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ABSTRACT
In this paper we report our experiences from the migration of an AI
model inference process, used in the context of an E-health platform
to the Function as a Service model. To that direction, a performance
analysis is applied, across three available Cloud or Edge FaaS clus-
ters based on the open source Apache Openwhisk FaaS platform.
The aim is to highlight differences in performance based on the
characteristics of each cluster, the request rates and the parameters
of Openwhisk. The conclusions can be applied for understanding
the expected behavior of the inference function in each of these
clusters as well as the effect of the Openwhisk execution model. Key
observations and findings are reported on aspects such as function
execution duration, function sizing, wait time in the system, net-
work latency and concurrent container overheads for different load
rates. These can be used to detect in a black box manner capabilities
of unknown clusters, guide or fine-tune performance models as
well as private cloud FaaS deployment setup.

CCS CONCEPTS
• General and reference → Measurement; Performance; •
Computer systems organization → Cloud computing.
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1 INTRODUCTION
The Function as a Service (FaaS) paradigm promises to deliver cloud
native capabilities out of the box such as queue-based load levelling
with competing consumers[7], easier packaging, deployment, man-
agement and scaled execution for function-wrapped application
features. Cost models are more flexible, basing the cost on the num-
ber of invocations, the duration of a function execution as well as
the memory size of the needed container[3]. However the process
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of migrating existing functionalities to the new model or setting
up relevant private FaaS clusters is not without challenges, pitfalls
and hidden parameters that may affect the application and system
performance[21].

Combinatorial cloud/edge solutions have started to emerge, aim-
ing at exploiting the serverless capabilities across the continuum[24]
as well as the space-time relationship when distributing loads[10].
FaaS succeeds in creating abstractions of the resources, however
this comes at the cost of having more obscure and hidden perfor-
mance issues. So questions arise having to do with the setup and
operation of these clusters and the target function.

The current work aims to highlight aspects of FaaS execution
through benchmarking the execution of an adapted ML inference
function across 3 different testbeds (in terms of hardware and Open-
whisk parameters setup). The testbeds are scattered across different
geographic locations (Greece, Netherlands and Sweden). In each
case, the open source Openwhisk FaaS solution has been installed
inside virtual machines. The goals of the work include:

• Quantify the effect of running the specific load across differ-
ent clusters, from a hardware or configuration point of view
and how this relates to the experienced performance, as well
as get indications about the FaaS platform operation on each
cluster setup (e.g. concurrent containers overhead, its effect
on the cost model, cluster design and sizing choices etc.).

• Document experiences from practical issues of the migration
and operation, such as function sizing, and observe the effect
of a cluster choice on various delays (response time, latency,
wait and service time of the function)

The paper proceeds as follows. In Section 2 related work is por-
trayed regarding FaaS platforms, performance investigation as well
as E-health use cases. Section 3 includes details of the system, includ-
ing the migrated function, the used testbeds and the load generation
and measurement process. Section 4 analyzes the results and ex-
tracts main findings and observations, while Section 5 concludes
the paper.

2 RELATEDWORK
Openwhisk[9] is an open source FaaS platform that is also the back-
bone of the commercial IBM Cloud Functions offering. Openwhisk
features include pre-warm containers, reuse of warm containers,
many baseline function runtimes as well as the ability to use any
custom docker image as a runtime, providing that the Openwhisk
interface for activating the function is followed. Together with
OpenFaaS[11], they are the two most widespread open source of-
ferings for FaaS[1].

Performance modelling of serverless applications and platforms
has gained significant attention recently. In [20], an analytical model
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is applied in order to investigate and predict aspects such as re-
sponse time. Autoscaling mechanisms through reinforcement learn-
ing are investigated in [27] while scheduling and placement of
application functions across the cloud/edge is investigated in [26]
as a multi-objective optimization problem. What is common in all
these cases is that data are needed for adapting or configuring the
algorithms as well as knowledge of a number of baseline metrics
like the function duration. The data collected in this paper can
help fine-tune such models or be used as training data to extend
model parameters with cluster sizes or configuration details. Cold
starts, one of the main issues of serverless platforms, is not taken
under consideration in our work. This is due to the fact that we
anticipate such issues to be covered by the aforementioned higher
level models, once other factor influences are known such as cluster
sizes, function duration etc. Thus we focus on the latter.

