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ABSTRACT

The microservice architecture is a popular software engineering ap-

proach for building flexible, large-scale online services. Serverless

functions, or function as a service (FaaS), provide a simple program-

ming model of stateless functions which are a natural substrate for

implementing the stateless RPC handlers of microservices, as an al-

ternative to containerized RPC servers. However, current serverless

platforms have millisecond-scale runtime overheads, making them

unable to meet the strict sub-millisecond latency targets required

by existing interactive microservices.

We present Nightcore, a serverless function runtime with mi-

crosecond-scale overheads that provides container-based isolation

between functions. Nightcore’s design carefully considers various

factors having microsecond-scale overheads, including scheduling

of function requests, communication primitives, threading models

for I/O, and concurrent function executions. Nightcore currently

supports serverless functions written in C/C++, Go, Node.js, and

Python. Our evaluation shows that when running latency-sensitive

interactive microservices, Nightcore achieves 1.36×ś2.93× higher

throughput and up to 69% reduction in tail latency.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; • Soft-

ware and its engineering→ Cloud computing; n-tier archi-

tectures.
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1 INTRODUCTION

The microservice architecture is a popular software engineering

approach for building large-scale online services. It has been widely

adopted by large companies such as Amazon, Netflix, LinkedIn,

Uber, and Airbnb [1, 4, 5, 42, 47]. The microservice architecture

enables a large system to evolve more rapidly because each mi-

croservice is developed, tested, and deployed independently [36, 49].

Microservices communicate with each other via pre-defined APIs,

mostly using remote procedure calls (RPC) [70]. Hence, the domi-

nant design pattern for microservices is that each microservice is

an RPC server and they are deployed on top of a container orches-

tration platform such as Kubernetes [29, 54, 70].

Serverless cloud computing enables a new way of building mi-

croservice-based applications [10, 18, 44, 52], having the benefit of

greatly reduced operational complexity (ğ2). Serverless functions, or

function as a service (FaaS), provide a simple programming model

of stateless functions. These functions provide a natural substrate

for implementing stateless RPC handlers in microservices, as an

alternative to containerized RPC servers. However, readily available

FaaS systems have invocation latency overheads ranging from a few

to tens of milliseconds [14, 55, 84] (see Table 1), making them a poor

choice for latency-sensitive interactive microservices, where RPC

handlers only run for hundreds of microseconds to a few millisec-

onds [70, 83, 100, 101] (see Figure 1). The microservice architecture

also implies a high invocation rate for FaaS systems, creating a per-

formance challenge. Taking Figure 1 as an example, one request that

uploads a new social media post results in 15 stateless RPCs (blue

boxes in the figure). Our experiments on this workload show that

100K RPCs per second is a realistic performance goal, achievable

under non-serverless deployment using five 8-vCPU RPC server

VMs. For a FaaS system to efficiently support interactive microser-

vices, it should achieve at least two performance goals which are

not accomplished by existing FaaS systems: (1) invocation latency

overheads are well within 100𝜇s; (2) the invocation rate must scale

to 100K/s with a low CPU usage.

Some previous studies [62, 98] reduced FaaS runtime overheads

to microsecond-scale by leveraging software-based fault isolation

(SFI), which weakens isolation guarantees between different func-

tions. We prefer the stronger isolation provided by containers be-

cause that is the standard set by containerized RPC servers and

provided by popular FaaS systems such as Apache OpenWhisk [50]

and OpenFaaS [37]. But achieving our performance goals while

providing the isolation of containers is a technical challenge.

We present Nightcore, a serverless function runtime designed

and engineered to combine high performance with container-based

isolation. Anymicrosecond-or-greater-scale performance overheads
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Table 1: Invocation latencies of a warm nop function.

FaaS systems 50th 99th 99.9th

AWS Lambda 10.4 ms 25.8 ms 59.9 ms

OpenFaaS [37] 1.09 ms 3.66 ms 5.54 ms

Nightcore (external) 285 𝜇s 536 𝜇s 855 𝜇s

Nightcore (internal) 39 𝜇s 107 𝜇s 154 𝜇s

can prevent Nightcore from reaching its performance goal, moti-

vating a łhunt for the killer microsecondsž [60] in the regime of

FaaS systems.

Existing FaaS systems like OpenFaaS [37] and Apache Open-

Whisk [50] share a generic high-level design: all function requests

are received by a frontend (mostly an API gateway), and then for-

warded to independent backends where function code executes. The

frontend and backends mostly execute on separate servers for fault

tolerance, which requires invocation latencies that include at least

one network round trip. Although datacenter networking perfor-

mance is improving, round-trip times (RTTs) between two VMs in

the same AWS region range from 101𝜇s to 237𝜇s [25]. Nightcore

is motivated by noticing the prevalence of internal function calls

made during function execution (see Figure 1). An internal function

call is one that is generated by the execution of a microservice, not

generated by a client (in which case it would be an external function

call, received by the gateway). What we call internal function calls

have been called łchained function callsž in previous work [98].

Nightcore schedules internal function calls on the same backend

server that made the call, eliminating a trip to through the gateway

and lowering latency (ğ 3.2).

Nightcore’s support for internal function calls makes most com-

munication local, which means its inter-process communications

(IPC) must be efficient. Popular, feature-rich RPC libraries like gRPC

work for IPC (over Unix sockets), but gRPC’s protocol adds over-

heads of ∼10𝜇s [60], motivating Nightcore to design its own mes-

sage channels for IPC (ğ 3.1). Nightcore’s message channels are

built on top of OS pipes, and transmit fixed-size 1KB messages, be-

cause previous studies [83, 93] show that 1KB is sufficient for most

microservice RPCs. Our measurements show Nightcore’s message

channels deliver messages in 3.4𝜇s, while gRPC over Unix sockets

takes 13𝜇s for sending 1KB RPC payloads.

Previous work has shown microsecond-scale latencies in Linux’s

thread scheduler [60, 92, 100], leading dataplane OSes [61, 77, 87, 91,

92, 94] to build their own schedulers for lower latency. Nightcore

relies on Linux’s scheduler, because building an efficient, time-

sharing scheduler for microsecond-scale tasks is an ongoing re-

search topic [63, 77, 84, 91, 96]. To support an invocation rate

of ≥100K/s, Nightcore’s engine (ğ 4.1) uses event-driven concur-

rency [23, 105], allowing it to handle many concurrent I/O events

with a small number of OS threads. Our measurements show that 4

OS threads can handle an invocation rate of 100K/s. Furthermore,

I/O threads in Nightcore’s engine can wake function worker threads

(where function code is executed) via message channels, which en-

sures the engine’s dispatch suffers only a single wake-up delay

from Linux’s scheduler.

Existing FaaS systems do not provide concurrency management

to applications. However, stage-based microservices create internal
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Figure 1: RPC graph of uploading new post in a microservice-

based SocialNetwork application [70]. This graph omits state-

ful services for data caching and data storage.

load variations even under a stable external request rate [73, 105].

