, IEEE, Hao Zhuang, Member, IEEE, Andrey Lukyanenko, Member, IEEE,
Jukka K. Nurminen, Member, IEEE, Pan Hui, Member, IEEE, Vladimir Mazalov, Member, IEEE, and

and discard bad-performing instances, cloud users can achieve up to 30 percent cost saving.

Index Terms—Hardware heterogeneity, VM scheduling mechanism, performance variation, cloud computing, Amazon EC2

1 INTRODUCTION

AS an industry-driven initiative, cloud computing gains a
great deal of attention from various parties, including
academia, industry, and policy makers, in the past few years.
Several essential characteristics make cloud computing
attractive for enterprises, for example, on-demand self-
service, resource pooling, and rapid elasticity [1]. A range of
vendors have provided various cloud services, for example,
Amazon Elastic Compute cloud (Amazon EC2) [2], Rack-
space cloud [3], Google Compute Engine [4], and Microsoft
Azure [5].

Nevertheless, as times passes by, the likely homogenous
platform at the beginning will gradually evolve into
heterogeneous. Heterogeneity may originate from both
hardware and software. From hardware perspective, server
upgrades, adding more capacity, and network devices

e Z. Ou, A. Lukyanenko, |.K. Nurminen, and A. Yli-Jddski are with the
Department of Computer Science and Engineering, Aalto University, PO
Box 15400, Konemiehentie 2, Espoo, FI-00076, Finland.

E-mail: {zhonghong.ou, andrey.lukyanenko, jukka.nurminen,
antti.yla-jaaskij@aalto.fi.

o H. Zhuang is with Distributed Information Systems Laboratory (LSIR),
School for Computer and Communication Science, EPFL, BC 118 Station
14 CH-1015, Lausanne, Switzerland. E-mail: hao.zhuang@epfl.ch.

e P. Hui is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong, China, and Telekom Innovation Laboratories, Ernst-Reuter-Platz 7,
Berlin, Germany. E-mail: panhui@cse.ust hk.

o V. Mazalov is with the Institute of Applied Mathematical Research, KRC of
RAS, Russia. E-mail: vmazalov@krc.karelia.ru.

Manuscript received 25 Feb. 2013; revised 25 Aug. 2013; accepted 23 Oct.
2013; published online 31 Oct. 2013.

Recommended for acceptance by M. Demirbas.

For information on obtaining reprints of this article, please send e-mail to:
tcc@computer.org, and reference IEEECS Log Number TCC-2013-02-0035.
Digital Object Identifier no. 10.1109/TCC.2013.12.

2168-7161/13/$31.00 © 2013 IEEE

(switches and routers) replacement all contribute to enlar-
ging heterogeneity; from software perspective, virtual
machine (VM) schedulers evolution, and network topology
changes of data centers both exacerbate the level of
heterogeneity. Our previous work [6] represents one of
the first studies exploring hardware heterogeneity in public
clouds. It demonstrates that hardware heterogeneity exists
in public cloud platforms, specifically in Amazon EC2, and
contributes primarily to performance variations.

In this paper, based on our previous work [6], we take a
step further to investigate the impact of hardware diversity
and underlying scheduling mechanisms on the performance
of public clouds. Amazon EC2 and Rackspace cloud plat-
forms are taken as the examples. We also evaluated Microsoft
Azure and Google Compute Engine cloud offerings. How-
ever, because of their relatively short period of time for
service provision,1 these two platforms have been using
homogeneous hardware to date, which are of no interest to
this paper. The motivation of this work is as follows:

1. Amazon EC2 and Rackspace cloud platforms repre-
sent the earliest cloud platforms that provide
infrastructure-as-a-service (IaaS) to the public. They
both have been introduced for a relatively long
period of time (since 2006).> According to three-year
hardware life cycle, in general, these two platforms
should have experienced several generations of
hardware upgrades. Thus, hardware heterogeneity

1. Microsoft Azure was commercially available in 2010 and Google
Compute Engine was introduced in 2012.

2. The tagline of Rackspace cloud service has been changed several
times, and the tagline of Rackspace cloud was introduced in 2009.

Published by the IEEE CS, ComSoc, PES, CES, & SEN

202 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

and the consequent performance variation should be
noticeable to cloud users.

2. Amazon EC2 and Rackspace cloud utilize custo-
mized versions of Xen hypervisor [7] to provision
Linux-based VMs.? Previous work found out that
different VM scheduling mechanisms in Xen pose
varied impact on the performance of the VMs
running atop [8]. Thus, there exists a high prob-
ability that different scheduling mechanisms also
impact the instances of the public clouds.

We explore the two phenomena mentioned above in this
paper. To that end, longitudinal measurements have been
conducted. For Amazon EC2 platform, measurements from
two periods of time have been conducted, one in 2011 and
the other in 2012. For Rackspace cloud servers, the
measurements are conducted in 2012. During the measure-
ments, several interesting results have been observed that
might affect the instance selection process for cloud users:

1. We observe that hardware diversity is a common-
ality between the two public clouds, although the
level of heterogeneity varies. For Amazon EC2,
hardware heterogeneity exists among the same
instance type within the same data center; while
for Rackspace, hardware heterogeneity only exists
among different data centers.

2. We find out that hardware diversity is the primary
source of performance discrepancy. Depending on
the specific subsystem, performance variation ranges
from 20 percent for CPU to 268 percent for memory,
which all contribute to the overall application
performance variation.

3. We discover that different VM scheduling mechan-
isms are used in Amazon EC2 within the same
instance type. It is another major cause for perfor-
mance diversity and unpredictability of the instances,
especially for network related operations, for exam-
ple, network throughput and network latency.

4. Depending on the specific cloud platform, we
propose cost-saving approaches for cloud users to
optimize their cloud usage. By using a simple
“trial-and-better” approach, i.e., selecting better-
performing instances to complete the same task,
cloud users can acquire 16.7-30 percent cost saving.
It is always beneficial for cloud users to use the
“trial-and-better” approach if they intend to stay in
the cloud for a relatively long period of time, for
example, more than 10 hours.

The observations can be viewed from two aspects:

1. From technical perspective, as hardware upgrades
are long lasting and inevitable procedures for data
centers, more considerations should be taken in
building a homogeneous cloud platform from
heterogeneous hardware. This problem is challen-
ging provided that new generations of hardware
usually bring improvements from all subsystems,
including CPU, memory, and hard disk. Adjusting
one subsystem might result in imbalance from the

3. Hereafter, we use VM and instance interchangeably.

NO. 2, JULY-DECEMBER 2013

other subsystems. Therefore, a holistic design is
fundamental to achieve performance homogeneity.

2. From cost perspective, cloud users can utilize

pricing inefficiency of cloud providers to optimize
their cost of cloud usage. However, when a large
portion of users start to use the “trial-and-better”
strategy, this might reduce the achievable benefits
from the approach. When to start using the
strategy is a challenging game-theoretic problem.
Furthermore, from the viewpoints of cloud provi-
ders, this “trial-and-better” behavior results in
worse-performing instances never been used; thus,
it causes significant resource wastage. How to
detect this activity and introduce efficient ap-
proaches to prevent it requires both technical and
business considerations.

The rest of the paper is structured as follows: Section 2
presents related literature. Section 3 details the environment
setup. Section 4 describes the microbenchmark measure-
ments, followed by application-level benchmarks in Section
5. Section 6 presents the potential cost saving approaches for
cloud users. In Section 7, we conclude the paper.

2 REeLATED WORK

The existing research efforts can be divided into three
categories: high-performance computing (HPC) oriented,
system performance comparison, and exploiting heteroge-
neity in the cloud.

HPC-oriented. Walker [9] studied the performance of
Amazon EC2 high-performance cluster compute instances.
The study showed that there exists a performance gap
between the EC2 provisioned cluster and local traditional
scientific cluster. Jackson et al. [10] presented a comprehen-
sive evaluation comparing conventional HPC platforms to
Amazon EC2. Later on, Zhai et al. [11] compared Amazon
EC2-based platform with typical local cluster and super-
computer options. They revealed that the high latency of
Amazon EC2 cluster compute instances for small messages
results in performance degradation for applications.

System performance comparison. Li et al. [12] developed a
performance and cost comparator, i.e., CloudCmp, to
measure various cloud services. Later on, they designed
CloudProphet [13] to predict the end-to-end response time
of an on-premise web application if migrated to a cloud.
Lenk et al. [14] found out that the performance indicators
provided by IaaS providers are not sufficient to compare
different IaaS offerings. Wang and Ng [15] presented a
measurement study on the impact of virtualization on
network performance of EC2 platform. Schad et al. [16]
analyzed performance variance of EC2 from different
perspectives, including CPU and network performance.
Barker and Shenoy [17] used a combination of microbe-
nchmarks and two real-world latency sensitive applications
for experimental evaluation.

