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Abstract—Serverless computing has become a popular part
of the cloud computing model, thanks to abstracting away
infrastructure management and enabling developers to write
functions that auto-scale in a polyglot environment, while only
paying for the used compute time. While this model is ideal for
handling unpredictable and bursty workloads, cold-start latencies
of hundreds of milliseconds or more still hinder its support
for latency-critical IoT services, and may cancel the latency
benefits that come with proximity, when serverless functions
are deployed at the edge. Moreover, CPU power and memory
limitations which often characterize edge hosts drive latencies
even higher. The root of the problem lies in the de facto
runtime environments for serverless functions, namely container
technologies such as Docker. A radical approach is thus to replace
them with a more light-weight alternative. For this purpose,
we examine WebAssembly’s suitability for use as a serverless
container runtime, with a focus on edge computing settings, and
present the design and implementation of a WebAssembly-based
runtime environment for serverless edge computing. WOW, our
prototype for WebAssembly execution in Apache OpenWhisk,
reduces cold-start latency by up to 99.5%, can improve on
memory consumption by more than 5×, and increases function
execution throughput by up to 4.2× on low-end edge computing
equipment compared to the standard Docker-based container
runtime for various serverless workloads.

Index Terms—Function-as-a-Service, edge computing, server-
less, WebAssembly

I. INTRODUCTION

When latency matters and data intensity is high, executing

IoT service logic in the cloud is challenged, due to the latter’s

physical distance and the sheer amount of data devices at the

edge of the network generate. Combined with privacy concerns,

this calls for pushing services to the edge, for data processing

and decision making in-place or nearby. However, applying

traditional IaaS or PaaS cloud models to host such services at

edge infrastructure can have adverse effects, due to resource

limitations that make virtual machine or container allocation

and scaling expensive [1]. This further complicates the elastic

management of event-driven IoT services, which are often

associated with bursty and unpredictable workloads. A model

with finer grained resource elasticity is thus required.

One piece of the puzzle towards realizing this goal is

serverless (edge) computing [2]. Serverless, commonly in the

form of Function-as-a-Service (FaaS), allows developers to

execute functions over cloud infrastructure without having to

specify how the latter is set up, managed, and auto-scaled. The

serverless provider ensures precise per-function provisioning

and pure pay-per-use at the function level, following the scale-

to-zero principle, i.e., de-allocating resources not in use.

To isolate function instances in a multi-tenant environment,

serverless frameworks make use of OS-level virtualization

through containers–usually of the Docker flavor. When a func-

tion is first invoked, its container is provisioned from scratch.

This is referred to as cold start and can introduce latencies of

hundreds of ms or more [3]. For example, median cold start

latencies of 250-265 ms and 110-493 ms have been reported [4]

for AWS and Google Cloud Platform, respectively. Particularly

when operating at low-end edge computing equipment [5]–[7],

and in the face of concurrent requests [8] typical of bursty

workloads, cold start latencies are driven further up.

At the heart of the problem lies the container runtime

and its expensive startup procedure. This issue is partially

addressed by keeping containers warm in-between requests.

For instance, Apache OpenWhisk,1 a popular open-source

serverless framework, keeps a function’s container paused and

ready for reuse for 10 minutes, before removing it entirely,

while AWS Lambda’s cold start policy keeps an instance alive

for 5-7 minutes [9]. However, this is a form of over-provisioning

and therefore opposed to the scale-to-zero premise.

We believe OS-level virtualization to be unsuitable for server-

less edge computing. We thus follow a more radical approach,

as has been recently suggested [10]–[12], by replacing the

container runtime with an alternative offering more efficient

cold starts. A technology that can play this role is WebAs-

sembly (Wasm) [13], a portable, binary instruction format

for memory-safe, sandboxed execution. Its portability means

that a compiled Wasm function can be executed wherever a

runtime exists. Wasm can be compiled with different strategies,

some reaching near-native execution speeds to compete with

function invocation within a Docker container. Importantly,

Wasm functions can be created and destroyed in microseconds.

With this background, we set off to address our key

research question: the viability of WebAssembly in serverless

edge computing and the performance benefits it can bring

about. We make the following contributions: 1© We design

an execution environment for Wasm serverless functions, with

the requirements of multi-platform edge execution and ease of

integration with existing serverless frameworks in mind (§III).

2© We present WOW (§IV), a prototype for executing Wasm

workloads in Apache OpenWhisk. WOW is extensible in

1https://openwhisk.apache.org/
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terms of the Wasm runtimes it supports, requires minimal

modifications to OpenWhisk, and seamlessly integrates Wasm

special features such as capability-based access control. WOW

is available as open source.2 3© We extensively experiment

with WOW over different serverless workloads and on diverse

edge compute infrastructure (§V). WOW reduces cold start

latency by up to 99.5% on small-scale single-board computers

(SBC) and to 94% on server-class machines, increases function

execution throughput by up to 4.2× and 3×, respectively, and

can reduce memory footprint by more than 5× compared to

the current practice of using Docker runtimes. These results

are particularly important in resource-constrained edge settings:

Despite existing limitations (§VII) and still-noticeable cold

starts, Wasm runtimes make it feasible to execute serverless

workloads on low-end edge hosts with acceptable latency,

something impractical with current container runtimes.

II. PRELIMINARIES

A. Serverless workload

Developers use serverless for diverse use cases, creating a

mix of CPU and I/O bound function workloads [14]. Shahrad

et al. [15] find that 81% of functions on Microsoft Azure are

invoked less than once per minute, and 50% execute for less

than 1 s. However, those accessed more frequently constitute

99.6% of all invocations. This is corroborated by the cold start

times reported by Wang et al. [4]. Eismann et al. [16] analyzed

89 open-source serverless applications, of which 84% have

bursty workloads. Thus, these spikes in demand–manifested

in concurrent requests, in turn causing up-scaling–ought to

be handled well by serverless platforms. Furthermore, 39%

of the applications have a high traffic intensity, 47% have

a low traffic intensity and 17% utilize scheduled functions.

