
5/18/2017

1

Zhonghon Ou et al.
IEEE Trans. On Cloud Computing – 2013

Wes Lloyd
Computer Science

Institute of Technology – UW Tacoma
wlloyd@uw.edu

http://faculty.washington.edu/wlloyd/ May 18, 2017 TCSS562: Software Engineering for Cloud Computing 2

Outline

Problem introduction
Background / related work
Approach
Key contributions
Results

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 3

Problem Introduction

Cloud systems trend towards hardware
heterogeneity over time
 Some applications become dependent on

specific instance types due to significant
benchmarking and performance tuning

 Cloud provider gradually replaces old hardware
 Legacy hardware no longer available, can not be

repaired or replaced
 Must reimplement infrastructure with new HW

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 4

Problem Introduction - 2

Typical HW lifecycle is 3-5 years
Over time hardware heterogeneity appears to

increase:
 Problem is quite observerable with 1st and 2nd

generations Amazon EC2 VM instance types

VM’s implemented using XEN hypervisor
Cloud Providers may implement VMs with

different XEN CPU Scheduler Configurations

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 5

Problem Introduction - 3

XEN CPU Schedulers
 SEDF- fixed % allotments of CPU cores to vCPUs

 No load balancing of vCPUs across CPUs
 Specifies minimum amount of CPU time for a given period
 Boolean flag specifies to receive extra, unused cycles

 Credit- weights CPU cores to vCPUs
 Supports load balancing vCPUs across CPUs
 vCPUs are context switched at 30 ms time slices
 Weight – number of credits
 Cap- percentage of extra CPU time that can be received

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 6

Performance - XEN CPU Scheduling

5/18/2017

2

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 7

Background / Related Work

High-performance computing (HPC) cloud
comparison studies

System performance comparisons
Exploiting heterogeneity in the cloud

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 8

Related Work:
HPC/Cloud Comparison

Walker: 2008 Study, compared EC2 instances
with traditional scientific cluster
 Performance gaps observed

 Jackson et al. 2010, comprehensive
comparison of HPC to AWS cloud study

Zhai et al. 2011, Cloud vs. private cluster for
Message Passing Interface (MPI) parallel
applications

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 9

Related Work:
System Performance Comparison

 Li et al. 2010, Developed cost comparator (CloudCmp)
to measure various cloud services
 Later developed CloudProphet to predict end-to-end

response time of on premise web applications deployed to
public cloud

 Lenk et al. 2011, Identified that performance indicators
are insufficient to compare IaaS offerings

 Wang and Ng., 2010, Virtualization’s impact on
network performance

 Schad., 2010, Performance variance study
 Barker., 2010, Evaluation of latency sensitive

applications
May 18, 2017 TCSS562: Software Engineering for Cloud Computing 10

Related Work:
Exploiting heterogeneity
Suneja et al., 2011, Harness GPU cycles for

cloud management and hypervisor tasks
 Reduce overhead

 Lee et al., 2011, Hadoop scheduler on EC2
instances which considers job progress are
resource requirement variation (e.g. CPU, I/O)

Samih et al., manage and share cluster
memory dynamically, swap memory pages to
other servers with excess memory capacity

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 11

Related Work:
Exploiting Heterogeneity - 2
Farlet et al., 2012, Hardware variation leads to

performance variance of instance types
(m1.small)

Evaluation limited to one-week of
experimental runs

Only studied m1.small instance type

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 12

Approach

Examined hardware heterogeneity of Amazon
and Rackspace cloud resources

Considered: memory, disk, CPU
 Investigated impact of hypervisor scheduling
Comparison runs with a local XEN servers
Game-theoretic and Nash equilibrium analysis

 To model random, stochastic events

5/18/2017

3

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 13

Key Contributions

 Identified VM type heterogeneity of Amazon and
RackSpace Public Clouds – produced data sets

 Benchmarked inner-VM-type performance
variations

 Reverse engineered XEN scheduler configurations
 Determined time share of CPU cores

 Performance and cost improvements:
trail-and-better VM scheduling

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 14

VM-type heterogeneity- Amazon

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 15

m1.xlarge – 4 Core x 2 ECUs

2014 observed m1.xlarge implementations:
Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz # very common
Intel(R) Xeon(R) CPU E5-2651 v2 @ 1.80GHz # less common
Intel(R) Xeon(R) CPU E5645 @ 2.40GHz # very uncommon