Previous studies [38, 73, 104, 105] indicate overuse of concurrency

for bursty loads can lead to worse overall performance. Night-

core, unlike existing FaaS systems, actively manages concurrency

providing dynamically computed targets for concurrent function

executions that adjust with input load (ğ 3.3). Nightcore’s managed

concurrency flattens CPU utilization (see Figure 4) such that overall

performance and efficiency are improved, as well as being robust

under varying request rates (ğ 5.2).

We evaluate the Nightcore prototype on four interactive mi-

croservices, each with a custom workload. Three are from Death-

StarBench [70] and one is from Google Cloud [29]. These workloads

are originally implemented in RPC servers, and we port them to

Nightcore, as well as OpenFaaS [37] for comparison. The evalu-

ation shows that only by the carefully finding and eliminating

microsecond-scale latencies can Nightcore use serverless functions

to efficiently implement latency-sensitive microservices.

This paper makes the following contributions.

• Nightcore is a FaaS runtime optimized for microsecond-

scale microservices. It achieves invocation latency overheads

under 100𝜇s and efficiently supports invocation rates of

100K/s with low CPU usage. Nightcore is publicly available

at GitHub ut-osa/nightcore.

• Nightcore’s design uses diverse techniques to eliminate mi-

crosecond-scale overheads, including a fast path for internal

function calls, low-latency message channels for IPC, effi-

cient threading for I/O, and function executions with dynam-

ically computed concurrency hints (ğ3).

• With containerized RPC servers as the baseline, Nightcore

achieves 1.36×ś2.93× higher throughput and up to 69%

reduction in tail latency, while OpenFaaS only achieves 29%ś

38% of baseline throughput and increases tail latency by up

to 3.4× (ğ5).

2 BACKGROUND

Latency-Sensitive Interactive Microservices. Online services

must scale to high concurrency, with response times small enough

(a few tens of milliseconds) to deliver an interactive experience [58,
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66, 106]. Once built with monolithic architectures, interactive on-

line services are undergoing a shift to microservice architectures [1,

4, 5, 42, 47], where a large application is built by connecting loosely

coupled, single-purpose microservices. On the one hand, microser-

vice architectures provide software engineering benefits such as

modularity and agility as the scale and complexity of the application

grows [36, 49]. On the other hand, staged designs for online services

inherently provide better scalability and reliability, as shown in

pioneering works like SEDA [105]. However, while the interactive

nature of online services implies an end-to-end service-level objec-

tives (SLO) of a few tens of milliseconds, individual microservices

face more strict latency SLOs ś at the sub-millisecond-scale for leaf

microservices [100, 110].

Microservice architectures are more complex to operate com-

pared to monolithic architectures [22, 35, 36], and the complexity

grows with the number of microservices. Although microservices

are designed to be loosely coupled, their failures are usually very de-

pendent. For example, one overloaded service in the system can eas-

ily trigger failures of other services, eventually causing cascading

failures [3]. Overload control for microservices is difficult because

microservices call each other on data-dependent execution paths,

creating dynamics that cannot be predicted or controlled from the

runtime [38, 48, 88, 111]. Microservices are often comprised of ser-

vices written in different programming languages and frameworks,

further complicating their operational problems. By leveraging fully

managed cloud services (e.g., Amazon’s DynamoDB [6], Elastic-

Cache [7], S3 [19], Fargate [12], and Lambda [15]), responsibilities

for scalability and availability (as well as operational complexity)

are mostly shifted to cloud providers, motivating serverless microser-

vices [20, 33, 41, 43ś45, 52, 53].

Serverless Microservices. Simplifying the development and man-

agement of online services is the largest benefit of buildingmicroser-

vices on serverless infrastructure. For example, scaling the service

is automatically handled by the serverless runtime, deploying a new

version of code is a push-button operation, and monitoring is inte-

grated with the platform (e.g., CloudWatch [2] on AWS). Amazon

promotes serverless microservices with the slogan łno server is eas-

ier to manage than no serverž [44]. However, current FaaS systems

have high runtime overheads (Table 1) that cannot always meet

the strict latency requirement imposed by interactive microservices.

Nightcore fills this performance gap.

Nightcore focuses on mid-tier services implementing stateless

business logic in microservice-based online applications. These

mid-tier microservices bridge the user-facing frontend and the data

storage, and fit naturally in the programming model of serverless

functions. Online data intensive (OLDI) microservices [100] repre-

sent another category of microservices, where the mid-tier service

fans out requests to leaf microservices for parallel data processing.

Microservices in OLDI applications are mostly stateful and memory

intensive, and therefore are not a good fit for serverless functions.

We leave serverless support of OLDI microservices as future work.

The programming model of serverless functions expects func-

tion invocations to be short-lived, which seems to contradict the

assumption of service-oriented architectures which expect services

to be long-running. However, FaaS systems like AWS Lambda al-

lows clients to maintain long-lived connections to their API gate-

ways [8], making a serverless function łservice-likež. Moreover,

because AWS Lambda re-uses execution contexts for multiple func-

tion invocations [13], users’ code in serverless functions can also

cache reusable resources (e.g., database connections) between invo-

cations for better performance [17].

Optimizing FaaS Runtime Overheads. Reducing start-up laten-

cies, especially cold-start latencies, is amajor research focus for FaaS

runtime overheads [57, 64, 67, 89, 90, 98]. Nightcore assumes suffi-

cient resources have been provisioned and relevant function con-

tainers are in warm states which can be achieved on AWS Lambda

by using provisioned concurrency (AWS Lambda strongly recom-

mends provisioned concurrency for latency-critical functions [40]).

As techniques for optimizing cold-start latencies [89, 90] become

mainstream, they can be applied to Nightcore.

Invocation latency overheads of FaaS systems are largely over-

looked, as recent studies on serverless computing focus on data

intensive workloads such as big data analysis [75, 95], video analyt-

ics [59, 69], code compilation [68], and machine learning [65, 98],

where function execution times range from hundreds of millisec-

onds to a few seconds. However, a few studies [62, 84] point out that

the millisecond-scale invocation overheads of current FaaS systems

make them a poor substrate for microservices with microsecond-

scale latency targets. For serverless computing to be successful in

new problem domains [71, 76, 84], it must address microsecond-

scale overheads.

3 DESIGN

Nightcore is designed to run serverless functions with sub-millisec-

ond-scale execution times, and to efficiently process internal func-

tion calls, which are generated during the execution of a serverless

function (not by an external client). Nightcore exposes a serverless

function interface that is similar to AWS Lambda: users provide

stateless function handlers written in supported programming lan-

guages. The only addition to this simple interface is that Nightcore’s

runtime library provides APIs for fast internal function invocations.

3.1 System Architecture

Figure 2 depicts Nightcore’s design which mirrors the design of

other FaaS systems starting with the separation of frontend and

backend. Nightcore’s frontend is an API gateway for serving ex-

ternal function requests and other management requests (e.g., to

register new functions), while the backend consists of a number

of independent worker servers. This separation eases availability

and scalability of Nightcore, by making the frontend API gateway

fault tolerant and horizontally scaling backend worker servers. Each

worker server runs a Nightcore engine process and function con-

tainers, where each function container has one registered serverless

function, and each function has only one container on each worker

server. Nightcore’s engine directly manages function containers

and communicates with worker threads within containers.