Thus, the latter combined 64% represent on-demand scenarios

where the platform is likely to experience cold starts. There is a

fundamental trade-off between using memory to keep functions

warm and forgoing it, but incurring the additional latency of a

cold start. Keeping functions warm burdens the operator while

also violating the scale-to-zero principle, therefore short cold

starts help reduce costs. In light of these findings, a primary

goal of our work is making cold starts faster, in turn enabling

reduced keep-alive times.

B. WebAssembly

To achieve this goal, we build on WebAssembly as the

function execution environment. Wasm was intended to opti-

mize client-side code execution in the browser and act as a

compilation target for JavaScript, but is recently considered

for use in Serverless [10], [11], [17]–[19]. FaaS developers

can write functions in a variety of languages, compile them

to Wasm, and execute them in a Wasm runtime. While cold-

starting a Wasm function can be very fast, Wasm has been

found [20], [21] to execute 10%-50% slower than native code.

However, Wasm can be compiled to native code, either by

2https://github.com/PhilippGackstatter/wow

just-in-time (JIT) engines at the time of execution, or ahead-of-

time (AoT) by the same JIT engines or AoT compilers. AoT

compilation is a technique we exploit to to reduce the time it

takes to get a Wasm module ready for execution.

Security-wise, Wasm uses software-based fault isolation

techniques to sandbox the executing module. Wasm interacts

with the host system via the WebAssembly System Interface

(WASI) [22]. A Wasm module cannot directly perform an OS

system call due to sandboxing, but imports equivalent WASI

functions instead. WASI is binary-compatible and specifies a

fine-grained capability-based security model.

III. ARCHITECTURE OF A WASM-BASED FAAS PLATFORM

We present a high-level view of an architecture that enables

integrating Wasm as the runtime environment for executing

serverless workloads. Our design and technological choices are

driven by specific requirements, with a view to edge execution.

A. High-level view

1) Design requirements: Operators are forced to choose

between saving cost and resources or enabling a high quality

of service–in particular shorter response times. While this trade-

off is inevitable to some degree, cold starts exacerbate it. A

new container runtime must alleviate that initial latency, to

provide mutual benefits for the serverless user and the operator.

The runtime needs to be programming-language agnostic and

provide cheap sandboxing to ensure multi-tenant capability

with no adverse effects on the cold start latency. These features

are readily provided by Wasm. Furthermore, the Wasm runtime

environment needs to be easily integratable with existing

serverless frameworks and offer as close to native speed as

possible, to be a viable alternative to de facto container runtimes

such as Docker. Finally, targeting the whole edge-fog-cloud

continuum, which is notorious for its host heterogeneity [23]–

[25], the introduced runtime should be able to execute on

devices with potentially different capabilities and instruction

set architectures (at least x86 64 and Arm-based).

2) Generalized serverless architecture and function lifecycle:

Popular open-source serverless frameworks, such as Open-

FaaS,3 Apache OpenWhisk and OpenLambda,4 are character-

ized by a similar general architecture. Users interact with the

system through an API Gateway (acting as a single point of

entry and for TLS termination), and a Controller implements

the main logic regarding resource allocation, authorization, and

function scheduling over the underlying compute infrastructure.

A user can interact with the system through the gateway and

manage functions via CRUD (Create, Read, Update, Delete)

operations, set up scheduled triggers or retrieve the results of

previous invocations. Upon each function invocation, a load

balancer selects one of potentially multiple Invokers to execute

the function on a host. Each host runs a sandboxing execution

engine, such as Docker or a similar container runtime, which

runs user functions in an isolated manner.

3https://www.openfaas.com/
4https://github.com/open-lambda/open-lambda
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Serverless frameworks allow developers to write their

functions in a variety of languages. Many popular languages

need a runtime, such as node.js, a Python interpreter or a

Java Runtime Environment (JRE). State-of-the-art serverless

platforms typically bake these runtimes into container images.

To execute a function, the container image with the appropriate

runtime is pulled from a container registry. The function’s code

is retrieved from an internal database. The container is started

and the code is injected and prepared for execution. Finally, the

function is invoked with the user’s parameters and the result

is returned to the framework, which relays it to the user.

To seamlessly integrate different runtimes, a common

protocol is needed so that the Controller communicates with

each of them. Therefore each runtime implements and exposes

a number of endpoints. An instantiation endpoint creates

a new container and returns its address. A request to an

initialization endpoint is sent to this address, where the

container receives the code and prepares the function for

execution. Once initialized, an execution endpoint can be called

with different parameters many times to invoke the function.

Serverless platforms use various optimizations of the described

flow, such as pre-warming containers or keeping the container

alive after invocation, to avoid cold start costs at the expense

of resource use. In the absence of invocations and after some

threshold time elapses, the container is removed entirely by

accessing the container runtime’s termination endpoint.

3) WebAssembly runtime support: We introduce a

lightweight runtime management layer that has a similar role

as traditional container runtimes (e.g., Docker), but instead

manages the execution of Wasm functions. We adopt the

terminology of Apache OpenWhisk, our serverless platform of

choice, where the term action is used to denote a serverless

function, and introduce the following components of this layer:

Executor: This is in charge of the actual execution of a Wasm

function on an underlying host. The executor wraps around

a Wasm runtime binary (Wasm container runtime) targeting

the instruction set architecture (ISA) of the host, and exposes

function creation, initialization, execution, and termination

endpoints. It is the equivalent of a container runtime.

