TCSS 562 - Cloud Technology Sharing Presentation (11/30/2023)

DynamoDB

Vishnu Priya
Malavika Suresh
Alekhya Parisha

UNIVERSITY of WASHINGTON

Introduction

e DynamoDB is a fully managed, serverless, NoSQL database provided by Amazon Web

Services.

e Itis a NoSQL key-value store database.

e |t offers built-in security, continuous backups, automated multi-Region replication, in-memory
caching, and data import and export tools.

e Provide seamless and predictable performance with the ability to scale both in terms of

throughput and storage.

How DynamoDB works?

Amazon DynamoDB
Fast, flexible NoSQL

database service

4 A
aog*

Export, Analyze,
Stream Data

¥ #£ d

Amazon S3

AWS Glue
Elastic Views

Amazon Kinesis
Data Streams

AWS CloudTrail

I e v Amazon
Partition Key ~Sort Key Attribute (EQ? CloudWatch
| | DynamoDB table is a
heonmtd collection of items, and
each item is a collection
o XD EEER | o oiributes. Each item
2 has a primary key
: -
=
Competitors
Competitors Data Storage Type Managed/Unmanaged
Document Fully Managed
MongoDB
Wide-Column Fully Managed
Google
BigTable Key-Value
Document Fully Managed
’ Azure
s/ Cosmos DB
Wide-Column Depends on the
/W Apache service provider
W Cassandra

History of DynamoDB

DynamoDB was introduced by Werner Vogels and his team.

Why NoSQL database?

* In traditional RDMS, all data stored on a single server or box which leads to
scalability issues.

« Users turned to sharding, but this introduced additional complexities in data
managing.

« The limitations of the single-box model led to the exploration of NoSQL
database.

Why DynamoDB was invented?

During the 2004 holiday season, there were outages on the Amazon shopping website
because of heavy traffic. This led them towards looking into an efficient way of storing

data.

Motivation:

* Address scale and operational limitations of relational databases.
* Break free from expensive relational database licenses.
* Provide consistent performance at any scale.

* Build a fully managed, serverless NoSQL database.

Evolution of DynamoDB

2019 2021
2017 Announced Added
2012 Launched on-demand support for
Initial Global capacity time to
Release Tables mode live(TTL)
2016 2018 2020
Added Added Released
support for support for partiQL
Secondary transactions
Indexes

* Fully managed NoSQL database

* Auto-scalable and serverless

+ Atomicity, Consistency, Isolation, And Durability (ACID) transactions

+ Active-active replication with global tables

» Secondary indexes

* Fine grained access control
+ Point-in-time recovery

* Backup and restore

* Integration with AWS ecosystem

Use Cases by industry

&
DUOIingO duol_lngo Netflix
* Popular online language learning platform. * Popular online streaming service.

* The application requires higher read and write * The application has 125+ million subscribers

. . across the globe.
unit capacity
* They use DynamoDB to handle this
* They use DynamoDB to store and handle over

subscriber’s big data.
30 billion data objects on its web server.

DynamoDB use cases (continued)

GE Healthcare

* Renowned company in the healthcare sector.
« The company is using Amazon’s DynamoDB service to manage the customer base.
+ With easy cloud access, the service offers a better environment to the remote workforce who can

share information and can stay up to date.

Advantages

Performance and scalability - performance at any scale
Fully Managed (Serverless)

Seamless Data Replication and global distribution
Secure

A NoSQL DB with support for SQL interface (PartiQL)

High request volume Consistent low latency

Over 5 million requests per second per table Millisecond variance

Disadvantages

Limited Querying Options
< High reliance on indexing for querying tasks does not allow for querying if no indexes are available

Difficult To Predict Costs
% On-demand model could lead to unpredictable and expensive costs

No support for On-Premise Deployments
< Cannot support applications that require an on-premise database

Limited Storage Capacities For ltems
< Alimit of 400KB that includes the data as well as the attribute names used

Unable to Use Table Joins
« Difficult to query information from multiple tables

Usability

e DynamoDB is user-friendly in terms of its managed service nature and quick setup.

e However, the learning curve may be influenced by the NoSQL paradigm.

e Availability of extensive documentation, examples, and community support.

e DynamoDB Accelerator (DAX) makes usability very easy

e Faster adoption if prior experience with AWS services.