Internal Function Calls. Nightcore optimizes internal function

calls locally on the same worker server, without going through the

API gateway. Figure 2 depicts this fast path in Nightcore’s runtime

154



ASPLOS ’21, April 19ś23, 2021, Virtual, USA Zhipeng Jia and Emmett Witchel

 
  

 Worker server

Gateway 䙿

Nightcore’s Engine 䚀

Fn1:

Fn2:

FnN: Fn container 䙯
(Fn1)

……

Launcher 
➒

Fn worker 䙰

Nightcore’s 
runtime library 䙲

fast path for
internal function call

Fn code    䙱

䙿 Gateway ● Accept external function requests
● Load balance requests to worker servers

䚀 Engine

● The main Nightcore process on each worker server, which 
communicates with Gateway 䙿, launchers 䙲, and worker 
threads inside Fn workers 䙰

● Maintain per-function dispatching queues 䙭 and per-request 
tracing logs 䙮

䙭 Dispatching
    queues

● Function requests queued here
● Dispatch function requests to worker threads in Fn worker 䙰

䙮 Tracing logs ● Track life-cycle of all function invocations, by recording 
receive, dispatch, and completion timestamps

䙯 Fn container
● Execution environment for individual functions
● Consists of Fn worker 䙰 and Launcher 䙲 processes

䙰 Fn worker
    process

● Multiple worker threads execute user-provided function code 
䙱, and call a runtime library 䙲 for fast, internal function call

● Implementation tailored to each supported programming 
language

䙱 User-provided
     Fn code

● Stateless function code written in supported programming 
language (C/C++, Go, Python, or Node.js)

● Executed on worker threads within Fn worker process 䙰

䙲 Runtime
     library

● Fast path for internal function call: talk directly with Engine to 
enqueue the function call 䙭, entirely bypassing Gateway 䙿

➒ Launcher ● Launch new Fn worker 䙰 or worker threads

Per-Fn dispatching queues 䙭

Per-request tracing logs 䙮

Req1

Req2

ReqN

……

Fn container 䙯
(FnN)

Worker threads 

Launcher 
➒

Fn worker 䙰

Nightcore’s 
runtime library 䙲

Fn code    䙱

Worker threads 

Docker 
container Process

VM or Bare 
metal machine  

…………

User-provided 
function code

Figure 2: Architecture of Nightcore (ğ 3.1).

library which executes inside a function container. By optimizing

the locality of dependent function calls, Nightcore brings perfor-

mance close to a monolithic design. At the same time, different

microservices remain logically independent and they execute on

different worker servers, ensuring there is no single point of failure.

Moreover, Nightcore preserves the engineering and deployment

benefits of microservices such as diverse programming languages

and software stacks.

Nightcore’s performance optimization for internal function calls

assumes that an individual worker server is capable of runningmost

function containers from a single microservice-based application 1.

We believe this is justified because we measure small working sets

for stateless microservices. For example, when running SocialNet-

work [70] at its saturation throughput, the 11 stateless microservice

containers consume only 432 MB of memory, while the host VM is

provisioned with 16 GB. As current datacenter servers have grow-

ing numbers of CPUs and increasing memory sizes (e.g., AWS EC2

VMs have up to 96 vCPUs and 192 GB of memory), a single server is

able to support the execution of thousands of containers [98, 109].

When it is not possible to schedule function containers on the same

worker server, Nightcore falls back to scheduling internal function

calls on different worker servers through the gateway.

Gateway. Nightcore’s gateway (Figure 2 1○) performs load bal-

ancing across worker servers for incoming function requests and

forwards requests to Nightcore’s engine on worker servers. The

gateway also uses external storage (e.g., Amazon’s S3) for saving

function metadata and it periodically monitors resource utilizations

1Nightcore also needs to know which set of functions form a single application. In
practice, this knowledge comes directly from the developer, e.g., Azure Functions allow
developers to organize related functions as a single function app [34].

on all worker servers, to know when it should increase capacity by

launching new servers.

Engine. The engine process (Figure 2 2○) is the most critical com-

ponent of Nightcore for achieving microsecond-scale invocation

latencies, because it invokes functions on each worker server. Night-

core’ engine responds to function requests from both the gateway

and from the runtime library within function containers. It creates

low-latency message channels to communicate with function work-

ers and launchers inside function containers (ğ 4.1). Nightcore’s

engine is event driven (Figure 5) allowing it to manage hundreds of

message channels using a small number of OS threads. Nightcore’s

engine maintains two important data structures: (1) Per-function

dispatching queues for dispatching function requests to function

worker threads (Figure 2 3○); (2) Per-request tracing logs for tracking

the life cycle of all inflight function invocations, used for computing

the proper concurrency level for function execution (Figure 2 4○).

Function Containers. Function containers (Figure 2 5○) provide

isolated environments for executing user-provided function code.

Inside the function container, there is a launcher process, and one

or more worker processes depending on the programming language

implementation (see ğ 4.2 for details).Worker threads withinworker

processes receive function requests from Nightcore’s engine, and

execute user-provided function code. Worker processes also con-

tain a Nightcore runtime library, exposing APIs for user-provided

function code. The runtime library includes APIs for fast internal

function calls without going through the gateway. Nightcore’s in-

ternal function calls directly contact the dispatcher to enqueue the

calls that are executed on the same worker server without having

to involve the gateway.

Nightcore has different implementations of worker processes

for each supported programming language. The notion of łworker
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threadsž is particularly malleable because different programming

languages have different threading models. Futhermore, Night-

core’s engine does not distinguish worker threads from worker

processes, as it maintains communication channels with each in-

dividual worker thread. For clarity of exposition we assume the

simplest case in this Section (which holds for the C/C++ implemen-

tation), where łworker threadsž are OS threads (details for other

languages in ğ 4.2).

Isolation in Nightcore. Nightcore provides container-level isola-

tion between different functions, but does not guarantee isolation

between different invocations of the same function. We believe

this is a reasonable trade-off for microservices, as creating a clean

isolated execution environment within tens of microseconds is too

challenging for current systems. When using RPC servers to im-

plement microservices, different RPC calls of the same service can

be concurrently processed within the same process, so Nightcore’s

isolation guarantee is as strong as containerized RPC servers.

Previous FaaS systems all have different trade-offs between iso-

lation and performance. OpenFaaS [51] allows concurrent invo-

cations within the same function worker process, which is the

same as Nightcore. AWS Lambda [13] does not allow concurrent

invocations in the same container/MicroVM but allows execution

environments to be re-used by subsequent invocations. SAND [57]

has two levels of isolationśdifferent applications are isolated by

containers but concurrent invocations within the same application

are only isolated by processes. Faasm [98] leverages the software-

based fault isolation provided by WebAssembly, allowing a new

execution environment to be created within hundreds of microsec-

onds, but it relies on language-level isolation which is weaker than

container-based isolation.

Message Channels. Nightcore’s message channels are designed

for low-latency message passing between its engine and other

components, which carry fixed-size 1KB messages. The first 64

bytes of a message is the header which contains the message type

and other metadata, while the remaining 960 bytes are message

payload. There are three types of messages relevant to function

invocations:

(1) Dispatch, used by engine for dispatching function requests to

worker threads ( 4○ in Figure 3).