Exploiting heterogeneity in the cloud. Suneja et al. [18]
proposed to use graphics processing unit (GPU) acceleration
to speed up cloud management tasks in virtual machine
monitor (VMM). Lee et al. [19] introduced a scheduling
mechanism in the cloud that takes into consideration

OU ET AL.: IS THE SAME INSTANCE TYPE CREATED EQUAL? EXPLOITING HETEROGENEITY OF PUBLIC CLOUDS 203

heterogeneity of the underlying platform and workloads.
Through mathematical modeling, Yeo and Lee [20] found
out that to achieve optimal performance, performance
variation among a heterogeneous cloud infrastructure
should be no larger than three times. Samih et al. [21]
proposed an autonomous collaborative memory system that
manages cluster memory dynamically. The key contribution
behind the system is to dynamically detect nodes that have
excess memory capacity (i.e., memory servers) and to
provide means for nodes that are running short on space
(i.e., memory clients) to swap their evicted kernel pages to
the memory servers. Such a system proved to be feasible as
it provides significant performance improvement to cloud
clusters (up to 3x).

The work mentioned above focused on analyzing
performance behavior of cloud platforms rather than
investigating the underlying causes of various performance
behavior. The latter is the focus of this work and clearly
differentiates it from the previous ones. The most relevant
work is from Farley et al. [22]. Similar to our previous work
[6], Farley et al. also found out that hardware heterogeneity
exists in Amazon EC2 standard small (m1.small) instance,
which results in performance variations. Nevertheless,
several differences exist to differentiate these two studies.
First, only EC2 m1.small instance was covered in [22], which
makes their results lack of generality, as small instances are
likely used for testing purpose rather than for product-level
provision because of their limited capacity; while this work
covers large instance and other more powerful instances to
provide a more generic investigation. Second, Farley et al.
[22] provided rigorous simulation and experiment result
from the strategy of exploiting heterogeneity, while this
work investigates the case where every user exploits the
heterogeneity using game-theoretic analysis. Furthermore,
analysis of [22] is based on one-week long measurements,
which makes their results, to a large extent, reveal temporary
phenomenon rather than long-lasting behavior of clouds.

Compared to our previous work [6], this paper makes
several differences:

1. in our previous study, we only took into considera-
tion different processor models from EC2 on
analyzing performance variation; in this work, both
EC2 and Rackspace cloud are covered, and differ-
entiation from other subsystems (memory, disk,
CPU acquisition percentage) is also taken into
account;

2. the impact of different scheduling mechanisms on
performance variation is added;

3. utilizing open-source Xen hypervisor [7], a local
environment is set up to assist understanding the
underlying VM scheduling mechanisms; and

4. game-theoretic and Nash equilibrium analysis is
added.

3 ENVIRONMENT SETUP

In this section, we describe the environment setup and
the benchmarks we used for the experiments. Ninety-five
percent confidence intervals are used throughout the
paper, where appropriate. If not otherwise stated, results

illustrated in the figures are aggregated from 20 different
instances.

3.1 Environment Setup

3.1.1 Amazon EC2 Platform

For detecting the hardware configurations of Amazon EC2
instances, we cover most of the available instance types.
Then, as a focusing and detailed research, we select the
standard large instance type, denoted as ml.large, as the
representative. Meanwhile, we carry out experiments on
standard small (m1.small), standard xlarge (ml.xlarge),
high-CPU medium (cl.medium), and high-CPU xlarge
(c1.xlarge) instances, to supplement the evaluation.
Most of the instances selected are located in us-east-lc
availability zone of US East (Virginia) region. A self-
created 64-bit Amazon EC2 Machine Image (AMI) with
Cent OS 5.6 distribution is used to eliminate differentia-
tion from operating systems (OS).

3.1.2 Rackspace Cloud Platform

Similar to EC2 platform, we cover all the available instance
types from Rackspace cloud. Both Dallas and Chicago data
centers (regions) are covered. It is noteworthy that Dallas is
a relatively new region in comparison with Chicago.
Rackspace cloud servers differentiate instances by memory
size, ranging from 512 MB to 30 GB. Then corresponding
hard disk capacity and different number of virtual CPUs are
configured with the instances. As a focusing research, we
select the 4-GB memory instance as it provides similar
capability as the EC2 m1.large instance type.

3.1.3 Local Environment

To explore the underlying scheduling mechanisms of EC2,
we set up a local platform based on Xen hypervisor to
emulate the characteristics of EC2 instances. In the local
environment, two servers are used to set up different
versions of Xen hypervisor. The two servers have identical
configurations: HP ProLiant BL280c G6 Server Blade
with one Quad-Core Intel Xeon E5640 2,667-MHz processor,
8-GB DDR3 1,333-MHz memory, one HPNC362i dual port
Gigabit server adapter. The hypervisors for the two
platforms are Xen 3.4.3 (based on simple earliest deadline
first, i.e., SEDF scheduler [23]), and Xen 4.1.1 (Credit
scheduler [24]). Dom0 uses CentOS 5.6 distribution, as in
Amazon instances. Varied number of VMs (each with
different number of virtual CPUs) are running within the
two machines.

3.2 Measurement Metrics and Tools

3.2.1 Hardware Configuration

We acquire hardware information of EC2 and Rackspace
cloud instances by using cpuid command, a nontrapping
instruction that can be used in user mode without
triggering trap to the underlying processor. Thus, the
hypervisor could not capture the instruction and return
modified results. Furthermore, we run cat/proc/cpuinfo
command to verify the results from cpuid. The CPU models
acquired from both approaches are identical.

For Amazon EC2 platform, we collect hardware in-
formation within two periods of time. One period is from

204 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

TABLE 1
Microbenchmark Tools

CPU performance: UnixBench [25]

VM scheduling: CPUBench

Memory performance: RAMspeed [26]

Disk performance: Bonnie++ [27]

Network throughput: TCPBench, UDPBench

April through July in 2011; the other one is from January
through May in 2012. For each period, we collect hardware
information of 200 instances for each instance type, cover-
ing all availability zones in the US East (Northern Virginia)
region. To make the instances under test as representative
as possible, we measure instances at different time of a day,
and during different days of a week. Furthermore, a smaller
number of instances from other regions (e.g., US West, and
EU) are also tested to confirm the existence of hardware
heterogeneity among different regions. Note that the exact
percentage of each type of hardware is of no significance, as
the focus of this work is to reveal the existence of hardware
heterogeneity in public clouds and analyze the consequent
performance variation. For Rackspace cloud server plat-
form, the hardware information is collected from June
through October 2012.

3.2.2 Microbenchmarks

We conduct a series of microbenchmark measurements to
evaluate various aspects of the instances. The complete list
is shown in Table 1, with supplementary description in the
following texts where appropriate. The benchmark tool is
the only process running on the instance when we conduct
the measurements. In certain measurements, for example,
CPU performance, two benchmark processes are used
concurrently to measure the maximum capability of the
instances, as ml.large and 4-GB instances possess two
virtual cores.

VM scheduling. To investigate CPU sharing and under-
stand the underlying scheduling mechanisms, we develop
a CPU microbenchmark, CPUBench, to measure the CPU
acquisition percentage of instances. The CPUBench records
system time by making gettimeofday() system calls con-
secutively for one million times, the same approach as
employed in [15]. In a regular call, the system call has a
resolution in the order of microseconds. When the VM is
scheduled off, the gap in the acquired system time is in the
order of milliseconds. By analyzing the CPU running time
and waiting time intervals, we can calculate the CPU
acquisition percentage of the instance, and further derive
the VM scheduling mechanisms of the underlying hyper-
visor. In VMs with multiple virtual CPUs, multiple
CPUBench are run in separate processes to make full use
of CPU capability.

Network throughput. We develop two fine-grained
micro-benchmarks to measure TCP and UDP throughput,
which we refer to as TCPBench and UDPBench. Each
microbenchmark has a client and a server component.
Both components are located in the same availability
zone (or region). The server side of TCPBench calculates
TCP throughput upon receiving per 256-KB data, while
the UDPBench calculates throughput upon receiving per

NO. 2, JULY-DECEMBER 2013

TABLE 2
Hardware Configuration of EC2 Instances
Instance | CPU(Alias) | GHz | %(2011) | %(2012)

E5645 2.0 3% 30%
wl.small E5430 2.66 34% 38%
E5507 2.26 45% 12%
2218HE 2.6 18% 20%
E5645(A1) 2.0 5% 42%
E5430(A2) 2.66 29% 17%
m1.large E5507(A3) 2.26 58% 40%
2218HE 2.6 4% 1%

270 2.0 4% -
E5645 2.0 40% 48%
m1.xlarge E5430 2.66 27% 46%
E5507 2.26 31% 6%

270 2.0 2% -

128-KB data. To prevent potential bottleneck from the
client side, the client components of TCPBench and
UDPBench are deployed on powerful instances.