Invoker: Upon receiving a request from the API gateway, the

Invoker applies the respective function lifecycle management

action. It interacts with an Executor to prepare a function for

execution, run it, and relay the results to the user.

Wasm module: This is the actual Wasm code of a serverless

function. It is the result of compilation which can happen ahead

of time (when a function is submitted by a user) and stored

serialized in a Function Store. We use the term module as

the equivalent of a container image, and the term instance to

denote a module that is currently run by an Executor.

This serverless design is shown in Fig. 1.

4) Compilation strategies: In serverless platforms, we

identify three main steps for code to be executed. Uploading

the code to the platform, initializing the execution environment,

and running it. The latter two are already part of the execution

path; they occur when an execution request is actively waiting

for the result to be returned. Thus, during initialization, the
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Fig. 1: Invocation flow of a Wasm action. An Invoker injects

the code into the executor, which creates a Wasm module

ready for execution. It then instructs the executor to invoke the

module. The result is returned to the Invoker.

action should already be well-optimized for execution, such

that as little preparation as possible is needed. Wasm is a binary

target format, however, not one that is ready for fast execution.

It can be interpreted right away–thus a small cold start time–but

execution performance will lag behind compared to native code.

Compilation to native code is thus essential for good runtime

performance, but it also takes time. Given this trade-off, it

might seem that JIT compilation should be the best model.

However, we measured that to build a simple, WASI-enabled

module (1,6 MB) with a JIT compiler takes 35 ms on our test

machine (or 40 ms when optimizing for speed). This represents

98% of the entire setup time, including every other part of the

runtime. Thus, unsurprisingly, the cold start is defined almost

entirely by the compilation phase. For comparison, the cold

start time of the hello-world Docker image on the same

machine is 452 ms. This is roughly in line with the cold start

times of AWS Lambda or Google Cloud Function. While the

JIT cold start is an order of magnitude faster than the startup

times of Docker containers, it is still on the same order of

magnitude as the execution time of some functions.

In contrast to browsers, which receive JavaScript or Wasm

just-in-time, and thus need to compile it in the same manner,

a serverless platform takes ownership of a module earlier.

When a user uploads a module, the platform has much more

time to apply optimizations to the module than when on the

execution path, thereby making it ready for a fast startup and

execution, solving the previously described dilemma. The key

is to run the expensive module creation ahead of the time of

execution. We refer to this as precompilation. Once the module

is precompiled, we can serialize it and store it in the database.

During initialization, all that is left to do is to deserialize the

precompiled bytes into an in-memory module; this is a very

fast operation. At the time of execution, the module is ready

to produce an instance and execution can start immediately.

B. Technology selection

1) Serverless platform: We use Apache OpenWhisk as

the framework to implement Wasm support for. OpenWhisk

is production-ready, used in the commercial IBM Cloud

Functions. It also finds frequent use in serverless research, for

example to implement new ideas against cold start latency [8],
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as a model of a serverless architecture [10], and to build

on top mechanisms to accelerate workflows of interacting

functions [26], among others. OpenWhisk also has a lean

version, suitable for deployment on resource-limited edge

devices, such as the Raspberry Pi (RPi) on which we evaluate

our system. Furthermore, because OpenWhisk is designed to

be easily extensible with new languages, the language runtime

protocol is well-refined and straightforward to implement.

2) WebAssembly runtimes: With the rise of Wasm outside

the Web browser, a number of standalone runtimes have

emerged. Our system supports three of them out of the box:

Wasmtime5 is a runtime for JIT-compiled code, available for

the x86 64 and aarch64 ISA. It is written in Rust and thus

easily embeddable from there. Support for the latest WASI

standards and future proposals for Wasm are implemented.

Wasmer6 is a mature runtime for x86 64 and aarch64. It

offers three different compilers, singlepass, cranelift

and LLVM, whose compilation times get slower and execution

times get faster, in that order. The runtime has a JIT and a

native engine. Support for high-quality AoT compilation with

LLVM and fast startup times make wasmer a promising option.

WebAssembly Micro Runtime (wamr)7 supports all compi-

lation strategies. The binary of the AoT runtime is claimed to

feature near-native speed at just 50 kB. For execution on edge

devices, where memory is scarce, this is advantageous.

Other candidates include Lucet,8 and WASM3,9 a Wasm

interpreter for embedded devices. The former is currently only

available on the x86 64 ISA, an important limitation since at

various edge scenarios SBCs of other architectures (e.g., RPi)

prevail. The latter supports interpretation only.

IV. WOW: A WEBASSEMBLY CONTAINER RUNTIME FOR

OPENWHISK

A. Approach

Implementing our own Executor allows us to integrate

Wasm into OpenWhisk with fewer changes. Furthermore, the

more precise control over container management, as well as

compilation strategy and execution, are the main arguments

in favor of this approach. We therefore introduce our own

layer between OpenWhisk and different Wasm runtimes which

enable the execution of Wasm modules. This layer implements

the parts independent of Wasm runtimes, such as OpenWhisk

communication. Thus, each Wasm runtime results in a separate

Executor binary and can be used independently of the others. In

this architecture, the Docker daemon of vanilla OpenWhisk is

replaced, but our design still leverages the existing OpenWhisk

interface for container management.