(2) Completion, used by function worker threads for sending out-

puts back to the engine ( 6○ in Figure 3), as well as by the engine

for sending outputs of internal function calls ( 7○ in Figure 3).

(3) Invoke, used by Nightcore’s runtime library for initiating inter-

nal function calls ( 2○ in Figure 3).

When payload buffers are not large enough for function inputs

or outputs, Nightcore creates extra shared memory buffers for

exchanging data. In our experiments, these overflow buffers are

needed for less than 1% of the messages for most workloads, though

HipsterShop needs them for 9.7% of messages. When overflow

buffers are required, they fit within 5KB 99.9% of the time. Previous

work [83] has shown that 1KB is sufficient for more than 97% of

microservice RPCs.

Nightcore’s Engine

.. .. .. yFnY:

Dispatching queues

Tracing logs

Reqx …….

Nightcore’s 
runtime library

FnX code    

Worker of FnX

Nightcore’s 
runtime library

FnY code    

Worker of FnY

Invoke FnY 

Gateway Invoke FnX

Worker server

.. .. .. xFnX:

Reqy     

FnX

Figure 3: Diagram of an internal function call (ğ 3.2).

3.2 Processing Function Requests

Figure 3 shows an example with both an external and internal

function call. Suppose code of Fn𝑥 includes an invocation of Fn𝑦 .

In this case, Fn𝑦 is invoked via Nightcore’s runtime API ( 1○). Then,

Nightcore’s runtime library generates a unique ID (denoted by 𝑟𝑒𝑞𝑦 )

for the new invocation, and sends an internal function call request to

Nightcore’s engine ( 2○). On receiving the request, the engine writes

𝑟𝑒𝑞𝑦 ’s receive timestamp (also 2○). Next, the engine places 𝑟𝑒𝑞𝑦
in the dispatching queue of Fn𝑦 3○. Once there is an idle worker

thread for Fn𝑦 and the concurrency level of Fn𝑦 allows, the engine

will dispatch 𝑟𝑒𝑞𝑦 to it, and records 𝑟𝑒𝑞𝑦 ’s dispatch timestamp in

its tracing log ( 4○). The selected worker thread executesFn𝑦 ’s code

( 5○) and sends the output back to the engine ( 6○). On receiving the

output, the engine records request 𝑟𝑒𝑞𝑦 ’s completion timestamp

(also 6○), and directs the function output back to Fn𝑥 ’s worker ( 7○).

Finally, execution flow returns back to user-provided Fn𝑥 8○.

3.3 Managing Concurrency for Function
Executions (𝜏𝑘 )

Nightcore maintains a pool of worker threads in function contain-

ers for concurrently executing functions, but deciding the size of

thread pools can be a hard problem. One obvious approach is to

always create new worker threads when needed, thereby maxi-

mizing the concurrency for function executions. However, this

approach is problematic for microservice-based applications, where

one function often calls many others. Maximizing the concurrency

of function invocations with high fanout can have a domino effect

that overloads a server. The problem is compounded when function

execution time is short. In such cases, overload happens too quickly

for a runtime system to notice it and respond appropriately.

To address the problem, Nightcore adaptively manages the num-

ber of concurrent function executions, to achieve the highest useful

concurrency level while preventing instantaneous server overload.

Following Little’s law, the ideal concurrency can be estimated as

the product of the average request rate and the average processing

time. For a registered function Fn𝑘 , Nightcore’s engine maintains

exponential moving averages of its invocation rate (denoted by 𝜆𝑘 )
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Figure 4: CPU utilization timelines of OpenFaaS, and Night-

core (w/o and with managed concurrency), running Social-

Network microservices [70] at a fixed rate of 500 QPS for

OpenFaaS and 1200 QPS for Nightcore.

and function execution time (denoted by 𝑡𝑘 ). Both are computed

from request tracing logs. Nightcore uses their product 𝜆𝑘 · 𝑡𝑘 as

the concurrency hint (denoted by 𝜏𝑘 ) for function Fn𝑘 .

When receiving an invocation request of Fn𝑘 , the engine will

only dispatch the request if there are fewer than 𝜏𝑘 concurrent

executions of Fn𝑘 . Otherwise, the request will be queued, waiting

for other function executions to finish. In other words, the engine

ensures the maximum concurrency of Fn𝑘 is 𝜏𝑘 at any moment.

Note that Nightcore’s approach is adaptive because 𝜏𝑘 is computed

from two exponential moving averages (𝜆𝑘 and 𝑡𝑘 ), that change

over time as new function requests are received and executed. To

realize the desired concurrency level, Nightcore must also maintain

a worker thread pool with at least 𝜏𝑘 threads. However, the dynamic

nature of 𝜏𝑘 makes it change rapidly (see Figure 6), and frequent

creation and termination of threads is not performant. To modulate

the dynamic values of 𝜏𝑘 , Nightcore allows more than 𝜏𝑘 threads

to exist in the pool, but only uses 𝜏𝑘 of them. It terminates extra

threads when there are more than 2𝜏𝑘 threads.

Nightcore’s managed concurrency is fully automatic, without

any knowledge or hints from users. The concurrency hint (𝜏𝑘 )

changes frequently at the scale of microseconds, to adapt to load

variation from microsecond-scale microservices (ğ 5.2) . Figure 4

demonstrates the importance of managing concurrency levels in-

stead of maximizing them. Even when running at a fixed input rate,

CPU utilization varies quite a bit for both OpenFaaS and Nightcore

when the runtime maximizes the concurrency. On the other hand,

managing concurrency with hints has a dramatic łflatten-the-curvež

benefit for CPU utilization.

4 IMPLEMENTATION

Nightcore’s API gateway and engine consists of 8,874 lines of C++.

Function workers are supported in C/C++, Go, Node.js, and Python,

Gateway

Engine’s
I/O thread #1

Persistent TCP connection
Connected to I/O thread
with message channels

FnYFnX

FnZFnY

FnZFnX

FnZFnX

FnXFnZ

FnYFnX

FnX Function worker thread

FnX Launcher process

Engine’s
I/O thread #2

Engine’s
I/O thread #3

Figure 5: Event-driven I/O threads in Nightcore’s engine

(ğ 4.1).

requiring 1,588 lines of C++, 893 lines of Go, 57 lines of JavaScript,

and 137 lines of Python.

Nightcore’s engine (its most performance-critical component) is

implemented in C++. Garbage collection can have a significant

impact for latency-sensitive services [107] and short-lived rou-

tines [27, 28]. Both OpenFaaS [37] and Apache OpenWhisk [50]

are implemented with garbage-collected languages (Go and Scala,

respectively), but Nightcore eschews garbage collection in keeping

with its theme of addressing microsecond-scale latencies.

4.1 Nightcore’s Engine

Figure 5 shows the event-driven design of Nightcore’s engine as

it responds to I/O events from the gateway and message channels.

Each I/O thread maintains a fixed number of persistent TCP connec-

tions to the gateway for receiving function requests and sending

back responses, while message channels are assigned to I/O threads

with a round-robin policy. Individual I/O threads can only read from

and write to their own TCP connections and message channels.