Regarding the selected use case, the E-health domain has started
to concentrate on the serverless paradigm in a variety of applications[18],
stemming from data collection, interoperability functionalities, ana-
lytics and data storage and up to remote sensing, model training and
model serving for patient monitoring. Created models may include
prediction of a patient condition through inference[19], patient
phenotyping[22] (the process of matching vectors of data from pa-
tients to the models of different phenotypes, returning the one each
vector is more likely generated from) and data synthesis[25] for the
creation of realistic synthetic data. Relevant architectures have also
been determined for cases including cloud/fog/edge combinations
of resources[13].

3 SYSTEM DESCRIPTION
3.1 Openwhisk FaaS Platform Overview
The Openwhisk Platform architecture (Fig. 1) follows a typical
queue based load levelling pattern with competing consumers[2].
The API Gateway receives and validates the function invocation
requests, which are then added in a Kafka queue.

Figure 1: Overview of Openwhisk Architecture

Invokers running in each of the worker nodes consume the mes-
sages from the queue, raising one container to serve each function, if
there is available memory. If not, the requests wait in the queue un-
til a slot is freed. When a function execution finishes, the container
that executed it remains available for a period of time (typically
around 10 minutes). If a new invocation for the same function ar-
rives within this period, it can reuse that container. More functions
can be cramped inside one container if the system concurrency
value is set accordingly. In our case we used the default value of 1
function per container.

3.2 Target Inference Function Structure
The target function consists of a model inference process[19]. This
uses a pre-trained ML model in order to infer on the condition of
a patient. Related data input indicates the patient’s measurements
across a vector of vital signs. These are fed as inputs to the model
that classifies patient outlook as expected to be worsening, constant
or improving. One function input can have more than one data
rows for needed predictions. In our case, 10 rows were used for
each invocation.

The overall stack of the used software for a function invoca-
tion appears in Fig. 2 . The function is created through the process
defined in [16]. The Python script and the pre-trained model are
included in the image during build time, through a customized
Dockerfile. Although Openwhisk has a Python baseline template
image to be used, this does not include any necessary dependen-
cies. The latter can be included with the source code but they can
not typically exceed a maximum file size that is rather small for
AI/ML use cases. Hence the typical solution is to use custom Docker
images[23] and use the according Openwhisk process[4].

The main function wrapper and runtime management layer is a
Node-RED1 flow (Fig.3). It undertakes the main interaction with
the Openwhisk platform through serving and exposing the inter-
face related REST methods for function invocation. Concentrating
on the /run endpoint definition, first the received input JSON is
converted into the command line arguments for the Python script
in the Prepare CLA node. Then, the Python script is executed in
the exec node. It uses NumPy version 1.23.4 (for array processing),
Joblib v.1.2.0 (for reading stored models), Pandas v.1.5.2 (for data
manipulation) and Tensorflow v.2.11.0 (for the ML model). The stan-
dard output and error streams are collected , joined and processed
into the output by the Prepare response node. Error handling nodes
are also present, to timely stop execution if something is wrong.

Figure 2: Software Stacks of the Function Execution

3.3 Cluster Description for Experimentation
The overall testbed setup appears in Fig. 4. The edge (located at
Harokopio University-HUA) is considered a small installation (1
medium size node), close to the client, that due to its limited size is
using the Openwhisk standalone version. The latter uses the local
Docker Engine in order to execute the function containers. The
function image is available locally, acting as a data caching layer
(no need to fetch it). The other two are located on AWS (Sweden)
and Azure (Netherlands). Only vanila VMs are used from these

1https://nodered.org/
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providers. The AWS case uses OKD with Kubernetes 1.24.6 and
m5.xlarge worker VMwhile the Azure one uses Kubernetes (v1.22.6)
on a Standard D8ds v4 VM. Both installations use Openwhisk 1.0.0
while there is a private registry from which the images are drawn,
if not available on the node. These clusters vary in terms of the
type of worker nodes, as well as the memory allowed to be used
by Openwhisk (Container Pool Memory) as detailed in Fig. 4. All
the load generation is performed from the edge side (different re-
source than the Openwhisk node), given that we consider this the
primary client app location. Thus setups include different hard-
ware as well as container management layers, diverse locations as
well as different Openwhisk settings. Further investigations may
be performed in the future with more nodes and more target func-
tions, like the two extra E-health functions mentioned in Section 2
(patient phenotyping and synthetic data creation).