3.2.3 Application Performance Benchmark

We measure the web server performance of various
instances using Httperf [28] benchmark tool. Apache web
server is selected for serving static and dynamic requests.
For static measurement, we send a HTTP request to fetch a
file from the web server, and different file sizes are used.
Dynamic HTTP request is used to fully utilize CPU
capability. Dynamic request means after receiving a request
from a client, the web server performs a mathematical
summation from 1 through 100, and then returns the result
to the client. Thus, dynamic web test is more CPU bound
rather than network bound. Once again, a powerful
instance from the same zone is used as the client.

4 MICROBENCHMARK MEASUREMENTS

In this section, we first analyze the hardware configuration of
Amazon EC2 and Rackspace cloud servers. Then, we utilize
several microbenchmark tools to evaluate the performance of
various instances from different perspectives.

4.1 Hardware Configurations

As mentioned in Section 3.2.1, we use nontrapping cpuid
instruction to acquire the underlying hardware information.
The hardware configurations of various instance types from
Amazon EC2 are listed in Table 2. It is noteworthy that we
only list the standard instance family in Table 2. High-CPU
instance family demonstrates similar behavior, i.e., multiple
processor models are used within the same instance type.
Note that Amazon introduced a new standard instance type
(i.e., ml.medium) in the beginning of 2012. However, as
we are more interested in hardware evolution of EC2
platform, we exclude m1.medium instance. Processor models
for the other types of instances are relatively uniform,
which are of no interest to this paper.

Hardware configurations of Rackspace cloud servers are
listed in Table 3. As illustrated, Rackspace provides
relatively coarse-grained instances, without further categor-
izing instances into different families. Furthermore, the
hardware within the same region demonstrates less
diversity compared with EC2 instances. For example,

OU ET AL.: IS THE SAME INSTANCE TYPE CREATED EQUAL? EXPLOITING HETEROGENEITY OF PUBLIC CLOUDS 205

TABLE 3
Hardware Configuration of Rackspace
Instance Dallas Chicago
(Memory) | CPU(Alias) | GHz | CPU(Alias) | GHz
512 MB
1GB 4170 2.1 4170 2.1
2 GB
4 GB
8 GB 4170 (R1) 2.1 2374 (R2) 2.2
15 GB
30 GB

within the Dallas region, all the instances are hosted by
AMD Opteron 4170 HE model; while within the Chicago
region, two processor models are used, 4170 HE (512 MB,
1 GB, and 2 GB), and 2374 HE (4, 8, 15, and 30 GB). Recall
that the Dallas region is a newly built data center, thus, its
server machines are newer than the Chicago region. We can
think of Rackspace cloud as a special case of EC2 platform,
which provides standard instance family solely.

The processor models in Tables 2 and 3 starting by
digits are from AMD Opteron series, while the rest are
from Intel Xeon series. From the tables, several observa-
tions can be made:

1. Hardware heterogeneity is a commonality in EC2
and Rackspace cloud, although the level of hetero-
geneity varies. EC2 illustrates broad hardware
diversity (intrainstance type and interinstance type),
while Rackspace demonstrates heterogeneity only at
the level of different regions. Newer processor
models are replacing older ones progressively.

2. Same types of processor models are used within
the same instance family. For example, E5645,
E5430, and E5507 are used across the three different
types within the standard instance family (m1) of
EC2. On the one hand, this phenomenon can
increase resource pooling, for example, ml.small
instance can colocate with m1.large instance on the
same physical server. On the other hand, hardware
heterogeneity within the same subtype likely
results in performance variation, which we will
analyze in the subsequent sections.

3. When we collect information from EC2, we notice
that the probability of a specific type of processor
significantly varies in different availability zones. In
one zone, we can acquire 95 percent of ml.large
instances hosted by E5645 machines; while in
another zone, the percentage of E5645 instances is
as low as 10 percent. We believe that the availability
zone with 95 percent E5645 instances is a newly built
data center. This observation also explains perfor-
mance of the same instance type varies significantly
among different availability zones, which was
revealed in previous work [16].

4. Furthermore, one more phenomenon is observed
regarding E5645 processor model, which is bolded in
Table 2. E5645 processor has a default clock speed of
2.4 GHz and can obtain a max turbo frequency of
2.67 GHz. However, during our experiments, we
find out that the clock speed of E5645 processor is

1-process

2-process
1.22

700 1.12

800

1.1

SEE FE P

Fig. 1. UnixBench score, for one and two processes. A1-A3 instances
are from Amazon EC2, while R1-R2 instances are from Rackspace.

limited to 2.0 GHz. We will give an explanation in
Section 4.3.1.

Now, we are aware that EC2 and Rackspace utilize
diversified CPU models to provision the same type of
instance. The interesting question to ask is whether the
heterogeneous hardware leads to diversified performance.
Without loss of generality, we select m1.large instance from
EC2 and 4-GB memory instance from Rackspace for
focusing experiments in the subsequent sections. The
aliases of these instances are sorted by their respective
CPU capability, from powerful to weak. Al and R1 stands
for the most powerful instance from EC2 m1.large instances
and Rackspace 4-GB instances, respectively. Apart from
that because the AMD processor models (including 2218HE
and 270) from EC2 account for too low percentage to be
representative, we ignore them in the following analysis.

4.2 CPU Performance

From the previous section, we know that diversified
processor models are used within EC2 m1l.large instance
and Rackspace 4-GB instance (between different regions).
It is interesting to know how much performance variation
the instances hosted by these processor models will
present. We use UnixBench [25] to measure CPU perfor-
mance, the results are depicted in Fig. 1. Note that we are
more interested in comparing performance variations
within the same cloud platform. Thus, we take the weakest
instance as the baseline for each platform, i.e., A3 for EC2
ml.large instances (A1, A2, and A3) and R2 for Rackspace
4-GB instances (R1 and R2). Several findings can be made
from Fig. 1:

1. The difference within the same subtype of instance is
relatively small. For example, in both the 1-process
and 2-process measurements, the gap between the
upper and lower bounds of Al, A2, and A3 instances
is small, which is a good indicator of small variation.

2. The differences between different subtypes are
significant. If one process is running, Al and A2
have comparable performance, while they are
approximately 1.15x of A3. When two processes
are running, the performance variation in times is
1.22x and 1.12x for Al and A2, respectively, against
A3. The difference between Rackspace instances has
similar trend.

206 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

TABLE 4
CPU Acquisition Percentage of Instances

CPU | 1-proc (%) | 2-proc (%) Emulation
Al 99.9 (99.9, 99.6) Credit (256, 200)
A2 75.7 (75.4, 74.9) SEDF (30, 40, 0)
A2-s 99.4 (74.6, 74.8) Credit (256, 150)
A3 72.5 (71.1, 71.9) | SEDF (150, 210, 0)
R1 99.9 (98.1, 98.5) Credit (512, 200)
R2 99.5 (97.3, 95.7) Credit (512, 190)

Furthermore, it can be noticed that the differences of Al,
A2, and A3 instances from UnixBench measurements are
less than expected from PassMark benchmark. Calculated
from PassMark CPU benchmark score [29], the difference
between Al and A3 instances should be (6,898 — 3,632) /
3,632 = 89.92%. This discrepancy leads us to analyze CPU
acquisition percentage and the underlying VM scheduling
mechanisms.

4.3 CPU Acquisition and Scheduling

We use CPUBench (cf., Section 3.2.2) to analyze CPU
acquisition percentage of the instances. By CPU acquisition
percentage, we mean how much CPU processing time an
instance can acquire from the hosting physical server.

4.3.1 CPU Acquisition

The detailed CPU acquisition percentages for various
instances are listed in Table 4. The notation percent means
the percentage of the underlying physical CPU. To provide
comparison, CPU acquisition percentage of EC2 m1.small
instances is also measured, which is 50.6 percent (Al),
38.4 percent (A2), and 43.4 percent (A3).

Not surprisingly, ml.small instances (except Al) can
acquire approximately 40 percent of CPU processing time,
while m1.large instances (except Al and A2-s) can acquire
75 percent of CPU time each for the dual-process CPUBench
experiments. This is consistent with the advertised config-
urations of ml.small instances (one virtual core with one
EC2 Compute Unit, ECU) and m1.large (two virtual cores
with two ECUs each) instances.* For Rackspace, 4-GB
instance type, one-process can acquire close to 100 percent
CPU acquisition percentage; while for dual-process CPU-
Bench, CPU acquisition percentage for each process varies
between 95 and 99 percent, which we believe is because of
admin overhead.