Shared data structures including dispatching queues and tracing

logs are protected by mutexes, as they can be accessed by different

I/O threads.

Event-Driven IOThreads. Nightcore’s engine adopts libuv [32],

which is built on top of the epoll system call, to implement its

event-driven design. libuv provides APIs for watching events on

file descriptors, and registering handlers for those events. Each IO

thread of the engine runs a libuv event loop, which polls for file

descriptor events and executes registered handlers.

Message Channels. Nightcore’s messages channels are imple-

mented with two Linux pipes in opposite directions to form a full-

duplex connection. Meanwhile, shared memory buffers are used

when inline payload buffers are not large enough for function in-

puts or outputs (ğ 3.1). Although shared memory allows fast IPC at

memory speed, it lacks an efficient mechanism to notify the con-

sumer thread when data is available. Nightcore’s use of pipes and

shared memory gets the best of both worlds. It allows the consumer

to be eventually notified through a blocking read on the pipe, and

at the same time, it provides the low latency and high throughput

of shared memory when transferring large message payloads.

As the engine and function workers are isolated in different con-

tainers, Nightcore mounts a shared tmpfs directory between their
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containers, to aid the setup of pipes and shared memory buffers.

Nightcore creates named pipes in the shared tmpfs, allowing func-

tion workers to connect. Shared memory buffers are implemented

by creating files in the shared tmpfs, which are mmaped with the

MAP_SHARED flag by both the engine and function workers. Docker

by itself supports sharing IPC namespaces between containers [31],

but the setup is difficult for Docker’s cluster mode. Nightcore’s

approach is functionally identical to IPC namespaces, as Linux’s

System V shared memory is internally implemented by tmpfs [46].

Communications between Function Worker Threads. Indi-

vidual worker threads within function containers connect to Night-

core’s engine with a message channel for receiving new function

requests and sending responses ( 4○ and 6○ in Figure 3). A worker

thread can be either busy (executing function code) or idle. During

the execution of function code, the worker thread’s message chan-

nel is also used by Nightcore’s runtime library for internal function

calls ( 2○ and 7○ in Figure 3). When a worker thread finishes execut-

ing function code, it sends a response message with the function

output to the engine and enters the idle state. An idle worker thread

is put to sleep by the operating system, but the engine can wake

it by writing a function request message to its message channel.

The engine tracks the busy/idle state of each worker so there is no

queuing at worker threads, the engine only dispatches requests to

idle workers.

Mailbox. The design of Nightcore’s engine only allows individual

I/O threads to write data to message channels assigned to it (shown

as violet arrows in Figure 5). In certain cases, however, an I/O

thread needs to communicate with a thread that does not share a

message channel. Nightcore routes these requests using per-thread

mailboxes. When an I/O thread drops a message in the mailbox of

another thread, uv_async_send (using eventfd [24] internally)

is called to notify the event loop of the owner thread.

Computing Concurrency Hints (𝜏𝑘 ). To properly regulate the

amount of concurrent function executions, Nightcore’s enginemain-

tains two exponential moving averages 𝜆𝑘 (invocation rate) and

𝑡𝑘 (processing time) for each function Fn𝑘 (ğ 3.3). Samples of in-

vocation rates are computed as 1/(interval between consecutive

Fn𝑘 invocations), while processing times are computed as intervals

between dispatch and completion timestamps, excluding queue-

ing delays (the interval between receive and dispatch timestamps)

from sub-invocations. Nightcore uses a coefficient 𝛼 = 10−3 for

computing exponential moving averages.

4.2 Function Workers

Nightcore executes user-provided function code in its function

worker processes (ğ 3.1). As different programming languages have

different abstractions for threading and I/O, Nightcore has different

function worker implementations for them.

Nightcore’s implementation of function workers also includes a

runtime library for fast internal function calls. Nightcore’s runtime

library exposes a simple API output := nc_fn_call(fn_name,

input) to user-provided function code for internal function calls.

Furthermore, Nightcore’s runtime library provides Apache Thrift [9]

and gRPC [30] wrappers for its function call API, easing porting of

existing Thrift-based and gRPC-based microservices to Nightcore.

C/C++. Nightcore’s C/C++ function workers create OS threads for

executing user’s code, loaded as dynamically linked libraries. These

OS threads map to łworker threadsž in Nightcore’s design (ğ 3.1

and Figure 2). To simplify the implementation, each C/C++ function

worker process only runs one worker thread, and the launcher will

fork more worker processes when the engine asks for more worker

threads.

Go. In Go function workers, łworker threadsž map to goroutines,

the user-level threads provided by Go’s runtime, and the launcher

only forks one Go worker process. Users’ code are compiled to-

gether with Nightcore’s Go worker implementation, as Go’s run-

time does not support dynamic loading of arbitrary Go code 2. Go’s

runtime allows dynamically setting the maximum number of OS

threads for running goroutines (via runtime.GOMAXPROCS), and

Nightcore’s implementation sets it to ⌈worker goroutines/8⌉.

Node.js and Python. Node.js follows an event-driven design

where all I/O is asynchronouswithout depending onmulti-threading,

while Python is the same when using the asyncio [11] library for

I/O. In both cases, Nightcore implements its message channel pro-

tocol within their event loops. As there are no parallel threads
3 inside Node.js and Python function workers, launching a new

łworker threadž simplymeans creating amessage channel, while the

engine’s notion of łworker threadsž becomes event-based concur-

rency [23]. Also, nc_fn_call is an asynchronous API in Node.js

and Python workers, rather than being synchronous in C/C++ and

Go workers. For Node.js and Python functions, the launcher only

forks one worker process.

5 EVALUATION

We conduct all of our experiments on Amazon EC2 C5 instances in

the us-east-2 region, running Ubuntu 20.04 with Linux kernel

5.4.41. We enable hyperthreading, but disable transparent huge

pages.

5.1 Methodology

Microservice Workloads. Nightcore is designed to optimize mi-

croservice workloads, so we evaluate it on the four most realistic,

publicly available, interactive microservice code bases: SocialNet-

work, MovieReviewing, HotelReservation, and HipsterShop. The

first three are from DeathStarBench [70], while HipsterShop is a mi-

croservice demo from Google Cloud Platform [29]. The workloads

are summarized in Table 2.

For the SocialNetwork workload, we tested two load patterns:

(1) a pure load of ComposePost requests (shown in Figure 1) (de-

noted as łwritež); (2) a mixed load (denoted as łmixedž), that is

a combination of 30% CompostPost, 40% ReadUserTimeline, 25%

ReadHomeTimeline, and 5% FollowUser requests.

HipsterShop itself does not implement data storage, and we

modify it to use MongoDB for saving orders and Redis for shopping

carts. We also add Redis instances for caching product and ad lists.

2Go partially supports dynamic code loading via a plugin [39], but it requires the
plugin and the loader be compiled with a same version of the Go toolchain, and all
their dependency libraries have exactly the same versions.
3Node.js supports worker threads [56] for running CPU-intensive tasks, but they have
worse performance for I/O-intensive tasks.
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Table 2: Microservice workloads in evaluation (from [29, 70])

.