Figure 3: Node-RED flow inside the E-health function

The importance of the Container Pool Memory setting needs
to be highlighted. This regulates the maximum allowed memory
that Openwhisk is allowed to use, even if there is more physical
memory available. Thus a cluster has a max number of available
concurrent container slots equal to ContainerPoolMemory/M, for
any given function with needed memory M. Any invocation that
does not find a slot (free slot or finished warm container) is queued
until one is available. This is depicted in the function’s wait time
statistic.

Figure 4: Overview of the 3 testbed clusters

3.4 Load Generator and Collected Metrics
The Load Generator used can be found in [6] and is built specifically
for interacting with asynchronous APIs like the ones in Openwhisk.

It is a set rate load generator, meaning it creates requests based
on a defined uniform rate without blocking while waiting for the
responses like other popular clients (e.g. Apache Jmeter). It fur-
ther collects timestamps across the process as well as Openwhisk
statistics in order to measure key intervals of the invocation. The
complete list of measured points appears in Fig. 5.

The client load generation resides at the edge layer. This is done
based on the assumption that this is the main operational hub of
the client. The client runs as a separate Node-RED flow in another
server at the edge, in order not to affect the main edge node process-
ing. The load generator performs the individual homogeneous calls
for the set duration and rate of the configuration. Then it calculates
the average and the standard deviation, as well as stores the raw
data for future use. It further validates the achieved average rate of
messages. The load generator is also available as a docker image[5].

Figure 5: Load Generator and Measurement Points Collected

4 EXPERIMENTATION RESULTS
4.1 Measurement Series Implementation
Three distinct function invocation rates were used (12, 30 and 60
messages per minute) for 3 distinct function memory sizes (256,
512,1024MB) on each testbed. Before running the experiments, the
clocks across the testbeds were NTP-synchronized using the chrony
Ubuntu package. This is necessary since we are collecting times-
tamps from different locations and comparing them to extract met-
rics, as detailed in Section III.

A prewarming runwas performed in each case in order to remove
contamination of the results from the initial cold starts. This was
done since it seems that in Openwhisk the container initialization
time is included in the function execution duration, although it is
also reported separately. After the prewarm run andwhile the warm
containers were available, data were collected during the main run
for a duration of 600 seconds for each case. Overall 4890 samples
were collected. The data have been made available publicly[15].

4.2 Function Execution Duration
In Fig. 6 the results are portrayed for the pure service time (i.e.
pure function execution duration in the Openwhisk terminology,
without the waiting time).

4.2.1 Function Memory Sizing. By comparing the three different
memory sizes in the HUA low rate case (thus where no concurrency
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effects from many parallel running containers affect the results),
it can be observed that the increased memory allocation for this
function does not provide any significant performance advantage by
itself. The average value (6402 mseconds) in the 256MB allocation is
very close to the averages of 6370 and 6251 in the 512 and 1024MB
allocations accordingly. What can be observed is the lack of values
for the AWS and Azure cases for the 256MB allocation.

In fact in this case the function kept failing to execute, with
no apparent reason and although the exact same version was exe-
cuted in the HUA testbed. After observing the function memory
consumption, it was determined that there was a spike, raising it
momentarily to around 400MB. At that time the Kubernetes envi-
ronment immediately takes action. In fact it does not kill the pod
itself, which would be an immediately observed action, but the
Python process inside the pod that generates the high memory
consumption. This leads to unexpected function behaviour (stalling
of the flow) and difficult to debug cases (function timeout as an
outcome of the flow stalling). On the other hand, the standalone
Openwhisk installation (HUA edge) uses the local Docker Engine
not enforcing such strong measures, thus enabling a successful
execution.

Figure 6: Average Function Execution Duration (service time)

Finding 1: In the specific function, increased memory does not help
performance. The optimal value from a cost-benefit point of view is
256MB however for functional reasons (temporary memory spikes)
we need to use the more costly 512MB option as a base for a K8S
environment.
Observation 1: If Kubernetes was more tolerant in the way it treats
temporary memory spikes, we could use the 256MB cost saving
option and also avoid difficult to detect errors. Killing directly a
process for even a momentary violation seems too strict. A time
window of tolerance could be useful in such cases. This could also
aid the FaaS provider to have more container slots for the same
amount of memory.

