
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.1

Cloud Computing –
How did we get here?

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 10/6

1

2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.2

 Please classify your perspective on material covered in today’s

class (43 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.16 (6.15, same lecture Fall 2021)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.35 (5.19, same lecture Fall 2021)

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

MATERIAL / PACE

 Is team project research only for 562 students?

I didn't clearly understand what the term project would be.

▪ Do you mean, doing a research topic for the term project?

 Can you assign a group for us?

 Not directly related, but I am a l i ttle concerned about level of

knowledge expected for class and i f beginners wi l l be able to cope

▪ Bachelors in Computer Science & Systems teaches Java as the primary

language at UWT. Most 400-level CSS students have had multiple

courses in Java (TCSS 142, 143, 305, 342?, 343?)

▪ The amount of programming will depend on the Term Project topic

▪ Serverless functions development is not terribly programming intensive

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

FEEDBACK FROM 10/4

3

4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.3

 Regarding term project, I am not sure about the details of

personal choice to do research paper, such as what aspects of

cloud computing to search, word limit, and number of

resources requirements.

▪ For a gap analysis (literature survey) paper, the idea is to choose a

specific cloud computing research problem and go to the literature

to assess the current ‘state of the art’ solutions that are available.

▪ The idea is to synthesize what existing research has been done on

the problem by summarizing previous efforts, critiquing positives

and negatives (i.e. good, bad, and ugly) and then identify future

research directions and potential related to the topic

▪ Gap analysis paper can help identify an honors/MS/PhD thesis topic

▪ Gap analysis will typically review work from 5 full papers,

and will cite and mention to a lesser extent 5 -10+ related papers

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

FEEDBACK - 2

 Please complete the ONLINE demographics survey:

 https://forms.gle/XAhBRUR8wsm7CqSs5

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html

 Completed as of Thursday AM: 53 of 61

October 4, 2022
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

DEMOGRAPHICS SURVEY

5

6

https://forms.gle/XAhBRUR8wsm7CqSs5
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.4

 Please complete the ONLINE demographics survey:

 https://forms.gle/yz8yrqB7yGD5iHSh9

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html

 Completed as of Thursday AM: 52 of 61

October 4, 2022
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

AWS CLOUD CREDITS SURVEY

 Introduction to Linux & the Command Line

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_1.pdf

 Tutorial Sections:
1. The Command Line

2. Basic Navigation

3. More About Files

4. Manual Pages

5. File Manipulation

6. VI – Text Editor

7. Wildcards

8. Permissions

9. Filters

10. Grep and regular expressions

11. Piping and Redirection

12. Process Management

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

TUTORIAL 1

7

8

https://forms.gle/yz8yrqB7yGD5iHSh9
http://faculty.washington.edu/wlloyd/courses/tcss562/announcements.html
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_1.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.5

 Introduction to Bash Scripting

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/T
CSS462_562_f2022_tutorial_2.pdf

 Review tutorial sections:

 Create a BASH webservice client

1. What is a BASH script?

2. Variables

3. Input

4. Arithmetic

5. If Statements

6. Loops

7. Functions

8. User Interface

 Call service to obtain IP address & lat/long of computer

 Call service to obtain weather forecast for lat/long

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

TUTORIAL 2

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

OBJECTIVES – 10/6

9

10

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_2.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.6

 General interest in parallel computing

▪Moore’s Law - # of transistors doubles every 18 months

▪ Post 2004: heat dissipation challenges:

can no longer easily increase cloud speed

▪ Overclocking to 7GHz takes

more than just liquid nitrogen:

▪ https://tinyurl.com/y93s2yz2

Solutions:

▪ Vary CPU clock speed

▪ Add CPU cores

▪Multi-core technology

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

CLOUD COMPUTING:

HOW DID WE GET HERE?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

11

12

https://tinyurl.com/y93s2yz2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.7

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

AMD’S 64-CORE 7NM CPUS

 Cloud server virtual CPUs/host

 Growth since 2006 - Amazon Compute Cloud (EC2)

 1st generation Intel: m1 – 8 vCPUs / host (Aug 2006)

 2nd generation Intel: m2 – 16 vCPUs / host (Oct 2009)

 3 rd generation Intel: m3 - 32 vCPUs / host (Oct 2012)

 4 th generation Intel: m4 – 48 vCPUs / host (June 2015)

 5 th generation Intel: m5 – 96 vCPUs / host (Nov 2017)

 6 th generation Intel: m6i – 128 vCPUs / host (Aug 2021)

 6 th generation AMD: m6a – 192 vCPUs / host (Nov 2021)

October 6, 2022
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

HOST SERVER VCPUS – AMAZON EC2

INFRASTRUCTURE-AS-A-SERVICE CLOUD

13

14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.8

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9%

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

HYPER-THREADING

 How do I use hyper-threading?