We decided against the alternative to use Kubernetes to

manage Wasm modules, because it is incompatible with various

aspects of the OpenWhisk execution model, leads to increased

Wasm serverless function complexity/code size (Wasm modules

5https://github.com/bytecodealliance/wasmtime
6https://github.com/wasmerio/wasmer
7https://github.com/bytecodealliance/wasm-micro-runtime/
8https://github.com/bytecodealliance/lucet
9https://github.com/wasm3/wasm3

should implement themselves the OpenWhisk protocol), and

risks cold starts due to Kubernetes pod management operations.

B. Interfacing with OpenWhisk

Following the architecture of Fig. 1, we modify OpenWhisk’s

Invoker such that it communicates with the Wasm Executor in-

stead of the Docker daemon. Fortunately, the Invoker is already

well-separated from the concrete containerization technology

through a Service Provider Interface (ContainerFactory,

in OpenWhisk terms), which abstracts the underlying container

platform. The layer we introduce implements this interface

(WasmContainerFactory), and OpenWhisk can be in-

structed to use it via a configuration property.

When the Invoker receives a request to start/destroy a

container, WasmContainerFactory relays this call to the

respective endpoint of the Wasm executor. The result is

returned as a WasmContainer, i.e., an object following

the OpenWhisk container abstraction. Via this OpenWhisk

container interface, the Invoker can access the /init and

/run endpoints it exposes, to initialize and execute a function.

Notably, in OpenWhisk’s Docker-based implementation,

OpenWhisk only uses the Docker daemon to create a container,

but then communicates with the container directly. In our

implementation, every request is proxied through the Wasm

executor to the container itself. This design presupposes that

the Wasm executor can handle a large amount of concurrent

requests and is thread-safe. The advantage is that not every

Wasm module needs to implement the OpenWhisk protocol,

thus leading to more lightweight Wasm modules.

C. Wasm Executor internals

The Executor is written from scratch in Rust. The Rust

compiler uses LLVM as its backend, so Rust programs can

be compiled for any architecture we care about, in particular

also aarch64 and wasm32-wasi, the Wasm WASI target. The

Executor architecture is shown in Fig. 2 and is detailed below.
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Fig. 2: Overview of the Executor architecture.
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1) Executor entry point: The entry point into our Executor is

through HTTP endpoints. We use tide [27], an asynchronous

by-default web framework ideal for prototyping. One of the

implemented Wasm runtimes is selected at Executor compile

time. The runtime is used as state and is shared among requests.

Sharing objects requires them to be thread-safe. This is where

Rust’s compile-time checks help us ensure this property. Each

request receives a copy of the runtime. For this, the runtime

wrappers implement a shallow copy method for performance

reasons, and our framework ensures thread safety.

To start a container, the WasmContainer object in Open-

Whisk generates a new UUID, without having to communicate

with the Wasm Executor at all. This is possible because there

is no setup for a Wasm container, that needs to happen ahead

of time. That shows an important aspect of what constitues a

Wasm container. In-memory, it is ultimately only represented

by the action’s code. No external operating system resource is

used. It follows that actual work only happens in the endpoints,

which are parameterized by the container ID.

/init is called once by OpenWhisk per container to

initialize the container with the module’s code. Although

different for each runtime, in general, this endpoint will do

any work that can be frontloaded. /run is invoked potentially

many times, so any work that is not frontloaded would multiply

there. Once OpenWhisk decides to destroy the container, it

does so through /destroy. Of course, /init is the potential

culprit for the cold start latency, so our focus is on reducing

the amount of work this endpoint needs to handle.

Note that unlike Docker-based OpenWhisk, we do not keep

instances (containers) in-memory while warm, but only the

modules (images), because the cost of instantiating a function

from a module, i.e., the overhead on every warm invocation,

is negligible (340µs on average on our test machine to set

up a wasmtime instance and the parts needed for execution).

Moreover, two instances can execute concurrently, even if the

module itself is not thread-safe, for instance when re-entrant

execution would be unsafe. Finally, implemented this way, it is

also safe to execute two requests from different tenants, since

instances are isolated from each other. They operate in their

own memory space and have their own WASI environment.

2) The WasmRuntime abstraction: The Wasm Executor is

generic over the underlying Wasm runtime for reasons of

extensibility. To that end, we abstract the common runtime tasks

into a trait–essentially an interface in Rust terminology. The

state of our Executor can be any object that implements this trait.

For each Wasm runtime, we create a wrapper implementing

the WasmRuntime trait. All wrappers work in similar ways

and differ only in internal details.

a) Initialization: The Executor decodes the base64

string given by OpenWhisk and unzips it, before calling the

initialize method with the result. This initializes the

container identified by the given ID. All wrappers store the

code they are given in a thread-safe HashMap. In contrast to the

idiomatic Rust APIs of the wasmtime and wasmer runtimes,

where memory- and thread-safety properties are encoded in

the type system and checked by the compiler, we used Rust

bindings to embed wamr, itself written in C and not providing

thread safety, thus being more challenging to integrate.

b) Execution: All used runtimes support WASI. WASI

follows a capability-based security model, which allows for fine-

grained control over what the module has access to. Hence,

building a so-called WASI context means setting up those

capabilities. That might include writing parameters to stdin,

receiving logs from stdout or setting environment variables

and argv arguments. By default, the module also has access

to WASI APIs like random_get for high-quality randomness

or clock_time_get to access various clocks. WASI also

controls on a per-file basis what directories the module has

access to. Specifically, the module needs a preopened file

descriptor in order to access files. Our wrappers therefore

have to open the files and pass them to the module. However,

what files a module should have access to is not definable

in the OpenWhisk protocol, since it does not make use of

Docker’s host-to-guest mappings, so we need a way for users

to specify these capabilities. OpenWhisk actions can have

optional annotations attached to them, which are simple key-

value pairs. With some minimal code changes to OpenWhisk’s

container abstraction, these annotations are then passed to the

Executor during initialization. On the Executor side, they are

passed to each runtime wrapper, which can then act upon these

data. It would be easily possible for a service provider to

implement policies on top of this mechanism.