@ @ @ Your applications
|

DAX

DynamoDB

Fully managed,
highly available cache
for DynamoDB

Even faster—microsecond latency

Scales to millions of read requests
per second

API compatible

Cost Discussion

WCU: Number of item writes per second x item size in 1KB blocks
RCU: Number of item reads per second x item size in 4KB blocks

On-Demand

Pay for WRU (Write Request Units) and RRU
(Read Request Units).

Priced $1.25 per million operations and $0.25 per
million operations respectively.

For strongly consistent operations:
One WRU = 1 write operation with item size up to 1KB

One RRU = 1 read operation with item size up to 4KB per second

For eventually consistent divide by 2, for transactional multiply by 2

Provisioned Capacity

Pay for provisioned number of RCU (Read
Capacity Units) and WCU (Write Capacity Units).

Billed $0.00013 per RCU/h and $0.00065 per
WCU/h.

For strongly consistent operations:
One WRU = 1 write operation with item size up to 1KB
One RRU = 1 read operation with item size up to 4KB

For eventually consistent divide by 2, for transactional multiply by 2

Pricing shown is for us-east-1, us-east-2 and us-west-2, which are among the cheapest regions

Cost Discussion (continued)

Provisioned

e Pay per hour

e Capacity can be wasted

e Autoscaling can minimize waste, but could still
lead to request throttling

e Best suited for predictable or consistent traffic

On-demand

Pay per request

No risk of throttling

No need to monitor scaling or request traffic
Best suited for unpredictable or random traffic
patterns

patterns

Use On-Demand

Use Provisioned Use Provisioned + Autoscaling

200 "\/\/\/\/\/\/\/\'\/\ 300

200
100

100

3/28
19:30

3/28
20:00

328
20:30

3/28
21:00

328 0
2130

3/23
00:00

3/24
00:00

Cost example
Consider a medium sized task management application where users can create, update, and complete
tasks -
Throughput:
e You expect an average of 1,000 write requests per second (WCUs) for adding, updating, and completing tasks.
e Read requests are moderate, with an expected 500 read requests per second (RCUs) to display tasks to users.
Data Size:
e The total data size is estimated to be around 50 GB.
Provisioned Throughput:
e Given the moderate read and write demands, you provision 1,000 WCUs and 500 RCUs.
Now, estimating the monthly cost with these parameters-
e WCUs = 1000 WCUs * $0.00065 per WCU/hr * 720 hrs/month = $468/month,
e RCUs =500 RCUs * $0.00013 per RCU/hr * 720 hrs/month = $47/month,
e Storage cost = 50 GB * $0.25 per month = $12.50 per month
e Total estimated monthly cost = $468 + $47 + $13 ~ $530
e This excludes the AWS free tier of 25 WCUs and 25 RCUs of provisioned capacity, 25 GB of data storage

This is only a simplified estimate but additional charges related to Data Transfer, Backups, DAX and Global Tables might
apply depending on usage.

DynamoDB vs S3 price comparison

An application receives on average 100 requests per seconds, with 2Kb payload and is required to
persist it entirely. Also, each object saved is read 2 times. (200 WCUs and 200 RCUs)

We can estimate the monthly storage cost for DynamoDB and S3 using the AWS calculator
(us-east-1 region).

S3 costs 1514$/month, whereas DynamoDB costs 830$/month using on-demand capacity, but it
could drop to 173%$/month (+360$ paid upfront) with reserved capacity.

In the S3 case, the biggest cost part comes from accessing the service, the storage itself being
under 100$/month.