4.2.2 Concurrent containers effect. One interesting conclusion can
be extracted from the HUA 60 rate series for the three memory
values. A significant deterioration in function execution duration
can be seen in the 256MB case (70000 milliseconds of execution)
compared to the 512MB case (31671 mseconds) and 1024MB (13027
mseconds). This can be attributed to the fact that in the 256MB case,
the maximum concurrent containers are 8GB/256MB=32. Given
that it is a high rate scenario, almost all of these slots will be used
concurrently, leading to reduced CPU time assigned per container
as well as interference effects on cache misses etc. In the 512 case

the max containers are 16, whereas in the 1024 case they are 8. In
the low rate case, where only 1-2 containers are used concurrently,
the relevant value is 6402 mseconds. The relevant graph appears in
Fig. 7. A relevant deterioration can also be seen in the AWS case,
in which the 30-512 scenario that has approximately 5 concurrent
containers shows an increase to 3492 milliseconds (from the 2787
milliseconds of the 12-512 case that has 1 active container) and the
60-512 scenario that has 16 (8GB/512) active containers shows an
increase to 14229 mseconds. On the other hand, the Azure case that
is limited to 4 (2GB/512) and 2 (2GB/1GB) slots in these scenarios
does not show any significant increase in the function duration.
Another aspect of concurrency is a number of failures (5̃%) in the
AWS case. This was observed to be from image fetching errors
from the private registry used, which acted as a bottleneck in some
limited simultaneous cold-start requests. No errors were observed
in the HUA case, since the image was included in the node, acting
as a data caching layer. Azure did not demonstrate this due to the
lower container slots available.

Figure 7: Avg Function Execution Duration Compared to
Number of Concurrent Containers in the Edge and AWS

Finding 2: The performance degradation from the concurrent con-
tainers in the node can have extreme effects. This could be reduced
from one point of view (CPU sharing time) if strict scheduling strate-
gies (like real time scheduling) and CPU quotas are used. However
even in this case, studies[17] have shown that still degradation can
be extremely significant. For reducing the back-end stress and user
costs, dynamic batching approaches ([8],[14]) have also proven to
be very effective.
Observation 2: Too many concurrent containers in the cluster,

potentially from different customers, result in extended durations
for a given, deterministic client function with the same input. How-
ever in the FaaS model the cost depends on the function duration.
This poses the question: Why does the client have to pay more for
a worse quality of service, because the provider has more clients?
Observation 3: The concurrency overhead affecting function dura-
tionmeans that the system’s service rate (rate of finishing functions)
is affected by the number of clients in the system. This is especially
true in small scale and highly loaded systems. This needs to be
considered when considering queuing models or other techniques
that imply that the service rate is not state dependent.
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4.2.3 Best Performing Baseline Instance. For detecting the capabili-
ties of the main VM instance used, we can check the measurements
of the low rate case across the three clusters and especially the
function duration. This does not include any wait or container ini-
tialization time, thus only the pure capability of each machine on
the given problem can be observed. From this, in the 512MB case
Azure demonstrates the best performance (2477 msecs) while AWS
comes in second (2787 msecs) and the Edge HUA node third (6370
msecs). Similar results appear for the 1024 case. From an examina-
tion of the instance type descriptions, both cloud types are based
on the Intel Xeon Platinum 8000 series, although Azure on the 3rd2
and AWS on the 1st or 2nd generation3. The edge node is based on
the less powerful Intel Xeon E312xx Sandy Bridge.
Finding 3: From the measurements we can conclude that the best
performing case is in the Azure cluster while AWS comes in second
with a small difference. The main benefit in this case is the ability
to detect this difference from a macroscopic point of view. A more
detailed analysis could also include the cost of every instance in
order to observe the relative cost-benefit ratio like in the case of [12].
Also the endurance to concurrent containers would be interesting
to check, although in the specific case it was not feasible due to the
difference in the Container Pool Memory setting.