 Hyper-threading is automatic

 Modern CPUs expose each physical CPU core as two CPU cores

 cat /proc/cpuinfo command lists individual cores

 Operating system schedules processes & threads to run on a

hyper-thread

 On CPUs with hyper-threading, each CPU core has two hyper -

threads

 To the operating system they are seen as full -featured

independent CPU cores

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

HYPER-THREADING - 2

15

16

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.9

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

CAT /PROC/CPUINFO || LSCPU

If a CPU has hyper-threading
enabled, the “ht” flag is listed

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L3.18

17

18

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.10

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L3.19

Each processor core consists of multiple stages

Hyper-threading is the idea to share the physical stages

of a CPU core to execute two instructions at once

 When should we use hyper-threading, and when
should not?
▪ For personal computing, hyper-threading helps improve system

performance when many programs use only short bursts of
CPU time

▪ Databases, HPC (science) applications, and others may benefit
from disabling hyper-threading. Testing will help quantify
performance.

▪ Disabling hyper-threading (HW setting), cuts the number of CPU
cores available to operating system in half

▪ Can be disabled in the System BIOS or UEFI (uniform extensible
firmware interface) software

▪ BIOS / UEFI is a small resident program that can be accessed by
pressing a function-key when rebooting the computer

▪ BIOS / UEFI is used to configure hardware options

▪ Making changes requires rebooting the computer

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

HYPER-THREADING - 3

19

20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.11

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific

applications

 Not every problem solution has a parallel algorithm

▪ Chicken and egg problem…

 Many commercial efforts promoting pure parallel

programming efforts have failed

 Enterprise computing world has been skeptical and

less involved in parallel programming

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”

scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting

parallelism

Cloud applications

▪Based on client-server paradigm

▪Thin clients leverage compute hosted on the cloud

▪Applications run many web service instances

▪Employ load balancing

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

21

22

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.12

Big Data requires massive amounts of compute

resources

MAP – REDUCE

▪Single instruction, multiple data (SIMD)

▪Exploit data level parallelism

Bioinformatics example

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local

alignment of two protein sequences

▪ Embarrassingly parallel, each task can run in isolation

▪ Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human

protein sequences (20,336)

▪ Python client as scheduler

▪ C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-

Waterman C/C++ library for use in genomic applications.

PLoS One 2013, 8:e82138

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

23

24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.13

SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes

▪ Partitions 20,336 sequences into 41 sets

▪ Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes

▪ Execution cost: ~ 87¢ (~408x speed-up)

 Hardware

▪ Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU

▪ Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs

▪ Cloud server: Lambda ~1000 x Intel E5-2666v3 2.9GHz CPUs

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

 Compute clouds are large-scale distributed systems

▪Heterogeneous systems

▪Many services/platforms w/ diverse hw + capabilities

▪Homogeneous systems

▪Within a platform – illusion of identical hardware

▪Autonomous

▪ Automatic management and maintenance- largely with

little human intervention

▪Self organizing

▪ User requested resources organize themselves to satisfy

requests on-demand

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

25

26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.14

Compute clouds are large-scale distributed
systems

 Infrastructure-as-a-Service (IaaS) Cloud

▪Provide VMs on demand to users

▪ec2instances.info (AWS EC2)

Clouds can consist of

▪Homogeneous hardware (servers, etc.)

▪Heterogeneous hardware (servers, etc.)

Which is preferable?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

 If providing IaaS, what are advantages/
disadvantages of using homogeneous hardware?

▪ Easier to provide same quality of service to end users

▪ Less performance variance

▪ Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

▪ Homogeneous hardware (servers): components are
interchangeable

▪ As components fail, identical backups are
immediately available

▪ Example: blade servers

▪ As clouds grow, why is HW homogeneity difficult to maintain?

 What are some advantages of using heterogeneous HW?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

HARDWARE HETEROGENEITY

27

28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.15

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

OBJECTIVES – 10/6

 Discovering parallelism and development of parallel

algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large

systems of linear equations or solving systems of Partial

Differential Equations (PDEs), require algorithms based on

domain decomposition methods.

 How can problems be split into independent chunks?

 Fine-grained parallelism

▪ Only small bits of code can run in parallel without coordination

▪ Communication is required to synchronize state across nodes

 Coarse-grained parallelism

▪ Large blocks of code can run without coordination

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

PARALLELISM

29

30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.16

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier
than parallel shared memory code

 Message passing : all of the interactions are clear

▪ Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

PARALLELISM - 2

Parallelism:

▪Goal: Perform multiple operations at the same time
to achieve a speed-up

 Types of parallelism:

 Thread-level parallelism (TLP)

▪Control flow architecture

Data-level parallelism

▪Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

TYPES OF PARALLELISM

31

32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.17

 Number of threads an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper -threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

THREAD LEVEL PARALLELISM (TLP)

