Name	#1:	
Name	#2:	
Name	#3:	
TCSS 462/562: (Software Engineering for) Cloud Computing Fall 2023		School of Engineering and Technology University of Washington – Tacoma
	Class Activity 1 – Implicit vs. E. Thursday October 5 th ,	
	discussed four types of parallelism: Thread Level Parallelism (TLP) Data-level Parallelism Bit-level parallelism Instruction level parallelism.	
1.	Which two types of parallelism are <i>implicit</i> , in that the efforts required by programmers to use them? Why without special developer effort?	
2.	Which two types of parallelism are <i>explicit</i> , in that the reap benefits? Why do these methods require manual	
3.	List advantages of <i>implicit</i> approaches to parallelism	?

4.	List disadvantages of <i>implicit</i> approaches to parallelism?
5.	List advantages of <i>explicit</i> approaches to parallelism:
6.	List disadvantages of <i>explicit</i> approaches to parallelism:
7.	For <i>bit-level</i> parallelism, should a developer be concerned with the available number of virtual CPU processing cores when choosing a cloud-based virtual machine if wanting to obtain the best possible speed-up? (Yes / No)
8.	For <i>instruction-level</i> parallelism, should a developer be concerned with the physical CPU's architecture used to host a cloud-based virtual machine if wanting to obtain the best possible speed-up? (Yes / No)
9.	For <i>thread level parallelism</i> (TLP) where a programmer has spent considerable effort to parallelize their code and algorithms, what consequences result when this code is deployed on a virtual machine with too few virtual CPU processing cores?
	What happens when this code is deployed on a virtual machine with too many virtual CPU processing cores?