Ported RPC
Languages

services framework

SocialNetwork 11 Thrift [9] C++

MovieReviewing 12 Thrift C++

HotelReservation 11 gRPC [30] Go

HipsterShop 13 gRPC
Go, Node.js,

Python

Table 3: Percentage of internal function calls (ğ 5.1).

SocialNetwork Movie Hotel Hipster

write mixed Reviewing Reservation Shop

66.7% 62.3% 69.2% 79.2% 85.1%

HipsterShop includes two services written in Java and C#, which

are not languages supported by Nightcore. Thus we re-implement

their functionality in Go and Node.js.

For each benchmark workload, we port their stateless mid-tier

services to Nightcore, as well as OpenFaaS [37] for comparison.

For other stateful services (e.g., database, Redis, NGINX, etc.), we

run them on dedicated VMs with sufficiently large resources to

ensure they are not bottlenecks. For Nightcore and OpenFaaS, their

API gateways also run on a separate VM. This configuration favors

OpenFaaS because its gateway is used for both external and internal

function calls and is therefore more heavily loaded than Nightcore’s

gateway.

We use wrk2 [26] as the load generator for all workloads. In

our experiments, the target input load (queries per second (QPS))

is run for 180 seconds, where the first 30 seconds are used for

warming up the system, and 50th and 99th percentile latencies

of the next 150 seconds are reported. Following this methodology,

variances of measured latencies are well within 10% before reaching

the saturation throughput.

Internal Function Calls. One major design decision in Nightcore

is to optimize internal function calls (ğ3), so we quantify the per-

centage of internal function calls in our workloads in Table 3. The

results show that internal function calls dominate external calls,

sometimes by more than a factor of 5×.

Cold-Start Latencies. There are two components of cold-start

latencies in a FaaS system. The first arises from provisioning a func-

tion container. Our prototype of Nightcore relies on unmodified

Docker, thus does not include optimizations. However, state-of-

the-art techniques such as Catalyzer [67] achieve startup latencies

of 1ś14ms. These techniques can be applied to Nightcore as they

become mainstream. The second component of cold-start latency

is provisioning the FaaS runtime inside the container. Our measure-

ment shows that Nightcore’s function worker process takes only

0.8ms to be ready for executing user-provided function code.

Systems for Comparison. We compare Nightcore with two other

systems: (1) RPC servers running in Docker containers which are

originally used for implementing stateless microservices in the
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Figure 6: Nightcore running SocialNetwork (write) with load

variations. The upper chart shows tail latencies under chang-

ing QPS, the middle chart shows how the concurrency hint

(𝜏𝑘 ) of the postmicroservice changes with time, and the lower

chart is a timeline of CPU utilization.

evaluation workloads; (2) OpenFaaS [37], a popular open source

FaaS system, where we use the OpenFaaS watchdog [51] in HTTP

mode to implement function handlers, and Docker for running

function containers.

We also tested the SocialNetwork application on AWS Lambda.

Even when running with a light input load and with provisioned

concurrency, Lambda cannot meet our latency targets. Execut-

ing the łmixedž load pattern shows median and 99% latencies are

26.94ms and 160.77ms, while they are 2.34ms and 6.48ms for con-

tainerized RPC servers. These results are not surprising given the

measurements in Table 1.

5.2 Benchmarks

Single Worker Server. We start with evaluating Nightcore with

one worker server. All systems use one c5.2xlarge EC2 VM,

which has 8 vCPUs and 16GiB of memory. For Nightcore and Open-

FaaS, this VM is its single worker server, that executes all serverless

functions. On the worker VM, Nightcore’s engine uses two I/O

threads. For RPC servers, this VM runs all ported stateless microser-

vices, such that all inter-service RPCs are local.

Figure 7 demonstrates experimental results on all workloads. For

all workloads, results show the trend that OpenFaaS’ performance

is dominated by containerized RPC servers, while Nightcore is su-

perior to those RPC servers. OpenFaaS’ performance trails the RPC

servers because all inter-service RPCs flow through OpenFaaS’s

gateway and watchdogs, which adds significant latency and CPU

processing overheads. On the other hand, Nightcore’s performance

is much better than OpenFaaS, because Nightcore optimizes the

gateway out of most inter-service RPCs, and its event-driven engine

handles internal function calls with microsecond-scale overheads.
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(a) SocialNetwork (write) (b) SocialNetwork (mixed) (c) MovieReviewing

Throughput (queries per second) Throughput (queries per second) Throughput (queries per second)

Throughput (queries per second)

(d) HotelReservation

Throughput (queries per second)

(e) HipsterShop

Figure 7: Comparison of Nightcore with RPC servers and OpenFaaS using one VM.

Table 4: Evaluation of Nightcore’s scalability, where 𝑛 worker servers run 𝑛 times the base QPS input. For each workload, the

base QPS is selected to be close to the saturation throughput when using one server.

Base
QPS

Median latency (ms) 99% tail latency (ms)

1 server 2 server 4 server 8 server 1 server 2 server 4 server 8 server

SocialNetwork
(mixed)

2000 3.40 2.64 2.39 2.64 10.93 8.36 7.18 8.07

2300 3.37 2.65 2.43 2.61 13.95 10.34 8.20 10.63

MovieReviewing
800 7.24 7.93 7.35 8.10 9.26 11.42 10.97 16.31

850 7.24 7.54 7.57 8.57 9.31 11.18 12.24 25.01

HotelReservation
3000 3.48 3.29 3.08 4.32 18.27 15.98 14.98 18.09

3300 5.56 4.43 5.50 4.43 31.92 22.66 22.54 20.83

HipsterShop
1400 6.05 5.70 6.23 5.68 19.68 17.42 19.10 15.02

1500 7.95 7.51 8.32 7.06 25.39 23.74 23.81 20.53

Table 5: Comparison of Nightcore with other systems using 8 VMs. Median and 99% tail latencies are shown in milliseconds.

For each workload, the saturation throughput of the RPC servers is the baseline QPS (1.00x in the table) for comparison.

SocialNetwork (mixed) MovieReviewing HotelReservation HipsterShop

QPS median tail QPS median tail QPS median tail QPS median tail

RPC servers
1.00x 3.21 23.98 1.00x 14.45 25.57 1.00x 5.54 19.73 1.00x 10.68 48.13

1.17x 110.01 >1000 1.20x 30.80 >1000 1.22x 10.43 43.46 1.17x 15.61 80.89

OpenFaaS
0.29x 4.57 81.60 0.30x 10.06 113.47 0.28x 5.80 18.96 0.29x 9.29 32.13

0.33x 6.72 368.38 0.40x 13.32 >1000 0.33x 16.21 103.81 0.38x 24.93 86.59

Nightcore
1.33x 2.64 8.07 1.28x 8.10 16.31 2.67x 4.32 18.09 1.87x 5.68 15.02

1.53x 2.61 10.63 1.36x 8.57 25.01 2.93x 4.43 20.83 2.00x 7.06 20.53

Compared to RPC servers, Nightcore achieves 1.27× to 1.59×

higher throughput and up to 34% reduction in tail latencies, show-

ing that Nightcore has a lower overhead for inter-service commu-

nications than RPC servers, which we will discuss more in ğ 5.3.