 Multi-threaded prime number generation

 Compute-bound workload

 Can use variable # of threads

 Generates n prime numbers

 Runtimes: 100,000 primes

 1 thread: 59.15 s

 2 threads: 30.957 s

 4 threads: 15.539 s

 8 threads: 12.112 s

 Observe TLP with top

time ./primes8 30000 >/dev/null

October 6, 2022
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

TLP – PRIMES EXAMPLE

33

34

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.18

 Typical architecture used today – w/ multiple threads

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines

next instruction to load into

instruction register

 Program execution

is sequential

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

DATA-LEVEL PARALLELISM

35

36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.19

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption

▪ Efficiently broadcasting data tokens in a massively
parallel system

▪ Efficiently dispatching instruction tokens in a massively
parallel system

▪ Building content addressable memory large enough to
hold all of the dependencies of a real program

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

DATA FLOW ARCHITECTURE

 Architecture not as popular as control -flow

 Modern CPUs emulate data flow architecture for dynamic

instruction scheduling since the 1990s

▪ Out-of-order execution – reduces CPU idle time by not blocking

for instructions requiring data by defining execution windows

▪ Execution windows: identify instructions that can be run by

data dependency

▪ Instructions are completed in data dependency order within

execution window

▪ Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been

much less than envisioned

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

DATA FLOW ARCHITECTURE - 2

37

38

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.20

 Computations on large words (e.g. 64-bit integer) are

performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process

larger operands (A+B) providing dramatic performance

improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two

64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi -stage processing pipelines

 Pipelining: split instructions into sequence of steps that

can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

INSTRUCTION-LEVEL PARALLELISM (ILP)

39

40

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.21

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are

loaded

 Starting with 6 th clock cycle, one full instruction

completes each cycle

 The CPU performs 5 tasks per clock cycle!

Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

INSTRUCTION LEVEL PARALLELISM - 2

41

42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.22

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

OBJECTIVES – 10/6

 Form groups of ~3 - in class or with Zoom breakout rooms

 Each group will complete a MSWORD DOCX worksheet

 Be sure to add names at top of document as they appear in
Canvas

 Activity can be completed in class or after class

 The activity can also be completed individually

 When completed, one person should submit a PDF of the
Google Doc to Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get started:

▪ Log into your UW Google Account (https://drive.google.com)
using you UW NET ID

▪ Follow the link:

https://tinyurl.com/tcss462-562-a1

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

ACTIVITY 1

43

44

https://tinyurl.com/tcss462-562-a1

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.23

 Solutions to be discussed..

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

ACTIVITY 1

 Applies to:

 Advantages:

 Disadvantages:

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

IMPLICIT PARALLELISM

45

46

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.24

 Applies to:

 Advantages:

 Disadvantages:

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be

concerned with the available number of virtual CPU

processing cores when choosing a cloud-based virtual

machine if wanting to obtain the best possible speed -up?

(Yes / No)

 8. For instruction-level parallelism, should a developer be

concerned with the physical CPU’s architecture used to

host a cloud-based virtual machine if wanting to obtain

the best possible speed-up? (Yes / No)

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

PARALLELISM QUESTIONS

47

48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.25

 9. For thread level parallelism (TLP) where a programmer

has spent considerable effort to parallelize their code and

algorithms, what consequences result when this code is

deployed on a virtual machine with too few virtual CPU

processing cores?

 What happens when this code is deployed on a virtual

machine with too many virtual CPU processing cores?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

PARALLELISM QUESTIONS - 2

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

OBJECTIVES – 10/6

49

50

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.26

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

FLYNN’S TAXONOMY

51

52

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.27

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

FLYNN’S TAXONOMY - 2

53

54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.28

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (left) → floating point performance (right)

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

55

56

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.29

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

OBJECTIVES – 10/6

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

GRAPHICAL PROCESSING UNITS (GPUS)

57

58

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.30

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

OBJECTIVES – 10/6

Parallel hardware and software systems allow:

▪ Solve problems demanding resources not available on
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

PARALLEL COMPUTING

59

60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.31

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

SPEED-UP EXAMPLE

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

AMDAHL’S LAW

61

62

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.32

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement

of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is the maximum possible speed -up?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

AMDAHL’S LAW

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

AMDAHL’S LAW EXAMPLE

from Wikipedia

63

64

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.33

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

GUSTAFSON'S LAW

65

66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.34

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: If deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the use of two

processes that run in parallel?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

GUSTAFSON'S LAW

 QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoretical speed-up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

GUSTAFSON’S EXAMPLE

67

68

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.35

 QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoretical speed-up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors offer a higher speedup

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

MOORE’S LAW

69

70

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.36

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

OBJECTIVES – 10/6

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.72

DISTRIBUTED SYSTEMS

71

72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.37

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.73

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency : multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency : system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

73

74

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.38

 Questions from 10/4

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.75

OBJECTIVES – 10/6

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.76

TYPES OF MODULARITY

75

76

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.39

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.77

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

 Bit- level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.78

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

77

78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.40

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L3.79

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

QUESTIONS

October 6, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L3.130

79

130

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L3.41

WE WILL RETURN AT

7:00PM

TCSS 562

OFFICE HOURS

PLEASE SAY HELLO

L3.132

131

132