There exist two m1.large instances behaving completely
differently from the others, i.e., A2-s (A2 special) and Al.
A2-s instance can acquire close to 100 percent of CPU
acquisition percentage for single process, while 75 percent
each for dual-process. However, the A2-s instances
account for only a small percentage, less than 1 percent
of overall. Thus, we leave A2-s for discussion in
Section 4.3.3. Al instances can acquire close to 100 percent
CPU acquisition percentage for both single and dual
process. Several conjectures can be made to explain the
irregularity of Al instances:

1. Fifty percent (for ml.small) and 100 percent (for
m1.large) CPU acquisition percentages are easier to

4. One ECU provides the equivalent CPU capacity of a 1.0-1.2-GHz 2007
Opteron or 2007 Xeon processor [2].

NO. 2, JULY-DECEMBER 2013

1 '

- —A2
0.8 ; ---A3

|
0.6 : :
0.4
0.2F o i e -
L=z

0 50 100 150 200 250 300 350 400
Time(ms)

(a) Running Time (b) Waiting Time
1 1
- —A2 H —A2
0.8 ' —--A3 0.8 : —--A3
0.6 ! k 0.6 '
c .~ 1
S 04 B 0.4
=3 Gl Ll
£ 020 |7 [o)=] 5] SR
B]
a 0 0
o 0 100 200 300 400 0 50 100 150
_“g (c) Period
£
=
o

Fig. 2. Running time, waiting time, and periods of A2, A3 instances
(single process).

manage and likely more efficient than the 40 and
75 percent CPU allocation. For example, one
physical core (without hyperthreading) is able to
host two m1.small instances with 50 percent CPU
acquisition percentage, while two physical cores
(without hyperthreading) together can host one
m1.large instance with 100 percent CPU acquisition
percentage. In the case of 40 percent CPU utilization,
one physical core can host two small instances.
However, the remaining 20 percent CPU time has to
be combined with another physical core or will
otherwise be wasted. Rackspace cloud also uses
simple and uniform close to 100 percent CPU
utilization for all its instances.

2. Amazon intends to increase the overall performance
of its instances within certain extent. Amazon is
criticized for lagging behind Moore’s law because
EC2 instances today present the same performance
level as several years back. Thus, it makes sense to
improve the overall performance by utilizing newer
hardware and higher CPU acquisition percentage.
However, the improvement should be within certain
extent to avoid discernible performance gap for end
users. Thus, the frequency of Al processors are
limited to 2.0 GHz rather than the default 2.4 GHz,
which presents an explanation to the phenomenon
we observed in Section 4.1 (cf., Table 2).

It is also worth noting that the CPU performance
variation among various ml.large instances, as shown in
Section 4.2, is approximately within 20 percent. This
variation is consistent with the EC2 statement,* which
implies an estimated 20 percent difference.

4.3.2 VM Scheduling

Being aware that A2 and A3 instances are sharing CPU
resources with other instances, we analyze the VM
scheduling mechanisms in this section. We use CPUBench,
as mentioned in Section 3.2.2, to analyze the running time,
waiting time, and periods of A2 and A3 instances. A period is a
complete cycle that is the summation of running time and
waiting time. The cumulative distribution functions (CDFs)
of A2 and A3 instances are depicted in Fig. 2. Note that
because the Al, R1, and R2 instances acquire close to
100 percent CPU acquisition percentage, it can be thought of
as running all the time without any waiting period.

OU ET AL.: IS THE SAME INSTANCE TYPE CREATED EQUAL? EXPLOITING HETEROGENEITY OF PUBLIC CLOUDS 207

From Fig. 2, it can be seen that A2 behaves more
regularly than A3 instance. Approximately 70 percent of
time, the running time, waiting time, and period of A2
instances is 30, 10, and 40 ms, respectively, which turns into
30/40 = 75% CPU acquisition percentage. A3 instances
demonstrate less regularity. Still, for around 40 percent of
time, the running time and period is 150 and 210 ms,
respectively. The waiting time of A3 instances shows the
most regularity, i.e., over 80 percent of time, the waiting
time of A3 instances is 60 ms.

The observation we can make from the VM scheduling of
various m1.large instances is: Amazon EC2 uses different
VM scheduling mechanisms for its instances. For A2
instances, it uses “short-and-fast” mechanism, while for
A3 instances, it uses “long-and-slow” approach. The “short-
and-fast” mechanism increases the overhead of VM switch-
ing, but it is beneficial for latency sensitive applications. The
“long-and-slow” mechanism has benefits in lowering VM
switching overhead; however, it harms the responsiveness
of applications. The impact of scheduling mechanisms on
the networking performance will be analyzed in Section 4.4.

4.3.3 Discussion

Recall in Section 4.3.1 that there exist two different types of
A2 instances, one is regular (A2) and the other one is special
(A2-s). To further investigate the irregularity of A2
instances, we build a local environment (cf. Section 3.1.3)
to emulate various behaviors of the instances. Two well-
used schedulers from Xen community are selected in this
paper, ie., simple earliest deadline first scheduler and
Credit scheduler. The detailed parameters for the emulation
are listed in Table 4, Emulation column. Refer to [8] for
detailed meaning of the parameters.

As shown in Table 4, we are able to successfully emulate
the EC2 and Rackspace instances. Nevertheless, for EC2
instances, two different schedulers have to be used, i.e.,
SEDF and Credit. With the SEDF scheduler, we are not able
to achieve the desired CPU acquisition percentage for A2-s
instance. With the Credit scheduler, we are not able to
emulate the A2 and A3 instances. This observation indicates
the existence of different scheduling mechanisms of
Amazon EC2, which supplements the conclusion we reach
in Section 4.3.2. Different VM scheduling mechanisms
contribute to performance variations within the same
instance type, especially for network related operations.

4.4 Network Performance

As EC2 utilizes different VM scheduling mechanisms
(cf. Sections 4.3.2 and 4.3.3) and varied CPU acquisition
percentages (cf. Section 4.3.1), we analyze its impact on
network performance in this section. Note that besides TCP
throughput, UDP throughput and network latency experi-
ments are conducted. The other two experiments demon-
strate similar trends as TCP throughput, thus, they are
omitted because of space.

We use TCPBench to measure TCP throughput of the
instances. The results are depicted in Fig. 3. Note that the
tests are run for 30 seconds, but 1-second curve is sufficient
to represent the general trends for 30 seconds. The average
TCP throughput for these instances is: 880 (Al), 883 (A2),

0 0.2 0.4 0.6 0.8 1

1500 (b) A2
2 1000 bt e I ",MV A e e A
< 500 | o] | \ I \
= | | | t ! ! | |
= 0 ; f ; ;
2 0 0.2 0.4 0.6 0.8 1
21500 B (A3
E 1000 i s e A A \M,“«\"N\Q\M/\’w*m\’\»‘yl’/\\,‘\”u g L
500 !
0 ; ; ; ;
0 0.2 0.4 0.6 0.8 1
1000 (d) R1&R2
800 o
—<4—R2
400 A J
200141] 0@ o ¥ 414} e b 8o FFH 3
0 0.2 0.4 0.6 0.8 1
Time(s)

Fig. 3. TCP throughput of various instances. (a) A1 instance; (b) A2
instance; (c) A3 instance; and (d) R1 & R2 instances.

875 (A3), 248 (R1), and 243 Mbps (R2). Several tendencies
can be observed:

1. As expected, Al demonstrates the most stable TCP
throughput among all EC2 instances. It can be
explained by the fact that Al instance acquires close
to 100 percent CPU acquisition percentage. On the
other hand, both A2 and A3 instances present
intermittent transmission behaviors. Nevertheless,
compared with A3, A2 instance illustrates shorter
and more frequent intermissions. Recall from Section
4.3.2 that the scheduling intervals for A2 are much
shorter (40 ms) than for A3 instances (210 ms) (cf.
Fig. 2). Therefore, A2 instances are more frequently
interrupted for shorter periods of time because of
VM scheduling. In general, EC2 instances can
acquire close to 900-Mbps internal TCP throughput,
and no traffic control policies are observed.

2. R1 and R2 instances both provide close to 200-Mbps
internal TCP throughput, consistent with Rackspace
promises [3]. Dissimilar to EC2, which fully utilizes
its network capacity, Rackspace employs traffic
control policies toward its instances, both internally
and externally. Thus, traffic flows from Rackspace
are frequently interrupted. In Fig. 3d, two dots
without a line connecting means the gap is larger
than 10 ms. Compared with R2, R1 instance is
more stable.

The performance behavior of TCP throughput from
EC2 instances supplements the conclusion we made in
Section 4.3.2 that different VM scheduling mechanisms pose
a significant effect on networking performance. As for
Rackspace instances, traffic control policies dominate the
overall networking behavior.