We also tested Nightcore under variable load to demonstrate

how its ability to manage concurrency (ğ 3.3) adapts to changing

loads. Figure 6 shows the results with a corresponding timeline of

CPU utilization, indicating that Nightcore can promptly change
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Figure 8: Comparison ofNightcorewithRPC servers, running

SocialNetwork (write) using one VM. Designs of Nightcore

are progressively added to show their effectiveness (ğ 5.3).

its concurrency level under increasing loads. When the input load

reaches its maximum (of 1800 QPS), the tail latency also reaches its

maximum (of 10.07 ms).

Multiple Worker Servers. We also evaluate Nightcore in a dis-

tributed setting, wheremultiple VMs are used as Nightcore’s worker

servers. We use c5.xlarge EC2 instances for worker VMs, which

have 4 vCPUs and 8GiB of memory.

Table 4 evaluates Nightcore’s scalability, where up to 8 VMs are

used for worker servers and the input load is scaled with the number

of VMs. The similar (or decreasing) median and tail latencies show

that Nightcore’s scalability is nearly linearśe.g., increasing the

input load 8× and providing 8 servers does not change median and

tail latencies significantly. The only exception is MovieReviewing,

where the tail latency of running on 8 server is 2.7× worse than 1

server. However, we observe that scaling this workload with RPC

servers also suffers increased tail latencies.

Next we compare RPC servers and OpenFaaS to Nightcore with 8

worker VMs. For RPC servers, 8 VMs run stateless services, where

each VM runs one replica of each service and load balancing is

transparently supported by RPC client libraries. For OpenFaaS and

Nightcore, 8 VMs run their function handlers. Table 5 summarizes

the experimental results, demonstrating that Nightcore achieves

1.36× to 2.93× higher throughput and up to 69% reduction in tail

latency than an RPC server (while OpenFaaS consistently under-

performs an RPC server). The advantage of Nightcore over RPC

servers is more significant in the distributed setting, because there

are inter-host RPCs in the case of replicated RPC servers, while

there is no network traffic among Nightcore’s worker VMs.

5.3 Analysis

Evaluating Nightcore’s Design. We quantify the value of Night-

core’s design decisions in Figure 8. The figure shows the perfor-

mance effect of adding managed concurrency for function exe-

cutions (ğ 3.3), a fast path for internal function call (ğ 3.2), and

Table 6: Breakdowns of stacktrace samples, when running

SocialNetwork (write) at 1200 QPS on one VM. Unix sockets

are used by Thrift RPC servers for inter-thread synchroniza-

tions.

RPC servers Nightcore

do_idle 41.6% 60.4%

user space 18.3% 14.8%

irq / softirq

ś netrx 7.1% 6.8%

ś others 2.0% 1.6%

syscall

ś tcp socket 20.7% 7.6%

ś poll / epoll 2.5% 1.1%

ś futex 2.2% 0.1%

ś pipe 0% 3.7%

ś unix socket 1.1% 0%

ś others 3.1% 3.1%

uncategorized 1.4% 0.8%

low-latency message channels as IPC primitives (ğ 3.1). The Night-

core baseline 1○ maximizes concurrent function executions (i.e.,

concurrency management is disabled), all internal function calls

go through the gateway, and Nightcore’s message channels are

replaced with TCP sockets. This baseline Nightcore design can

achieve only one third the throughput of RPC servers while meet-

ing tail latency targets ( 1○). When we add managed concurrency

( 2○), Nightcore’s performance comes close to RPC servers, as tail

latencies are significantly improved. Optimizing the gateway out

of the processing path for internal function calls ( 3○) brings Night-

core’s performance above the RPC servers. Finally, Nightcore’s

low-latency message channels boost performance further ( 4○), re-

sulting in 1.33× higher throughput than RPC servers.

Communication Overheads. Microservice-based applications

are known to have a high communication-to-computation ratio [70,

83, 101]. When using RPC servers to implement microservices and

running them in containers, inter-service RPCs pass through net-

work sockets virtualized by the container runtime, via overlay

networks [113]. Container overlay networks allow a set of related

containers running on multiple host machines to use independent

IP addresses, without knowing if other containers reside on the

same host. While this approach works for the general case, even

containers on the same host pay the processing costs of the full

network stack.

On the other hand, Nightcore keeps most inter-service calls

on the same host and uses Linux pipes for intra-host communica-

tions. Eliminating most inter-host networking explains Nightcore’s

performance advantage over containerized RPC servers in the dis-

tributed setting. But Nightcore also has a noticeable advantage over

containerized RPC servers for intra-host communications, shown in

Figure 7. To further understand this advantage, we collect stacktrace

samples for both Nightcore and containerized RPC servers running

with a single VM, and Table 6 summarizes the results. For RPC

servers, TCP-related system calls and netrx softirq consume 47.6%
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of non-idle CPU time, both of which are used for inter-service com-

munications. In contrast, Nightcore spends much less CPU time in

TCP-related system calls, because only communication with ser-

vices running on other hosts (e.g., database and Redis) uses TCP

sockets. Both systems spend roughly the same amount of CPU time

in netrx softirqs, which is caused only by inter-host networking.

5.4 Discussion

A goal for Nightcore is to avoid modifying Linux, because we want

Nightcore to be easier to adopt for existing microservice workloads.

Nightcore therefore relies on existing OS abstractions to achieve

its performance goals, creating a challenge to efficiently use the

operating systems’ existing I/O abstractions and to find individual

łkiller microseconds.ž

In our experience with Nightcore, we find there is no single

dominant łkiller microsecond.ž There are multiple factors with

significant contributions, and all must be addressed. Profiling the

whole system for microsecond-scale optimization opportunities is

challenging given the overheads introduced by profiling itself. In

Nightcore, we implement low-overhead statistics collectors, and

use eBPF programs [16] for kernel-related profiling.

6 RELATED WORK

Microservices. The emergence of microservices for building large-

scale cloud applications has prompted recent research on charac-

terizing their workloads [70, 99, 102, 112], as well as studying their

hardware-software implications [70, 99, 100]. Microservices have a

higher communication-to-computation ratio than traditional work-

loads [70] and frequent microsecond-scale RPCs, so prior work has

studied various software and hardware optimization opportuni-

ties for microsecond-scale RPCs, including transport layer proto-

cols [78, 79], a taxonomy of threading models [100], heterogeneous

NIC hardware [85], data transformations [93], and CPU memory

controllers [101]. The programming model of serverless functions

maps inter-service RPCs to internal function calls, allowing Night-

core to avoid inter-host networking and transparently eliminate

RPC protocol overheads. X-Containers [97] is a recently proposed

LibOS-based container runtime, that improves the efficiency of

inter-service communications for mutually trusting microservices.

For comparison, Nightcore still relies on the current container mech-

anism (provided by Docker), which does not require microservices

to trust each other.