The run method executes the module associated with the

given container ID and with the given parameters as input.

As required by OpenWhisk, the parameter is an object in

JavaScript Object Notation (JSON). In summary, run looks

up the previously stored module or its bytes by the container

ID, creates a WASI context with the associated capabilities and

potential imports, passes the parameters and calls the module.

c) Cleanup: The destroy function removes the Wasm

container, which simply means freeing the memory taken up

by the module. This is fast and thread-safe.

D. Serverless function development
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Fig. 3: Serverless function creation workflow.

Developing a serverless function for WOW takes place

in two phases (Fig. 3). First, after a function has been

implemented, it is compiled to Wasm and an optimization

pass is run on the produced code, since not all runtimes do
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so themselves. This makes use of the binaryen10 toolchain

as a Wasm-to-Wasm optimizer. Second, depending on what

runtime is compiled into the Executor, the corresponding

precompiler is used to a produce code ready for execu-

tion on the target ISA. For wasmtime, we have written

ow-wasmtime-precompiler, a simple wrapper around

wasmtime’s API, that creates a module from Wasm bytes,

in turn kicking off the internal compilation process. wamrc

and wasmer compile can be used for the others. Finally,

the resulting precompiled binary is zipped and is ready to be

uploaded to OpenWhisk.

A point worth noting regarding passing parameters to a

module is that Wasm currently only supports numeric data types

natively. Supporting the exchange of higher-level ones, such

as strings, is an ongoing process with WebAssembly Interface

Types.11 To work around the problem, actions written for

our Executor can use our ow-wasm-action library, which

allows exchanging arbitrary byte buffers between the runtime

wrapper and the Wasm module. Conveniently, a developer only

has to implement a function which receives and returns JSON

objects. The internals of passing parameters are completely

abstracted from action developers, who only need a single line

of code to be included.

V. EVALUATION

We evaluate WOW experimentally by comparing it to vanilla

OpenWhisk. Our purpose is to quantify the performance

benefits of Wasm runtimes for serverless function execution at

the edge and beyond, and study the performance characteristics

of different Wasm runtimes vs. Docker, the current practice in

serverless.

A. Methodology

1) Workload types: A serverless platform ought to handle

well both CPU- and network I/O-bound workloads. We present

experiments with both workload types in isolation, as well as

realistic mixes drawing from the literature (see § II-A).

We write test actions in Rust and compile them to wasm32-

wasi, and aarch64 or x86 64 respectively, depending on whether

we test a Wasm or Docker Executor and which ISA we

test on. In order to execute the native binary in OpenWhisk,

we use its “black box” feature. It is implemented by the

dockerskeleton image, which lets us execute any action

that adheres to a JSON-in, JSON-out protocol. We follow

this approach instead of the official Rust runtime support

of OpenWhisk, as the latter requires compiling the function

during initialization, massively contributing to cold start latency

for Docker. This makes for a more fair comparison between

both container runtime types, and renders our results more

generalizable to other serverless platforms.

a) CPU-bound functions: For this workload, we repeat-

edly hash a byte string in a loop using the blake312 algorithm.

Hashing is CPU-bound and free from system calls, so it is a

10https://github.com/WebAssembly/binaryen
11https://hacks.mozilla.org/2019/08/webassembly-interface-types/
12https://crates.io/crates/blake3

good candidate for this workload type. We choose the number

of iterations such that the completion takes roughly 100 ms in

a native binary on the respective hardware, in order to have a

non-trivial amount of work per invocation–significantly more

than what OpenWhisk needs for its internal scheduling.

b) I/O-bound functions: For this workload, we want to

measure the effect of a blocking operation, such as an HTTP

request. However, networking support in WASI is work in

progress. Instead, we simulated the perceived effects of an

HTTP request with a 300 ms sleep system call. The latter

native host function is supplied to the Wasm module by the

Executor via an import.

2) Hardware classes and configuration: Rausch et al. [25]

overview different edge computing scenarios and argue that

there is significant heterogeneity in edge infrastructure and

capabilities. E.g., SBCs can be considered typical hosts for edge

computing workloads in smart city scenarios, such as urban

sensing, while telco-driven deployments following the Multi-

access Edge Computing model [28] feature more powerful

server-class hosts in edge data centers. For a more complete

view of Wasm-powered serverless performance, we run our

experiments both on a RPi Model 3B as an exemplary SBC,

and an x86 64 server-grade host. The RPi has 1 GB of RAM

and it runs the 64-bit Raspberry Pi OS. The server has 8 GB

of RAM, an Intel Xeon E3-1231 v3 CPU (3.40 GHz) with

4 physical cores and 8 logical threads, and a Samsung SSD

850 EVO, where Docker images are stored and loaded from.

It runs Ubuntu 20.04.2 LTS. Due to difficulties in deploying

OpenWhisk on the RPi with Kubernetes and ansible (default),

we use its standalone (lean) Java version for evaluation, which

is tailored to resource-constrained devices. Since we are not

benchmarking OpenWhisk itself, but rather the underlying

container technology, we do not see this as threat to validity.

3) Evaluation metrics and measurement methodology:

Our metrics of interest are latency and function execution

throughput. To measure latency, we utilize OpenWhisk’s

activation record, which is a collection of data resulting from

each action invocation. User-perceived latency is composed of

waitTime (accounts for OpenWhisk internal overheads and

for provisioning a container; the latter only applies to Docker),

initTime (function initialization), action execution, and the

overheads to receive a request and return the result. We define

cold start latency as waitTime + initTime. Measured

this way, the cold start time is simply the time between

OpenWhisk receiving the request and the container being ready

for execution, independent of the underlying container runtime.