4.5 Memory Performance

From the sections above, we are aware that the diversified
processor models have a significant impact on the CPU
performance. We continue to investigate the impact of
memory on the performance of the instances. To that end,
RAMspeed is used, and the results are depicted in Fig. 4.
From the figure, it can be seen that A1 instance performs
the best, A2 instance functions the worst (thus taken as the

208 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

x10° Float—1 Float-2 Integer-1 Integer—2
2.68
1.25
8 2.34
7
26
2=
‘35
<
S4
o
-3
2
1

0
TR Y R Y K R K Y

Fig. 4. Memory performance. Float- and Integer-stand for float and
integer operations, and 1 and 2 stand for 1 and 2 processes,
respectively.

baseline), while A3 sits in between. The difference between
Al and A2 instances in single-process integer operation,
i.e., Integer-1, is 2.54x; while the difference in dual-process
integer operation is 2.68x. The difference between A3 and
A2 instances for integer operations is 1.40x and 2.01x, for
single and dual process, respectively. The float operations
show relatively smaller difference than integer operations.
However, the difference is still significant. For Rackspace
instances, consistent with CPU performance, R1 outper-
forms R2 from memory perspective. The difference be-
tween the two instances, however, is smaller compared
with EC2 instances.

At a first glance, the results from EC2 instances are
counterintuitive, as A2 processor demonstrates better CPU
performance than A3 processor. Recall from Section 4.1 that
Al and A3 processors were released in Q1'10, while A2
processor was released in Q4’07. Both A1 and A3 processors
adopt Intel QuickPath Interconnect (QPI) technology, while
A2 employs front-side bus (FSB) technology. QPI presents
superior performance to FSB technology and has been
replacing the latter gradually. Furthermore, Al and A3
processors can support DDR3 memory; while A2 most
likely uses DDR2 memory, as DDR3 was first in use in 2007.
As for R1 and R2 instances, they have similar configurations
for L2, L3 cache and memory type. Thus, their performance
does not reveal large difference as EC2 instances, but still
25 percent difference is illustrated. As a summary, hard-
ware diversity from memory type and architecture presents
significant impact on memory performance variation, the
difference can reach up to multiple times.

4.6 Disk Performance

Bonnie++ [27] is used to measure the hard drive and
filesystem performance. Sequential block input (read),
sequential block output (write), and random seek bench-
marks are conducted, the results are shown in Fig. 5. Be
aware that these measurements are more disk bound than
CPU bound.

For EC2 instances, Fig. 5 shows that there exists no clear
winner from all aspects. Al performs slightly better than A2
and A3 in sequential block input operation (cf. Fig. 5a),
while it functions the worst for random seek operation
(cf. Fig. 5¢). A3 instance is the winner in random seek
operation, while it is the worst in sequential block output

NO. 2, JULY-DECEMBER 2013

x10° (a)Sequential Block Input
25 T T T T r r
ok
J L
g §SEIEEI
¥ 1r
0.5r L R IR B dieae |
0 h h h h h h
0 8 10 12 14 16 32
x10* (b)Sequential Block Output
8 Y —— A1
ol 1|——h2
€ st {| A8
4r Ri
% 8 10 12 14 16 32 ~<-R2
s x10° (c)Random
w12}
2091
Q061
@0.31
0

16 32

o
o |
o

12 14
File Size (GiB)

Fig. 5. Disk throughput. (a) Sequential block input; (b) sequential block
output; (c) random operations.

operation (cf. Fig. 5b). A2 instance functions the best in
sequential block output operation, while the other two
operations are worse than Al and A3.

For Rackspace instances, the performance of disk is
consistent with other components, for example, CPU and
memory. R1 outstrips R2 from all three aspects. However,
the difference from disk performance is larger than CPU and
memory. As illustrated from Figs. 5a and 5b, the difference
is 0.7/0.4 = 1.75x for sequential block input, and 7/5 = 1.4x
for sequential block output operations. As mentioned
before, Dallas (R1 instance) is a newly built data center,
disk storage is also naturally newer than the Chicago (R2
instance) region. Thus, it is understandable that R1 outper-
forms R2 instances from every aspect we investigated.

The disk performance of EC2 instances is the most
irregular one among the subsystems we investigated. It is
difficult to investigate the real reasons for the irregularity.
In general, disk performance is a complex issue that
involves a number of aspects. We conjecture that the
relative weak random seek performance of Al instances is
from the limited share of hard disk cache. Recall that the Al
processor has six physical cores and is hyperthread
enabled. Thus, theoretically, one Al processor is able to
host six EC2 m1.large instances. The number for A2 and A3
processors is 4/(2-0.75) =2, and 4/(2-0.75) = 2, respec-
tively. Thus, to acquire the same allocation of disk buffer,
the hard disk(s) for Al processors should provision 3x of
disk buffer of A2 and A3.

One conclusion can be made: for EC2 instances, disk
performance is less predictable than the performance of
the other subsystems (e.g.,, CPU and memory), there is no
clear winner for disk performance; for Rackspace instances,
disk performance variation is bigger compared with other
subsystems.

5 APPLICATION-LEVEL BENCHMARK

Being aware of the varied performance from heteroge-
neous hardware subsystems, we analyze their accumu-
lated effect on application performance. Two applications
are selected, one is web server, and the other is in-memory
database. Because the results from these two applications
present similar trends, we only present web server
throughput measurements.

OU ET AL.: IS THE SAME INSTANCE TYPE CREATED EQUAL? EXPLOITING HETEROGENEITY OF PUBLIC CLOUDS 209

(a)Amazon
500
4501 —5— A1
400} | —m— A2
350} | ——A3
300
250
__200
§ 150
=100
2 50 ¥
= 0 50 100 150 200 250 300 350 400 450 500
£ (b)Rackspace
2300
o
£ 250
200
150
100

50

0 50 100 150 200 250 300 350 400 450 500
Load(reqg/sec)

Fig. 6. Httperf performance for different instances. (a) Amazon
instances; (b) Rackspace instances.

As stated in Section 3.2.3, both static and dynamic
measurements have been conducted. Nevertheless, the
static measurements are bound to network bandwidth, of
which the instances have very close performance. The
Httperf throughput for dynamic measurements is depicted
in Fig. 6. Fig. 6a illustrates that the throughput of A1 and A2
is 1.6x and 1.2x of A3, respectively. This phenomenon
implies that the strengths from several subsystems (CPU
and network) are accumulated from application perspec-
tive. Recall from Section 4.2 that CPU performance of Al
and A2 is 1.2x and 1.1x of A3 instance. Thus, network
performance of Al and A2 instances poses a positive effect
on their web server throughput. For Rackspace instances
(R1 and R2), however, the web server throughput variation
is consistent with CPU microbenchmark, i.e.,, 20 percent
difference. This is mainly because the internal network
throughput of Rackspace instances is limited to 200 Mbps;
thus, CPU performance variation dominates the overall
variation from application perspective.

6 CosT OPTIMIZATION ANALYSIS

We propose cost saving approaches, conduct game-theoretic
analysis, and discuss Nash equilibrium in this section.

6.1 Trial-and-Better

Given a certain task, the “trial-and-better” approach works
by seeking for better-performing instances from the same
instance type to complete the task. A cloud user can take the
following steps to fulfill the approach: 1) Apply for certain
number of instances from the cloud (naturally, the instances
acquired are a mixture of better-performing and worse-
performing instances with certain percentage each);
2) Check the performance levels of the acquired instances,
for example, checking cpuid information; 3) Keep the better-
performing instances, discard the other ones, and then
apply for new instances from the cloud. By iterating the
aforementioned procedure for multiple rounds, the user
will eventually get the desired number of better-performing
instances. The rationale behind this approach is that from
our several-month long measurements from Amazon EC2,
instances are returned relatively randomly. Namely, every
time after we terminate one instance and apply for a new
one, the new machine is with randomized hardware.

TABLE 5
Notations and Their Meaning

[| Definition |
Hourly cost of an instance.

Number of hours needed to complete the task.

Number of different sub-types within the same type.
Number of instances needed to complete the task with
worst-performing instances.

Total number of instances hosted by a cloud provider.
Number of instances hosted by a specific hardware.

pi | Probability of an instance hosted by a specific hardware;
note, p; = &.

oy | Stretch factor meaning how many additional instances a
cloud user should apply besides the desired instances.
z; | Performance level (in times) compared with the baseline
instance.

X | A random variable stands for performance level.

C' | The total cost of completing the task.

SIEEE

=

=

Furthermore, one common scenario in clouds is VM
migration. From our measurements, VM migration does
exist in public cloud platform, for example, Amazon EC2.
Nevertheless, from our two periods of measurements, it
occurs very rarely. This observation makes the “trial-and-
better” approach work well in public clouds.