4.3 Waiting time investigation
The wait time is reported by Openwhisk and retrieved by the Load
Generator. The average in each scenario has been plotted in Fig. 8.
From this, the effect of the parameter of the Container Pool Memory
can be observed. Although the Azure VM is a larger one (32GB of
RAM and 8 cores), the usage of a low value (2GB) for this parameter
limits the available container slots. Thus higher queuing times are
observed in the high rate (60msg/min) compared to the AWS case,
even though the latter is smaller (4 cores and 16GB of RAM). The
use of 8GB of Container Pool Memory helps the AWS testbed to
serve more concurrent requests. The Azure cluster starts having
wait delay from the medium rate.

Figure 8: Average Wait Time for Function Invocation

Finding 4: Careful consideration needs to be applied when deploy-
ing a FaaS cluster. The number of setup parameters that might
affect performance is significant and can have a large effect on the
cluster.

2https://learn.microsoft.com/en-us/azure/virtual-machines/dv4-dsv4-series
3https://aws.amazon.com/ec2/instance-types/m5/

Observation 4: Interesting trade-offs can be investigated in this case
if we combine it with the concurrent containers analysis. Higher
numbers of available container slots reduce wait time but increase
execution duration due to concurrency. This is reminding of the
context switching problem in typical web servers where thread
limits need to be set. For cluster sizing, more nodes with less mem-
ory per node could help reduce wait time while not skyrocketing
interference effects. From an energy point of view, if the total re-
sponse time is the same but in one case it consists more of wait
time than execution, this would aid the specific execution to use
up less energy.

4.4 Networking aspects of cloud-edge trade-off
The network aspect, as shown in Fig. 5, includes some of the initial
latencies in the incoming Openwhisk layers like the Nginx recep-
tion. The pure network latency could be easily retrieved between
the network endpoints but it would then not depict these entry
layers. The data are included in Fig. 9

Examined latencies follow a logical result, indicating higher num-
bers for more remote geographic locations. The client as mentioned
in Fig 4 is located in Greece, hence the client to edge latency is
minimal. AWS has the largest distance (Sweden to Greece) and por-
trays the highest latency, whereas Azure (Netherlands to Greece)
is in the middle.
Finding 5: In the particular case, the network latency is rather small
(approximately 8%) compared to the function duration. So the latter
is not considered a key selection factor. However in lower function
duration cases it could represent a significant percentage of the
total delay.

Figure 9: Average Estimated Network Latency from subtract-
ing duration and wait time from total user side delay

4.5 Total User Side Delay
The total user side delay (Fig. 10) is measured as the response times
of the function invocations from the client generator. As such it
includes all intermediate times. From that it can be observed that
for the middle memory scenario, the 4 available container slots
(2GB Container Memory/512MB function memory=4 slots) in the
Azure testbed are sufficient in order to keep wait time relatively
short, even in the high rate case. Thus the benefit of the other
factors (reduced latency and execution time) prevails. In the high
function memory scenario, the slots are half due to the doubling of
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the function memory (1GB), and now the wait time is considerable
in the medium and high rate scenarios (as was evident from Fig. 8
as well). Thus in this case the execution on AWS is better.

Figure 10: Average Total User Side Response Time

Observation 5: Knowing the performance of each cluster across
different scenarios and mapping this to the total response time can
enable a more dynamic application operation through e.g. a routing
decision maker, forwarding requests to the 3 locations depending
on the current conditions of execution or based on functions with
different priorities.

5 CONCLUSIONS
As a conclusion, the behaviour of the examined function changes
significantly based on different cluster characteristics and incoming
traffic. The analysis led to quantified findings and evaluation of
each setup.

The process was able to accurately detect cluster characteristics
macroscopically. Best performing nodes, immediate availability in
high rate scenarios or interference resulting to deviant QoS can be
highlighted. Thus it can aid in cases where no information on the
internals of a cluster is available. Furthermore, the observations
and findings can aid teams provisioning private FaaS clusters as
to how to configure the resources needed for such a cluster. As an
example, larger number of nodes with smaller used memory per
node can achieve the same available function execution slots while
minimizing concurrency effects.

For the future, extensionsmay include amore accurate prediction
of the concurrent containers effect and how this changes withmixed
function workloads, especially different types and sizes of E-health
functions as well as more nodes per cluster. The inclusion of cost
in the performance statistics can lead to scores per cluster type.
Finally, the inclusion of energy consumption can further optimize
the runtime operation, trading larger execution durations (due
to concurrency effects) for idle wait time in high multitenancy
scenarios, through the regulation of the available container slots.
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