Now considering requests with different payloads - 5Kb, 10Kb, 20Kb and 50Kb

Result - Once item size exceeds 5Kb and without using provisioned DynamoDB capacity, it
becomes more convenient to store data in S3 than in DynamoDb.

Therefore, understanding the requests pattern we’ll have is crucial for using DynamoDB in a cost

effective manner.

Conclusion

DynamoDB emerges as a robust choice for database management in specific scenarios.

It is particularly advantageous for those who have encountered scalability challenges with traditional

databases, require high-performance handling of online transaction processing workloads.
The database is well-suited for mission-critical applications demanding constant high availability
without manual intervention.

Cost-effective in certain use cases.

Additionally, DynamoDB offers a compelling solution for users seeking a high level of data durability

and facing challenges in forecasting peaks and valleys in database performance.

DynamoDB Employee Data Model Demo

Attributes:
o LoginUsername
o FirstNameand LastName
o ManagerUsername
o Skills
e Key Components:
o Main table (Employee)

o Global secondary index (Name)

Designed to efficiently store and retrieve employee details

o Global secondary index (DirectReports)

® AccessPatterns:
O Retrieval by login username
o Search by name
o Direct reports

Employee Table

Primary keys:
- Simple primary key
(Partition key)
- Composite primary key
(Partition key and sort key)

Primary key

Partition key: LoginAlias

johns

marthar

mateoj

Janed

diegor

marym

Janer

FirstName
John
FirstName
Martha
FirstName
Mateo
FirstName
Jane
FirstName
Diego
FirstName
Mary
FirstName

Jane

LastName

Stiles

LastName

Rivera

LastName

Jackson

LastName

Doe

LastName

Ramirez

LastName

Major

LastName

Roe

Attributes

ManagerL oginAlias
NA
ManagerLoginAlias
johns
ManagerLoginAlias
marthar
ManagerLoginAlias
marthar
ManagerLoginAlias
johns
ManagerLoginAlias
johns
ManagerLoginAlias

marthar

Skills
["executive management"]
Skills
["software","management"]
Skills

["software']

Skills

["software’]

Skills

["executive assistant’]
Skills

[*operations*]

Skills

['software']

20

Global Secondary Index - Name

Primary key
Attributes
Partition key: FirstName Sort key: LastName

LoginUsername ManagerLoginUsername Skills

John Stiles
johns NA ["executive management"]
LoginUsername ManagerLoginUsername Skills

Martha Rivera
marthar johns ["software®,"management”]
LoginUsername ManagerLoginUsername Skills

Mateo Jackson
mateoj marthar ["software®]
LoginUsername ManagerLoginUsername Skills

Doe

janed marthar [software"]

Jane
LoginUsername ManagerLoginUsername Skills

Roe

janer marthar ["software"]
LoginUsername ManagerLoginUsername Skills

Diego Ramirez
diegor johns ["executive assistant”]
LoginUsername ManagerLoginUsername Skills

Mary Major
marym johns ["operations®]

21

Global Secondary Index - DirectReports

Primary key
Attributes
Partition key: ManagerLoginUsername

LoginUsername FirstName LastName

NA
johns John Stiles
LoginUsername FirstName LastName
marthar Martha Rivera
LoginUsername FirstName LastName

johns
diegor Diego Ramirez
LoginUsername FirstName LastName
marym Mary Major
LoginUsername FirstName LastName
mateoj Mateo Jackson
LoginUsername FirstName LastName

marthar
janed Jane Doe
LoginUsername FirstName LastName
janer Jane Roe

22

References

https://ionutignatescu.medium.com/s3-vs-dynamodb-price-comparison-6e4edba7c40e

e https://aws.amazon.com/dynamodb/pricing/

e htips://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.html

e https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/workbench.Sample

Models.html

23

Questions

Thank you!

UNIVERSITY of WASHINGTON

https://ionutignatescu.medium.com/s3-vs-dynamodb-price-comparison-6e4edba7c40e
https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/workbench.SampleModels.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/workbench.SampleModels.html