Note that given a task, with better-performing instances,
the task can be completed with two alternatives: 1) smaller
number of instances running for the same amount of time;
2) same number of instances running for a shorter period of
time. From cost perspective, the two options are the same.
We take the first alternative as the example for analysis.
The notations are defined in Table 5.

Applying for an instance from a cloud randomly, the
probability of the instance of a certain subtype is p;, and the
expected value of the performance level of the instance is
defined as follows:

E(X) = Zw - 1)

Given a task equivalent to ¢ - 7" hours work using worst-
performing instances, the total cost of completing the task
using randomly allocated instances from the cloud, ie.,
Crandom, can be derived by the following equation:

Chrandom = q- T- C/E(X) (2)

If we aim to select better-performing instances to
complete the same task by utilizing the “trial-and-better”
approach, then a smaller number of instances are needed.
The cost of completing the real task (excluding the additional
cost for selecting the better-performing instances) is

Copt =q-T - ¢/Topt. (3)

Herein, z,, stands for the performance level of the
better-performing instance. Furthermore, the “trial-and-
better” process results in additional cost for acquiring the
better-performing instances, which is

Cewtm =4q- C/(popt : xopt)» (4)

wherein p,,; denotes the probability of the better-perform-
ing instances in the overall instances.

210 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

Here, we assume that the process of finding the better-
performing instances takes no more than 1 hour. As a
matter of fact, the process of selecting the better-performing
instances is very straightforward and fast. The process of
acquiring instances from EC2 takes from 2 to 4 minutes
from our measurements. We also assume that cloud users
run the rented instances for a relatively long period of time,
at least much longer than 1 hour. Thus, it makes the
additional hours spent on selecting instances much worth,
which we will demonstrate through the subsequent
analysis. Furthermore, we assume that the number of
instances required by a cloud user is relatively small
compared to the population of available instances.

Thus, compared with the random scenario (taking the
randomly allocated instances from the cloud platform
to complete the task), the potential cost saving for the
aforementioned optimized scenario can be calculated as
follows:

random Copt - Cal‘t’rw (5)

Put (1), (2), (3), and (4) in (5), we can acquire the
following equation:

Csavin,g = (T/ (Z Zi - pi) - T/‘Topt - 1/(popt . mopt)) +q-C.
i=1
(6)

Csaving =

The cost saving in percentage is

Cpercent = Csuving/ Crandom' (7)

Take the EC2 ml.large instance as the example, three
different subtypes (Al, A2, and A3) exist within this type.
The probability of each subtype is 42 (Al), 17 (A2), and
40 percent (A3) (cf. ml.large instance in Table 2, column
percent (2012)). We take the performance level of A1l and A2
instances as 1.6x and 1.2x, respectively, against A3
instance (cf. Fig. 6). The unit cost of a regular on-demand
m1.large instance is $0.26 /hour for Linux instance [2]. Put all
these values in (6), we can acquire the following equation:

Cuaving = 0.26 - ¢ - (0.1587 - T — 1.4881). (8)

To achieve cost saving, the requirement is Cyyyiny > 0, then
we can get the necessity: 7' > 9.4. Namely, given the
aforementioned probability of each instance and its respec-
tive performance level, it starts to make sense to select Al
instances to complete the task if the required running time is
larger than 10 hours, which is not a demanding requirement.

Furthermore, recall from Section 4.1 that, for EC2 plat-
form, varied processor models are not distributed uniformly
among the availability zones, but rather different processor
model dominates different availability zone. Thus, it is also
interesting to analyze only two types of hardware config-
uration. To that end, the results of (7) with two subtypes are
depicted in Fig. 7. Wherein p stands for the probability of the
better-performing instances, and z-axis stands for the
performance level in times (z; in Table 5).

Understandably, if better-performing instances account
for the majority of the overall instances, for example, p = 0.9
(cf. Fig. 7), without a selection process, the probability of
acquiring a better-performing instance is very high. Thus,

NO. 2, JULY-DECEMBER 2013

80 oo oo oo
Ern,nﬂ -@-p=0.1
= = p=0.5
T 60 o

= = -D>-p=09
§ 20 F ******-***3***-

g a*
W

20[’*(

10 ;i;> B DB B DD DD D> >
<4
1 2 3

5 6 7 8 9 10
Performance level (times)

Fig. 7. Cost saving analysis. Different p value stands for different
percentage of better-performing instances.

the performance is close to the optimal situation with the
selection process, and the cost saving achievable is small
(less than 10 percent). However, as the better-performing
instances account for increasingly smaller proportion of the
overall instances, the cost saving achievable becomes
significant. In the case of p = 0.1, if the better-performing
instance is 10 times as efficient as the baseline (worse-
performing) instance, the cost saving can reach up to
80 percent. Obviously, this is an unrealistic situation with
all the efforts that Amazon contributes to make the same
type of instance function closely. Nevertheless, from
Sections 4 and 5, we know that 1.2-1.6x variation is highly
possible. With 1.5x variation, the achievable cost saving can
still reach 30 percent (cf. the square curve in Fig. 7 where the
value of z-axis is 1.5, we can see the value of y-axis is
approximately 30 percent), which is a significant saving. For
Rackspace users, the decision-making process is straightfor-
ward, i.e., always preferring Dallas region to Chicago
region. Let us assume on average R1 is 1.2x of R2, then
the achievable cost saving is still remarkable, 16.7 percent.

6.2 Game-Theoretic Analysis

In the previous section, we analyzed the optimal behavior of
one cloud user in the presence of regular behavior of others.
It is obvious that if everyone starts to use the same strategy,
the number of available better-performing instances will be
reduced. To deal with this situation, we model a 2-player
game-theoretic problem: two players intend to acquire ¢
and ¢, instances for time T. Two-player model is sufficient
to investigate the interrelationship among individual cloud
users. Because in the cloud, for a specific cloud user, he is
not competing against any individual cloud user, but rather
the other users as a whole. Furthermore, varied individual
behaviors can be formulated by a single unified behavior.
Thus, the whole cloud users can be modeled as a small
individual user and a large combined user, from the
perspective of occupied resources. Without loss of general-
ity, we assume that there exist only two types of instances in
the cloud (N7 and N, and x; >).

The gaming strategy for each cloud user is a stretch factor
(a; > 1) representing how many additional instances the
user should request from the cloud. Herein, o; = 1 stands
for regular behavior, while «; > 1 stands for selfish behavior.
Regular behavior means the cloud user takes whatever is
offered from the cloud without any selection process. Selfish
behavior means the cloud user applies for more than the
desired number of instances from the cloud, and then takes
the resources as much as possible from better-performing

OU ET AL.: IS THE SAME INSTANCE TYPE CREATED EQUAL? EXPLOITING HETEROGENEITY OF PUBLIC CLOUDS 211

instances acquired, while the rest (if any) from worse-
performing instances. The “trial-and-better” approach
mentioned in the previous section belongs to selfish behavior.
Be noted that «; - ¢; < N.

Consider the scenario that one player comes first to the
cloud, where all instances N; and N, are available for use,
and then the other player comes (when some resources
are already occupied by the first player). We assume that
the probability of each player coming to the cloud first is
equal (this can easily be extended to unequal case). Then,
we can acquire the following utility function, which is
defined as the performance divided by the cost.

Theorem 1. The utility function (u;) for player i in such a game is

T (z2- ¢ + 321 — 22) - vi(ou,)
c g (i —1+1T)

G

ui(a,) =

where i, = 1,2 and

N
Ui(0l170l2) = Mm{%ﬁl CQ '(Ii}

Ny

+ J\Jm{qi, N, — Min [qj, NECUE q,}, (10)

Ny — Min{g;, 3 - a; - ¢;}

‘%‘%}J #J.

Because of space limit, proofs of theorems are not presented
in this paper. Given the utility function, each player will try
every strategy out to maximize his own benefits, eventually
this will result in Nash equilibrium.

6.3 Nash Equilibrium
We first analyze the potential states that lead to Nash
equilibrium, which are defined as follows.

Theorem 2. The candidates for Nash equilibrium from utility
function (10) are the following points:

N
al’2:17 a1’2:E7 aiza7i:172,
o = q‘],izl,Q, a; = q'7Z:1727Z#J'
N1 — g qj

Theorem 2 means that the potential candidates for Nash
equilibrium are tightly related to the distribution (i.e., ¢;) of
instances. Meanwhile, it illustrates that the number of
candidates is very limited. We then analyze the respective
conditions under which regular behavior (o; = 1) and selfish
behavior (c; > 1) are preferable. The condition leading to
reqular behavior is defined as follows.

Theorem 3. Assume the following condition takes place:

ro1<— N
wlfngl

(11)
Then, equilibrium is acquired at: o; = 1,4 =1,2.

Theorem 3 means that for users staying in the cloud for a
relatively short period of time, it is preferable to take
whatever is given by the cloud. This is straightforward to

understand. We now analyze conditions that lead to selfish
behavior, the following theorem is one possible form.