Serverless Computing. Recent research on serverless comput-

ing has mostly focused on data intensive workloads [59, 65, 68,

69, 75, 95, 98], leading invocation latency overheads to be largely

overlooked. SAND [57] features a local message bus as the fast

path for chained function invocations. However, SAND only allows

a single, local call at the end of a function, while Nightcore sup-

ports arbitrary calling patterns (e.g., Figure 1). Faasm [98]’s chained

function calls have the same functionality as Nightcore’s inter-

nal function calls, but they are executed within the same process,

relying on WebAssembly for software-based fault isolation. One

previous work [62] also notices that FaaS systems have to achieve

microsecond-scale overheads for efficient support of microservices,

but they demonstrate only a proof-of-concept FaaS runtime that

relies on Rust’s memory safety for isolation and lacks end-to-end

evaluations on realistic microservices.

System Supports for Microsecond-Scale I/Os. Prior work on

achieving microsecond-scale I/O has been spread across various

system components, ranging from optimizing the network stack [74,

78, 79]; designs for a dataplane OS [61, 77, 87, 91, 92, 94]; thread

scheduling for microsecond-scale tasks [63, 77, 91, 96, 100]; and

novel filesystems leveraging persistent memory [81, 86, 108]. Ad-

ditionally, the efficiency of I/O is also affected by the user-facing

programming model [72, 105] and the underlying mechanism for

concurrency [80, 103]. A recent paper from Google [60] argues that

current systems are not tuned for microsecond-scale events, as vari-

ous OS building blocks have microsecond-scale overheads. Eliminat-

ing these overheads requires a tedious hunt for the łkiller microsec-

onds.ž Inspired by this work, the design of Nightcore eliminates

many of these overheads, making it practical for a microsecond-

scale serverless system.

7 CONCLUSION

Optimizing Nightcore justifies one of Lampson’s early hints [82]:

łmake it fast, rather than general or powerfulž, because fast building

blocks can be used more widely. As computing becomes more

granular [84], we anticipate more microsecond-scale applications

will come to serverless computing. Designing and building this next

generation of services will require careful attention to microsecond-

scale overheads.
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A ARTIFACT APPENDIX

A.1 Abstract

Our artifact includes the prototype implementation of Nightcore,

theDeathStarBench [21] andHipsterShopmicroservices [29] ported

to Nightcore, and the experiment workflow to run these workloads

on AWS EC2 instances.

A.2 Artifact Check-List (Meta-Information)

• Program: Nightcore, Docker runtime, and wrk2

• Run-time environment: AWS EC2 instances

• Metrics: Latency and throughput

• Experiments: Our ports of DeathStarBench [21] andHip-

sterShop microservices [29] (included in this artifact)

• Disk space required: 2GB

• Time needed to prepare workflow: 1 hour

• Time needed to complete experiments: 3 hours

• Publicly available: Yes

• Code licenses: Apache License 2.0

• Archive: 10.5281/zenodo.4321760
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A.3 Description

How to Access. The source code and benchmarks are host on

GitHub ut-osa/nightcore and ut-osa/nightcore-benchmarks.

Hardware Dependencies. This artifact runs on AWS EC2 in-

stances in us-east-2 region.

Software Dependencies. This artifact requires experiment VMs

running Ubuntu 20.04 with Docker installed.

We provide a pre-built VM image hosted on AWS us-east-2 re-

gion (ami-06e206d7334bff2ec) with all necessary dependencies

installed, which is used by experiment scripts in this artifact.

A.4 Installation

Setting up the Controller Machine. A controller machine in

AWS us-east-2 region is required for running scripts executing

experiment workflows. The controller machine can use very small

EC2 instance type, as it only provisions and controls experiment

VMs, but does not affect experimental results. In our own setup, we

use a t3.micro EC2 instance installed with Ubuntu 20.04 as the

controller machine.

The controller machine needs python3, rsync, and AWS CLI

version 1 installed. python3 and rsync can be installed with apt.

This documentation details the recommended way for installing

AWS CLI version 1. Once installed, AWS CLI has to be configured

with region us-east-2 and access key (see this).

Then on the controller machine, clone our artifact repository

with all git submodules:

git clone --recursive \

https://github.com/ut-osa/nightcore-benchmarks.git

Finally, execute scripts/setup_sshkey.sh to setup SSH keys

that will be used to access experiment VMs. Please read the notice

in the script before executing it to check if this script works for

your setup.

Setting up EC2 Security Group and Placement Group. Our

VM provisioning script creates EC2 instances with security group

nightcore and placement group nightcore-experiments. The

security group includes firewall rules for experiment VMs (i.e., al-

lowing the controller machine to SSH into them), while the place-

ment group instructs AWS to place experiment VMs close together.

Executing scripts/aws_provision.sh on the controller ma-

chine creates these groups with correct configurations.

Building Docker Images. We also provide the script

(scripts/docker_images.sh) for building Docker images rele-

vant to experiments in this artifact. As we already pushed all com-

piled images to DockerHub, there is no need to run this script as

long as you do not modify source code of Nightcore (in nightcore

directory) and evaluation workloads (in workloads directory).

A.5 Experiment Workflow

Each sub-directory within experiments corresponds to one ex-

periment. Within each experiment directory, a config.json file

describes machine configuration and placement assignment of in-

dividual Docker containers (i.e. microservices) for this experiment.

The entry point of each experiment is the run_all.sh script.

It first provisions VMs for experiments. Then it executes evalua-

tion workloads with different QPS targets via run_once.sh script.

run_once.sh script performs workload-specific setups, runs wrk2

to measure latency distribution under the target QPS, and stores re-

sults in results directory.When everything is done, run_all.sh

script terminates all provisioned experiment VMs.

VM provisioning is done by scripts/exp_helper with sub-

command start-machines. By default, it creates on-demand EC2

instances. But it also supports the option to use Spot instances for

cost saving. After EC2 instances are up, the script then sets up

Docker engines on newly created VMs to form a Docker cluster in

swarm mode.

A.6 Evaluation and Expected Result

For each experiment, the evaluation metric is the latency distribu-

tion under a specific QPS. We use wrk2 as the benchmarking tool,

and it outputs a detailed latency distribution, which looks like

Latency Distribution (HdrHistogram - Recorded Latency)

50.000% 2.21ms

75.000% 3.29ms

90.000% 5.13ms

99.000% 9.12ms

99.900% 12.28ms

99.990% 17.45ms

99.999% 20.32ms

100.000% 23.61ms

We report the 50% and 99% percentile values as median and tail

latencies in the paper. run_all.sh script conducts evaluations on

various QPS targets.

Experiment sub-directories ending with łsinglenodež corre-

spond to Nightcore results in Figure 7 of themain paper. Experiment

sub-directories ending with ł4nodež correspond to Nightcore (4

servers) results in Table 4 of the main paper. Note that run_all.sh

scripts run less data points than presented in the paper, to allow a

fast validation. But all run_all.sh scripts can be easily modified

to collect more data points.

We provide a helper script łscripts/collect_resultsł to

print a summary of all experiment results. Meanwhile,

łexpected_results_summary.txtł gives the summary gener-

ated from our experiment runs. Details of our runs are stored in

the łexpected_resultsł directory within each experiment sub-

directory. Note that these results are not the exact ones presented

in the paper.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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