Power Consumption Trends:
E5430 4 cores 20 watts/core 2007
E5645 6 cores 12 watts/core 2010
E5-2650 8 cores 11.875 watts/core 2012
E5-2651 12 cores 8.75 watts/core 2013

m1.xlarge implementations reported in paper:

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 16

VM-type heterogeneity-Rackspace

AMD Opteron CPUs

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 17

Legend
Amazon EC2: A1 / A2 / A3

Rackspace: R1 / R2 AMD CPUs

Intel XEON CPUs

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 18

UnixBench Scores

Unix Bench
is an aggregate

normalized
measure

of multiple metrics

These are
aggregated
normalized
normalized
numbers.

5/18/2017

4

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 19

UnixBench

4.2: CPU Performance
 UnixBench is used as a “CPU” Benchmark
 Authors used standard “UnixBench” runs

Weakness: UnixBench is *NOT* a CPU
Benchmark!
 It measures all aspects of a Unix machine’s

performance including. . .

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 20

UnixBench provides an aggregated normalized value for
system performance consisting of these tests:

dhry2reg Dhrystone 2 using register variables
whetstone-double Double-Precision Whetstone
syscall System Call Overhead
pipe Pipe Throughput
context1 Pipe-based Context Switching
spawn Process Creation
execl Execl Throughput
fstime-w File Write 1024 bufsize 2000 maxblocks
fstime-r File Read 1024 bufsize 2000 maxblocks
fstime File Copy 1024 bufsize 2000 maxblocks
fsbuffer-w File Write 256 bufsize 500 maxblocks
fsbuffer-r File Read 256 bufsize 500 maxblocks
fsbuffer File Copy 256 bufsize 500 maxblocks
fsdisk-w File Write 4096 bufsize 8000 maxblocks
fsdisk-r File Read 4096 bufsize 8000 maxblocks
fsdisk File Copy 4096 bufsize 8000 maxblocks
shell1 Shell Scripts (1 concurrent) (runs "looper 60 multi.sh 1")
shell8 Shell Scripts (8 concurrent) (runs "looper 60 multi.sh 8")
shell16 Shell Scripts (8 concurrent) (runs "looper 60 multi.sh 16")

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 21

Xen Scheduler
Reverse-Engineering

Call gettimeofday() (1) million times
 Bare metal system: call resolution of μs

Analyze CPU run/wait time intervals

Derive VM scheduler acquisition percentages
 Can extend test to multiple cores
 Identify when cores are scheduled differently

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 22

Legend
Amazon EC2: A1 / A2 / A3

Rackspace: R1 / R2 AMD CPUs

Intel XEON CPUs

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 23

Probable XEN Scheduler
Configurations

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 24

Network I/O Variance

Used
TCPBench
to quantify
network
throughput

5/18/2017

5

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 25

Memory Throughput Variance

Used the
RAMspeed
memory
benchmark

Higher is
better

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 26

Disk I/O Throughput Variance
Used the
Bonnie++
Disk I/O
benchmark!

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 27

Trial and Better Cost Savings

Theoretical Cost Savings:

Actual Performance Variance
Amazon m1.large 1.2-1.6x
Rackspace 1.2x

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 28

Trial and Better Application Testing

10 instances, 100 hours
Trial 1 – Random Instances

Trial 2 – Trial-and-Better Instances

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 29

Conclusions

 Amazon EC2- Heterogeneity within the same
availability zone

 Rackspace – Between different regions
 Hardware diversity produced performance variance:

 AWS: 20% for CPU, 268% for memory
 RS: 15% CPU, 75% disk

 VM CPU scheduling: exacerbates performance
variance

 Up to 30% performance improvement with “trial and
better” instance provisioning

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 30

Strengths

Multidimensional study
 Two public cloud providers
 Many instance types
 CPU variation
 CPU scheduling analysis
 Memory, Disk, Network performance analysis

5/18/2017

6

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 31

Weaknesses

UnixBench cited as a CPU benchmark
Did not consider application performance

 No consideration of multi-VM deployments
 Primarily used well known benchmarks

May 18, 2017 TCSS562: Software Engineering for Cloud Computing 32

Trial and Better – VM-Scaler
 Harness this approach for VM-Pools
 Help increase homogeneity of VM pools
 Provide more consistent test results for cloud BMs

33 34