Theorem 4. Assume that ¢ < N1, ¢o > Ny, and the following
condition is met:
N 2-)

Ni—q
T—-1>— + .
Ny |z — 2o ")

(12)

Then, the Nash equilibrium is acquired at

_ N N
(051 Nl y (6%) % .

Theorem 4 describes a scenario that is close to real life,
where we have one small user (an individual user) and one
big user (a combined user from a number of small users) in
the cloud. The number of instances the small user applies is
significantly less than the total number of better-performing
instances in the cloud, i.e., ¢ < Nj; while the number of
instances applied by the big player is larger than that, i.e.,
¢2 > Nj, which is to guarantee a reasonable usage of cloud
resources. The received Nash equilibrium can be treated in
terms of evolutionary stable strategy (ESS). It means that if
all cloud users are using one strategy and an individual
cloud user decides to change his strategy, then the strategy
that the majority has adopted will be optimal. Theorem 4
states that if the cloud reveals performance variation
within the same instance type, as long as the cloud user
stays in the cloud for a long enough period of time, it is
always beneficial to take selfish behavior oy = instead of
the default reqular behavior o; = 1.

Numerical example. Now consider a generic example:
r; =15, 23 =1, N =100,000, N; =10,000, N, = 90,000,
¢=0.26, T =100, ¢, = 100, g2 = 40,000. It is close to what
we acquired from EC2 cloud. The cloud utilization level
is moderate ((q1 + ¢2)/N = 40.1%) , and better-performing
instances account for N;/N = 10%. To find Nash equili-
brium, we need to consider combinations of possible
strategies for both players and their utility:

N
Ny’

o 1 1 10 10
g 1 2.5 1 25
up | 4.03846 | 3.94231 | 5.29287 | 4.41073
uy | 4.03846 | 4.26274 4.0376 | 4.26061

Using the best response approach (the most favorable
outcome for a cloud user taking the other users’ strategies as
a given), the Nash equilibrium is at point: a; = N/N; = 10
for player I (small), and oy = N /g, = 2.5 (an upper bound)
for player II (big), where the cost saving is 9.22 and 5.5
percent, for players I and II, respectively. The optimal case
for player I is at (10, 1), where its cost saving is (5.29287 —
4.03846)/4.03846 = 31.06% and player II is barely influ-
enced. If player I stays with reqular behavior, while player II
takes selfish behavior, i.e., (1, 2.5), then the loss for player I is
remarkable. Thus, considering the potential loss, the relative
gain acquired by taking selfish behavior for player I is even
larger, (4.41073 —3.94231)/3.94231 = 11.88% (compared
with 9.22 percent). For player II, compare selfish behavior
(ap = 2.5) with reqular behavior (aa = 1), the cost saving is
around 5.5 percent, no matter what strategy play I takes. As
a conclusion, in real-life cases, even though the exact cost

212 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

TABLE 6
Speedup and Overhead of “Trial-and-Better” Approach
Speedup Overhead
Redis 11.5% 15%
Httperf 28.8% 1.8%

saving varies according to opponents’ strategies, it is always
preferable to take selfish behavior. This applies to both small
and big players. Nevertheless, small users can achieve
significantly more cost saving than big ones.

6.4 Validation

To validate the proposed “trial-and-better” approach, we
implement two applications in Amazon EC2. One applica-
tion is in-memory database, for which we use Redis from
YCSB [30]; the other one is web-based application, for
which we use Httperf and use the same configuration as in
Section 5. For each application, we conduct two sets of
experiments, running 10 instances for 100 hours. One is to
use the default configuration without any selection process;
the other one is to use the “trial-and-better” approach, i.e.,
applying for instances from EC2 until acquiring 10 better-
performing instances. Note in the latter case, the other
worse-performing instances are terminated immediately
after checking their CPUID information.

The speedup and overhead of the “trial-and-better”
approach of these two applications, compared to the default
setting, is listed in Table 6. The speedup is an accumulated
throughput of the selected 10 better-performing instances
compared against the randomly returned 10 instances. The
overhead is the extra running hours required to acquire
the 10 better-performing instances divided by the useful
running hours. Our “trial-and-better” approach is straight-
forward to apply with. We simply check the CPUID
information of the instance, keep the instances hosted by
E5645 processor running and discard the other ones. This
selecting process takes no more than 4 minutes. In a more
realistic scenario, to select better-performing instances, cloud
users can always utilize certain fast micro-benchmark tool
rather than running the real application itself. Because EC2
charges by hour, the selection cost is rounded up to one
full hour for those instances. It is worth noting that the
overhead percentage decreases as the running time of
the application increases because the overhead is amortized.
Table 6 clearly demonstrates the benefit of the “trial-and-
better” approach. Despite the extra overhead, the through-
put boosted well justifies the extra cost of the selecting
process. Depending on the application, throughput
boost from the “trial-and-better” approach ranges from
11.5 percent for in-memory database application to close to
30 percent for web application, which is in line with our
measurement in Section 5 and our analysis in Section 6.1.
Furthermore, from our measurements, not only the through-
put is boosted by the better-performing instances, but also
the relative variation is reduced with these instances, which
is of high significance to commercial deployments.

NO. 2, JULY-DECEMBER 2013

7 CoONCLUSION AND FUTURE WORK

We exploited hardware heterogeneity of public clouds in
this paper. Amazon EC2 and Rackspace cloud are taken as
two representatives for the analysis. Through longitudinal
measurements, we found out that hardware heterogeneity is
a commonality among the relatively long-lasting cloud
providers. The level of heterogeneity, however, varies
between different providers. Amazon EC2 uses diversified
hardware within the same availability zone, while Rack-
space demonstrates heterogeneity only between different
regions. Hardware diversity serves as the primary culprit
of performance variation. Because of widely diversified
hardware, performance variation among EC2 instances is
significant, varying from 20 percent for CPU performance to
268 percent for memory. On the other hand, Rackspace
cloud utilizes similar hardware; thus, its performance
variation is comparatively small, ranging from 15 percent
for CPU and 75 percent for disk. Furthermore, CPU
acquisition percentage and VM scheduling mechanisms
exacerbates performance variation, especially in network-
related operations. Finally, cost-saving approaches, game-
theoretic analysis, and Nash equilibrium were discussed
from cloud user perspective. By utilizing a simple “trial-
and-better” approach, EC2 users can achieve up to 30 per-
cent cost saving, which is verified by a real implementation
in EC2 platform. We hope our work will spark a spectrum of
research efforts from various aspects, for example, building
more homogeneous platform from heterogeneous hard-
ware, game-theoretic analysis (among cloud users, between
cloud users and cloud providers). In the future, we will
investigate the performance impact factors of disk opera-
tions in public clouds.

ACKNOWLEDGMENTS

The research work was funded by the Finnish funding
agency for technology and innovation (Tekes) in massive
scale machine-to-machine service (MAMMotH) project
(Dnro 820/31/2011).

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” Technical Report NIST Special Publication 800-145, The Nat’l
Inst. of Standards and Technology (NIST), 2011.

[2] “Amazon EC2,” https://aws.amazon.com/ec2/, 2013.

[3] “Rackspace,” http://www.rackspace.com/cloud/, 2013.

[4] “Google Compute Engine,” https://cloud.google.com /products/
compute-engine, 2013.

[5] “Microsoft Azure,” http://www.windowsazure.com/en-us/,
2013.

[6] Z. Ou, H. Zhuang, J.K. Nurminen, A. Yld-Jaaski, and P. Hui,
“Exploiting Hardware Heterogeneity within the Same Instance
Type of Amazon EC2,” Proc. Fourth USENIX Conf. Hot Topics in
Cloud Ccomputing (HotCloud '12), pp. 1-5, 2012.

[71 P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, 1. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. ACM Symp. Operating Systems Principles
(SOSP '03), pp. 164-177, 2003.

[8] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the
Three CPU Schedulers in Xen,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 35, no. 2, pp. 42-51, 2007.

[9] E. Walker, “Benchmarking Amazon EC2 for High-Performance
Scientific Computing,” USENIX; login:, vol. 33, no. 5, pp. 18-23,
2008.

OU ET AL.:

[10] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J.
Shalf, H. Wasserman, and N. Wright, “Performance Analysis of
High Performance Computing Applications on the Amazon Web
Services Cloud,” Proc. IEEE Second Int’l Conf. Cloud Computing
Technology and Science (CloudCom "10), pp. 159-168, 2010.

[11] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus In-
House Cluster: Evaluating Amazon Cluster Compute Instances
for Running MPI Applications,” Proc. State of the Practice Reports
(SC '11), pp. 1-10, 2011.

[12] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp:
Comparing Public Cloud Providers,” Proc. 10th ACM SIGCOMM
Conf. Internet Measurement (IMC '10), pp. 1-14, 2010.