We devise the following experiments:

1) To measure cold start times, we first configure OpenWhisk’s

deallocation time as 10 s. We can then send requests at intervals

exceeding 10 s to always trigger cold starts. To measure the

effect of concurrency on cold starts, we send i = 1, ..., N

concurrent requests. For each i, we wait for OpenWhisk to

destroy all containers before continuing. That results in exactly

i concurrent cold starts per iteration.

2) We run concurrent requests under various workloads con-

sisting of either CPU- or I/O-bound actions, or mixes thereof.
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Fig. 4: Cold start times (a) on a RPi and (b) on a server-class

host for Docker and Wasm-based container runtimes. On a

server-class host, Docker cold starts take 869-2873 ms; Wasm

executors reduce this to 47-180 ms. The same behavior shows

up on a RPi, but values are orders of magnitude higher.

For the latter, we also simulate request patterns following the

findings of [15] about Microsoft Azure.

3) We measure the code size of actions and the amount of

memory they consume while being held in-memory, ready for

execution.

We used the latest available stable release of OpenWhisk,

either the vanilla one, or the standalone version, which we

extended with support for Wasm. The wsk command line tool

was used to create test actions. A separate host connected over

1G Ethernet was used to send requests to the test machine.

B. Cold start performance

We first evaluate cold start latencies in the face of concur-

rency. We create N CPU-bound actions with the same code.

On the RPi, we increase the swap memory to 1024 MiB to be

able to test up to 6 concurrent cold starts with Docker; CPU

and memory limitations did not allow us to test beyond that

point. This is reflected in Fig. 4a, which shows the Docker-

based serverless platform to be very slow to cold-start, having

orders of magnitude higher latencies than any of the Wasm

executors. Even at 2 concurrent requests, Wasm Executors

already take ∼1 s to cold-start. Wasm runtimes are similar in

their startup performance, particularly wasmtime and wamr,

even though they are written in different languages and use

different compilation strategies. The Wasm executors have, on

average, less than 0.5% the cold start time of Docker.

On an x86 64 server-class machine (Fig. 4b), while cold-

starts are, as expected, significantly faster, the relative perfor-

mance among runtimes is similar. Docker cold start slatencies

suffer under rising concurrency and vary more. The average

reduction in cold start time compared to Docker is 94% for

wasmtime and wamr and 93% for wasmer.

These results give a holistic picture of the performance

of both runtime types in the OpenWhisk context. We then

turn our attention to how Wasm runtimes compare. Fig. 5

shows the cold start latencies for the same experiment, but

only reporting the duration of a call to the /init endpoint of

the executor (initTime). This excludes the time taken due

to OpenWhisk specifics and isolates the overhead introduced

only by the Executor. Thus, it allows for a more general Wasm

container runtime comparison beyond OpenWhisk. Independent
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Fig. 5: Cold start latencies for the three Wasm runtimes

exluding OpenWhisk internal overheads (only the time spent

at the /init endpoint of the executor is reported). Mean latency

values are shown with 95% confidence intervals.

of the hardware, wasmer is about 2× slower than wasmtime

and 3× slower than wamr. The wasmer Executor has an

inherently higher cost for deserialization and features slightly

more performance variability. Overall, average pure cold start

times for Wasm Executors are within 112-274 ms on a RPi.

C. Function execution throughput

Our second set of experiments aims to evaluate the function

execution throughput of OpenWhisk for the different runtimes

in question. We experiment with different workload types.

1) Mixed workload: We set the concurrency limit parameter

of OpenWhisk to 10, such that 10 actions can be executed

concurrently in the same container. We run one iteration

of this test before starting the measurements to pre-warm

containers and exclude cold starts from our results. The mixed

workload was made up of an equal amount of I/O- and CPU-

bound actions, and was generated using Apache JMeter.13 We

gradually increased the workload until saturation, and found

that for such a function mix, Wasm runtimes consistently

outperformed Docker both on a RPi and on a server-class host.

The gains of each Wasm runtime over Docker are shown in

Table I. In absolute terms, Docker could handle ∼6.5 requests/s

on a RPi and ∼20 requests/s on the server-class host in our

tests. The gains of Wasm are more pronounced on the RPi,

indicating that Docker is less suitable for resource-constrained

edge devices than for server-grade hardware. Among our Wasm

executors, wasmer fares the best, because we configured it to

use the LLVM compiler toolchain, which produces high-quality

native code. While wamr also uses LLVM for AoT compilation,

its API does not allow us to thread-safely initialize the module

once and run it multiple times, forcing us to initialize it from

the raw bytes on every run call, which affects performance.

13https://jmeter.apache.org/
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TABLE I: Average throughput gain of Wasm executors over

Docker, in a mixed workload scenario.

Runtime Raspberry Pi Server

wasmer 4.2× 3.0×
wasmtime 3.8× 2.2×

wamr 2.4× 1.6×

2) I/O-bound workload: To study the ability of each runtime

to handle concurrent network requests, we emulate an I/O-

bound workload as described in Section V-A1, and execute

tests on the server-grade host. As in our previous experiment,

we pre-warm functions to eliminate cold-start effects. The

dockerskeleton we use in vanilla OpenWhisk performs

poorly for I/O-bound workloads. We posit that this is a

limitation of the action proxy used in dockerskeleton.

We configure our setup to handle a maximum of 12 concurrent

requests (4 containers; concurrency limit set to 3). The

throughput for Wasm runtimes peaked at approximately 40

requests/s, while for Docker at less than 15 requests/s. A higher

concurrency limit could increase throughput, but would not

change the results qualitatively. Since blocking takes the same

amount of time in every Wasm runtime, this performance is

mainly determined by the Executor itself and its threading

model. Other than OpenWhisk limitations, performance rests

on the number of threads that can be spawned on the system.

3) CPU-bound workload: Pure CPU-bound workloads are

where Docker outperforms Wasm. In an experiment with the

same configuration as the previous one, but for the hash

serverless function, we found that on average, the Wasm

executors achieve only 39% (wamr), 57% (wasmtime) and

88% (wasmer) of the throughput of a Docker runtime. This

shows that for a steady stream of highly concurrent CPU-

bound requests, Docker is the best option, particularly if the

container is likely to be reused many times. This comes perhaps

unsurprisingly, given that the executing code is Rust compiled

to a native x86 64 binary. There is hardly a way to generate

faster code. One could argue, though, that a fully CPU-bound

Wasm module reaching 88% of the performance of a native

binary in Docker, but with much reduced startup costs, is an

acceptable compromise.

As a sidenote, using native code in serverless functions is not

particularly popular. In different and probably more realistic set-

tings, performance would vary. To put this into perspective, we

ran an experiment to demonstrate the potential improvements

of Wasm over today’s prevalent serverless runtime: node.js.

We wrote a CPU-intensive function (sieve of Eratosthenes) in

AssemblyScript, a strict variant of TypeScript (typed JavaScript;

a popular option to write code that compiles to JavaScript, also

supported in various serverless SDKs). This compiles both to

Wasm and to JavaScript. We then executed it in a wasmtime

and a node.js OpenWhisk runtime. Wasmtime achieved

more than 3× the throughput of node.js.

D. Latency distribution for non-uniform workload mixes

We perform an experiment on a server-class host with a

workload mix characteristic of real-world commercial serverless

platforms, in line with [15] but at a smaller scale. In our case,
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Fig. 6: Latency ECDF of an experiment designed based on

serverless usage data from Microsoft Azure [15]. The y-axis

shows the proportion of total requests that were finished with

the latency given on the x-axis, or less.

90% of the requests are for two functions, and each of the

remaining 10% concerns one of 60 functions selected uniformly

at random. Half of the functions are CPU-bound. Fig. 6 shows

the Empirical Cumulative Distribution Function (ECDF) of

response time.

For Docker, around 40% of the requests completed in less

than 500 ms (warm starts), but 60% of the requests were only

finished in less than 1500 ms. The pure function execution times

are always less than 300 ms, because we configured them so,

while we know from Fig. 4b that the average cold start time

of Docker for 4 concurrent requests, as in this experiment, is

1269 ms. Once cold starts are occurring, they have a detrimental

effect on the overall system performance as indicated by the

increasingly higher latencies beyond the plateau. Only 20% of

invocations handled by the Docker runtime finish faster than a

Wasm executor. These correspond to CPU-bound warm starts.

Cold-starts, on the other hand, do not manifest themselves

clearly in Wasm executor curves.

E. Memory use

We run our cold start test again and measure the amount

of memory for each container once the actions have finished

execution, but before OpenWhisk removes them. At this point,

Docker containers have been paused by OpenWhisk. For

Wasm executors, the amount of consumed memory is critically

affected by the size of the Wasm module (the container is the

Wasm module in memory, plus some supporting data structures).

As Table II shows, Wasm can help keep more containers warm,

which can be important to reduce latencies when serverless

functions execute in resource-constrained environments. For

our minimal hash example function (compiled either to Wasm

or, in the case of Docker, to a native binary), 3.5×-7.6×

as many functions can be kept alive in the same amount
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of memory by Wasm executors. Note that this comparison

works in favor of Docker: At measurement time, the function

invocation has finished so the corresponding function code is

not in memory; the reported values are pure overheads of the

dockerskeleton image (which is minimal) and the action

proxy service that it implements to expose /init and /run

endpoints. Other Docker images used in practice (e.g., node.js)

could need more memory.

TABLE II: Memory usage per warm container.

Runtime Memory consumption (MiB) Gain vs. Docker

Docker 22.28
wasmer 4.02 5.5×

wasmtime 6.34 3.5×
wamr 2.93 7.6×

VI. RELATED WORK

There are two main approaches to reducing cold starts:14

(i) introducing optimizations to reduce the likelihood of cold

starts in the first place (e.g., selective pre-warming), or (ii)

making cold-starting cheap, e.g., via Wasm runtimes.

A. Complementary approaches

Pre-warming: Lin and Glikson [29] implement a solution

where a request is served by a pre-warmed Kubernetes pod from

a pool. In OpenWhisk, the platform operator needs to configure

the pre-warming system by specifying which containers are

pre-created, potentially depending on the anticipated load type

(e.g., primarily JavaScript functions) [30]. More sophisticated

function caching policies are possible [31]. Pre-warming a

sufficient amount of containers may require a significant amount

of memory. This is especially problematic at the edge. Our

approach is shown to improve on that.

Pre-creation: Mohan et al. [8] argue that setting up a Docker

container’s network namespace accounts for more than 90% of

the startup time. Since the kernel uses a single global lock for

this task [32], performance declines under concurrency. They

thus propose to pre-create a pool of pause containers, whose

initialization is paused after network namespace creation. A

pause container from the pool is attached to a Docker container

initialized to execute a function, thus sharing the respective

namespace and avoiding the latter’s creation at cold-start.