[13] A.Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “Cloudpro-
phet: Towards Application Performance Prediction in Cloud,”
Proc. ACM SIGCOMM '11 Conf., pp. 426-427, 2011.

[14] A. Lenk, M. Menzel,]J. Lipsky, S. Tai, and P. Offermann,
“What Are You Paying for? Performance Benchmarking for
Infrastructure-as-a-Service Offerings,” Proc. IEEE Int'l Conf.
Cloud Computing (Cloud '11), pp. 484-491, 2011.

[15] G. Wang and T. Ng, “The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center,” Proc.
IEEE INFOCOM 10, pp. 1-9, Mar. 2010.

[16] J. Schad, J. Dittrich, and J.-A. Quianée-Ruiz, “Runtime Measure-
ments in the Cloud: Observing, Analyzing, and Reducing
Variance,” Proc. VLDB Endowment, vol. 3, pp. 460-471, Sept. 2010.

[17] SK. Barker and P. Shenoy, “Empirical Evaluation of Latency
Sensitive Application Performance in the Cloud,” Proc. First Ann.
ACM SIGMM Conf. Multimedia Systems (MMSys "10), pp. 35-46,
2010.

[18] S. Suneja, E. Baron, E. de Lara, and R. Johnson, “Accelerating the
Cloud with Heterogeneous Computing,” Proc. Third USENIX
Conf. Hot Topics in Cloud Computing (HotCloud '11), pp. 1-5, 2011.

[19] G. Lee, B. Chun, and R.H. Katz, “Heterogeneity-Aware Resource
Allocation and Scheduling in the Cloud,” Proc. Third USENIX
Conf. Hot Topics in Cloud Computing (HotCloud '11), pp. 1-5, 2011.

[20] S.Yeo and H. Lee, “Using Mathematical Modeling in Provisioning
a Heterogeneous Cloud Computing Environment,” Computer,
vol. 44, no. 8, pp. 55-62, Aug. 2011.

[21] A. Samih, R. Wang, C. Maciocco, T.-Y.C. Tai, R. Duan,]J. Duan,
and Y. Solihin, “Evaluating Dynamics and Bottlenecks of Memory
Collaboration in Cluster Systems,” Proc. IEEE/ACM 12th Int’l
Symp. Cluster, Cloud and Grid Computing (CCGrid '12), pp. 107-114,
2012.

[22] B. Farley, V. Varadarajan, K. Bowers, A. Juels, T. Ristenpart, and
M. Swift, “More for Your Money: Exploiting Performance
Heterogeneity in Public Clouds,” Proc. Third ACM Symp. Cloud
Computing (50CC '12), pp. 1-14, 2012.

[23] I Leslie, D. Mcauley, R. Black, T. Roscoe, P. Barham, D. Evers, R.
Fairbairns, and E. Hyden, “The Design and Implementation of an
Operating System to Support Distributed Multimedia Applica-
tions,” IEEE]. Selected Areas in Comm., vol. 14, no. 7, pp. 1280-1297,
Sept. 1996.

[24] “Credit-Based CPU Scheduler,” http://wiki.xensource.com/
xenwiki/CreditScheduler, 2013.

[25] “UnixBench,” http://freecode.com/projects/unixbench, 2013.
[26] “RAMSspeed,” http://alasir.com/software/ramspeed/, 2013.

[27] “Bonnie++,” http://www.coker.com.au/bonnie,++/, 2013.

[28] “Httperf,” http://www.hplhp.com/research/linux/httperf/,

2013.

[29] “Passmark CPU Benchmarks,” http:/ /www.cpubenchmark.net/
high, end cpus.html, 2013.

[30] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” Proc. First
ACM Symp. Cloud Computing (SoCC "10), pp. 143-154, 2010.

IS THE SAME INSTANCE TYPE CREATED EQUAL? EXPLOITING HETEROGENEITY OF PUBLIC CLOUDS 213

Zhonghong Ou received his PhD degree from
the University of Oulu, Finland. He received the
PhD degree in the field of structured peer-to-
peer (P2P) networks. He is a postdoc researcher
at the Department of Computer Science and
Engineering, Aalto University, Finland since July
2010. From December 2009 to April 2010, he
was a visiting scholar at Internet Real-Time
(IRT) Lab at Columbia University. From March
2013 through August 2013, he is a Vvisiting
scholar at Intel Labs, Portland, United States. He has a wide spectrum of
research interests. Recently, he is working on performance evaluation of
virtualization and cloud computing platforms, large-scale machine-to-
machine communications, energy optimization in cellular networks (3G
and LTE). He is a member of the IEEE.

Hao Zhuang received the BSc degree in soft-
ware engineering from Northeastern University,
China in 2009, and the MS degree in Erasmus
Mundus NordSecMob program specialized in
security and mobile computing from Aalto Uni-
versity School of Science and Technology
(TKK), Finland and Royal Institute of Technology
(KTH), Sweden. He was provided a full scholar-
ship for two years studying in his MS degree
- l from the European Union. He is currently work-
ing toward the PhD degree with a topic of distributed system and cloud
interoperability in Distributed Information Systems Laboratory (LSIR) at
EPFL Lausanne, Switzerland. His major research interests include
distributed computing, decentralized cloud computing, cloud interoper-
ability and federation. He is a member of the IEEE.

Andrey Lukyanenko received the master’s
degrees from the University of Petrozavodsk in
Russia and the University of Kuopio in Finland.
In 2010, he received the PhD degree from the
University of Helsinki. His thesis was on proto-
cols for resource sharing in Internet/wireless
environments. He worked on problems related to
backoff protocols in IEEE802.11, security with
host identity protocol (HIP), problems of denial-
of-service attacks and reputations in peer-to-
peer networks. He stayed in Helsinki to do a postdoctoral fellowship at
the Aalto University on information-centric networking, data centers
architecture and future Internet design. During his research, he uses
game theory, queuing theory, and data analysis methods. He is a
member of the IEEE.

Jukka K. Nurminen received the MSc degree in
1986 and the PhD degree in 2003 from Helsinki
University of Technology. He started as a
professor of computer science at Aalto Univer-
sity at the beginning of 2011. He has a strong
industry background with almost 25-years ex-
perience of software research at Nokia Re-
search Center. His experience ranges from
mathematical modeling to expert systems, from
network planning tools to solutions for mobile
phones, and from R&D project management to tens of patented
inventions. His main research interest are energy-efficient computing
and communication, mobile peer-to-peer, distributed solutions for mobile
devices, web communications. He is a member of the IEEE.

214 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 1,

Pan Hui received the PhD degree from Com-
puter Laboratory, University of Cambridge. He is
currently a faculty member in the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology,
where he directs the HKUST-DT System
and Media Lab. He also serves as a distin-
guished scientist of Telekom Innovation Labora-
tories (T-labs) Germany and an adjunct
professor of social computing and networking
at Aalto Unlversny Finland. He has published more than 100 research
papers and has several granted and pending European patents. He has
founded and chaired several IEEE/ACM conferences/workshops, and
served on the technical program committee of numerous international
conferences including IEEE Infocom, SECON, MASS, Globecom,
WCNC, and WWW. He is a member of the IEEE.

Vladimir Mazalov received the PhD degree
from the Faculty of Applied Mathematics,
Leningrad University in 1979. After that he has
mainly worked in research projects funded by
the Russian Academy of Sciences, in 1980-1998
in Chita Institute of Natural Resources, East
Siberia and, currently, in the Institute of Applied
Mathematical Research, Karelian Research
Center. He defended PhD thesis in Leningrad
State University in 1981 and the second degree
of Doctor of Sciences in Leningrad State University in 1991. His
research interests are related to game theory and stochastic analysis
and applications in behavioral biology, networking and economical
systems. He is a research director of the Institute of Applied
Mathematical Research, Karelian Research Center, Russian Academy
of Sciences, and a professor of the Chair of Probability Theory in
Petrozavodsk State University. He is a member of the IEEE.

NO. 2, JULY-DECEMBER 2013

Antti Yla-Jaaski received the PhD degree from
ETH Zurich in 1993. He was at Nokia during
1994-2009 in several research and research
management positions with focus on future
Internet, mobile networks, applications, services
and service architectures. He has been a
professor for telecommunications software, De-
partment of Computer Science and Engineering,
Aalto University since 2004. He has supervised
more than 200 master’s thesis and 16 doctoral
dissertations during his professorship. He has currently four ongoing
research projects in the areas of Green ICT, mobile computing, services
and service architectures: “Cloud Software,” “Internet of Things,”
“Massive Scale Machine-to-Machine Service,” and “Energy-Optimized
Mobile Computing.” He has published more than 60 international peer-
reviewed journal and conference articles. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