Prediction: Shahrad et al. [15] propose a policy that learns

function invocation frequencies and adaptively decides when

to pre-warm a function and how long to keep it warm. Such

decisions may be driven by AI-based mechanisms, such as

reinforcement learning [33], [34]. While pre-warming is less

important when cold starts are cheap, having a keep-alive time

based on the function’s invocation pattern still reduces memory

consumption compared to a fixed policy. Thus, combining such

predictive methods with a Wasm-based runtime is promising.

Client-centric approaches: Bermbach et al. [35] show that

client-side (i.e., outside the FaaS platform) middleware co-

deployed with a composition of functions can proactively

invoke their cold starts exploiting knowledge of the composition

14Notably, the two approaches can be used in conjunction, and this is an
avenue for future work.

structure. Such approaches can also work in cross-cloud

settings, which are becoming increasingly relevant [36].

B. WebAssembly in serverless computing

Execution in node.js: Wasm’s potential for serverless was

studied by Hall and Ramachandran [10]. They use the V8

engine’s Wasm support within node.js as their basis, creating

a new V8 context per request to load and execute Wasm code.

They find Wasm to reach 56% of Docker’s throughput for a

CPU-bound workload, while our precompiled Wasm reached

88% with wasmer. Recall that wasmtime, our JIT-configured

runtime reached 57% of throughput for this workload type.

This confirms that Wasm execution in node.js is not the best

option for pure speed, due to its JIT compilation strategy. Our

AoT approach is expected to reduce cold start times compared

with their on-demand one, particularly on resource-constrained

edge devices. Additionally, we provide a full-fledged Wasm-

based environment for OpenWhisk.

Cloudflare Workers: Workers [17] also use Google’s V8

engine, but execute user functions in JavaScript–or other

languages via Wasm support–directly in a V8 isolate. This

eliminates the costly startup of a node.js process, but still

needs to parse and compile function code before execution,

which is what our approach eliminates.

Fastly’s Lucet: Fastly allows to run Wasm code in its lucet

runtime [18]. The lucet compiler translates Wasm to native

code, after which it can be executed in the runtime. We did not

leverage it due to security concerns and platform/ISA support

limitations, but applied the idea of precompiling to native code

AoT. This payed off: we measured module instantiation times

of 340µs to set up a wasmtime instance from a module.

FAASM: FAASM [11] is a serverless runtime using Wasm.

One or more functions are executed in a faaslet, which

uses Wasm’s software fault-isolation to restrict memory access

to its own address space. FAASM targets a challenge which

is significant but rather orthogonal to our work, namely

state sharing across functions. It achieves fast cold starts

by initializing a faaslet ahead-of-time as a snapshot of

a function’s stack, heap function table, stack pointer and data.

This is generated at function-creation time. This is similar to

how we use Wasm modules as our templates and produce

instances on every invocation for isolation.

Sledge: Gadepalli et al. [19] present one of the few thorough

edge-centric treatises of Wasm-powered serverless. They pro-

pose Sledge, a Wasm runtime with its own compiler, extensively

evaluated on edge hosts and scenarios. Sledge focuses on

function execution on single-host servers (all components of

the serverless framework are built to run on the same edge host).

While it would be interesting performance-wise to integrate

the Sledge Wasm runtime in WOW, its current lack of WASI

support and single-host design could make it challenging.

VII. DISCUSSION

A. Wasm suitability for serverless edge execution

Revisiting our research question, we remark that Wasm

emerges as a highly promising enabler for serverless edge
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computing. This boils down to a number of points.

Performance: Wasm runtimes make cold-starting cheap, with-

out significantly sacrificing on warm-start performance. Wasm

facilitates serverless on low-end edge hosts, where cold starts

of Docker-based solutions are too slow to be practical.

Language Support: C, C++, and Rust already have excellent

support for Wasm as a compilation target, and many others are

considered production-ready. Serverless operators thus have

the option to polish their Wasm support instead of maintaining

multiple (Docker) container images with different language

runtimes in different versions and for different ISAs.

Scale-to-zero: While Wasm does not get us all the way to the

ideal of scale-to-zero, it gets us much closer. With appropriate

keep-alive policies [15], [31], rarely invoked functions may

be cold-started with negligible cost, while frequently accessed

ones can be kept warm with minimal memory overhead.

B. Limitations and open challenges

Wasm features: Some important Wasm features are proposed

but not yet fully implemented. These include interface types,

networking support in WASI, multi-threading and atomics or

a garbage collector (GC), which will make it easier for GC’ed

languages to be compiled to Wasm.

Stateful functions: Our Executor is stateless; each function

is executed in a new instance. Some functions, however, may

wish to cache data from an external service in memory to

improve latency. A fully stateless system does not allow for

such optimizations, while caching instances rather than modules

and invoking them repeatedly would.

Performance on edge SBCs: While we have seen great leaps

in performance on a RPi, we can still witness cold starts of

beyond 100 ms. This is faster than current FaaS offerings, but

can still challenge some latency-critical applications at the

edge. Complementary techniques used in conjunction with our

approach can drive startup latency further down.

VIII. CONCLUSION

In order to enjoy the elasticity, flexibility and cost benefits of

the serverless model, and at the same time harness the potential

of edge computing, which is crucial for emerging IoT services,

performance inefficiencies of serverless platforms need to be

tackled. In this paper, we provided solutions to this problem

by means of a serverless design powered by WebAssembly

runtimes as the underlying execution environment. By adopting

a more light-weight runtime environment compared to the

standard use of containerization technology, we achieve multi-

fold improvements in terms of cold start latency, function pro-

cessing throughput, and memory consumption, and significantly

enhance the processing of serverless workloads on inexpensive

and resource-constrained edge compute infrastructure.
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