
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.1

Cloud Enabling Technology IV
&
Containerization

Wes J. Lloyd
School of Engineering and Technology

University of Washington – Tacoma

TR 5:50-7:50 PM

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING
THIS WEEK

Tuesday:

▪4:30 to 5:30 pm - CP 229 and Zoom

Friday

▪12:00 to 1:00 pm - CP 229 and Zoom

Or email for appointment
> Of f ice Hour s set based on Student Demographics sur vey feedback

OFFICE HOURS – FALL 2022

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

OBJECTIVES – 11/15

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.4

ONLINE DAILY FEEDBACK SURVEY

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.5

 Please classify your perspective on material covered in today’s

class (43 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.77 ( - previous 6.38)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.40 ( - previous 5.38)

 Response rates:

 TCSS 462: 22/33 – 66.67%

 TCSS 562: 21/26 – 80.77%

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.2

 I am struggling to put 2 and 2 together to do the "optional

part 3" in tutorial 6 (pg 7 pdf)... manipulating S3 and DB

fi le.

 The optional activity to persist a SQLite db file to S3

 The idea is on invocation of the Lambda function, check if

the SQLite file already exists under ‘/ tmp ’ .

▪ YES – then use it

▪ NO – fetch from S3, use a user provided SQLite db filename

obtained from a key/value pair in the request JSON object

 Each time the function ends, it should write the updated

SQLite file to S3 if any writes occur

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK FROM 11/10
CLOUD AND DISTRIBUTED SYSTEMS LAB

W E S LLOYD, W LLOYD@UW.EDU ,

H T TP://FACULT Y.WASHINGTON.E DU/WLLOYD

Weekly Research Group Meetings

Wednesdays at 3:30 pm (via Zoom)

 Looking for Winter 2023 and beyond:

BSCSS students

▪ Independent Study (TCSS 499)

▪ Honors Thesis

MSCSS students

▪MS Thesis (TCSS 700)

▪MS Capstone (TCSS 702)

▪ Independent Study (TCSS 600)

CLOUD AND DISTRIBUTED SYSTEMS LAB
W E S LLOYD, W LLOYD@UW.EDU ,

H T TP://FACULT Y.WASHINGTON.E DU/WLLOYD

 Serverless Computing (FaaS):

 Service composition, per formance and cost optimization/modeling

/analytics, application migration, mitigation of platform l imitations,

vendor lock- in, observabil ity/monitoring, inf luencing infrastructure,

FaaS at the edge (IoT) , fog, and c loud, resource federation, function/load

balancing/scheduling, what are the best abstractions?,

side channels, resource contention/heterogeneity, autonomic

configuration/deployment, sof tware tools

 Containerization (Docker):

 Containers, container orchestration frameworks, observabi li ty/

monitor ing, resource al location, checkpointing

 Infrastructure-as-a-Service (IaaS) C loud:

 Appl ication/workload deployment, per formance and cost optimization /

model ing/analyt ics, infrastructure management, resource contention

detection/mit igation, HW heterogeneity, observability/

monitoring, s ide channels to infer characterist ics of the host &

VM placement, vi r tual ization overhead with increasing vCPU density

 IAM User Accounts Create – please let me know of any issues

with these accounts

 If you did not provide your AWS account number on the AWS

CLOUD CREDITS SURVEY to request AWS cloud credits and you

would like credits this quarter, please contact the professor

November 15, 2022
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

AWS CLOUD CREDITS

Don’t Forget to Terminate (Shutdown)

all EC2 instances for Tutorials 3 & 7

Spot instances:
c5d.large instance @ ~2 cents / hour

$0.48 / day
$3.36 / week

$14.60 / month
$175.20 / year

AWS CREDITS →→→→→→→→

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

OBJECTIVES – 11/15

7 8

9 10

11 12

mailto:wlloyd@uw.edu
http://faculty.washington.edu/wlloyd
mailto:wlloyd@uw.edu
http://faculty.washington.edu/wlloyd

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.3

 Getting Started with AWS

 http://faculty.washington.edu/wlloyd/courses/tcss562/tutori

als/TCSS462_562_f2022_tutorial_0.pdf

 Create an account

 Create account credentials for working with the CLI

 Install awsconfig package

 Setup awsconfig for working with the AWS CLI

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

TUTORIAL 0

 Introduct ion to AWS Lambda with the Serverless Applicat ion
Analyt ics Framework (SAAF)

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/
TCSS462_562_f2022_tutorial_4.pdf

 Obtaining a Java development environment

 Introduct ion to Maven build fi les for Java

 Create and Deploy “hello” Java AWS Lambda Funct ion

▪ Creation of API Gateway REST endpoint

 Sequential test ing of “hello” AWS Lambda Funct ion

▪ API Gateway endpoint

▪ AWS CLI Function invocation

 Observing SAAF profi l ing output

 Parallel test ing of “hello” AWS Lambda Funct ion with faas_runner

 Performance analysis using faas_runner reports

 Two funct ion pipeline development task

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

TUTORIAL 4 – NOV 6

 Students completing tutorial 4 with an IAM user account may

encounter permission issues

 Please contact the instructor if encountering any issues

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

IAM USERS – TUTORIAL 4

 For tutorial 4 submissions, several submission indicate
Thread.sleep(10000) was added but the results for the quest ion 6
do not confirm this.

 It is possible that :

1. The provided results from the SAAF Report Generator were from a
test run before the Thread.Sleep() statement was added to the
code

- OR -

2. The Thread.Sleep() statement was added in the incorrect locat ion
of the code

- OR -

3. When opening the CSV output from the Report Generator, the fi le
separator characters were set incorrect ly.

 The only separator for a CSV fi le is the comma ",“
Be sure to correct ly open the CSV fi le in the spreadsheet.
Columns can be of fset result ing in the wrong answers being
provided for Quest ion 6.

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

TUTORIAL 4 - RESUBMISSION

 The sleep statement must go between the START FUNCTION and

END FUNCTION comments in the handleRequest () method specified

as the AWS Lambda funct ion’s handler under runt ime sett ings in

the AWS Lambda GUI.

//****************START FUNCTION IMPLEMENTATION*************************

try

{

Thread.sleep(10000);

}

catch (InterruptedException ie)

{

System.out.println("Interruption occurred while sleeping.");

}

//****************END FUNCTION IMPLEMENTATIO N***************************

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

TUTORIAL 4 – RESUBMISSION - 2

 SANITY CHECK: consider that adding 10 seconds of sleep to your
AWS Lambda funct ion wil l cause the funct ion to run for at least 10
seconds. This wil l impact the outputs requested for Quest ion 6:

 avg_runtime is the server -side (cloud) runt ime of the funct ion

 This is the t ime it takes for the funct ion to run on AWS Lambda
(cloud)

 Adding sleep of 10 seconds should increase a funct ion’s
avg_runtime

 avg_roundTripTime is the total t ime for a request from a cl ient
(laptop?) to travel to the server (cloud), make the funct ion call , and
return.

 I f t rying to make 50 calls at once on a laptop with a small # of CPU
cores this t ime may be slow

 Adding sleep of 10 seconds should increase a funct ion’s
avg_roundTripTime

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

TUTORIAL 4 – RESUBMISSION - 3

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_0.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_4.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.4

 avg_cpuIdleDelta time is the amount of time the Lambda

function’s Firecracker vCPUs are idle during the function call

on the server measured in centiseconds:

100 centiseconds = 1 second

100 centiseconds = 1000 milliseconds

 By default, AWS Lambda functions with 512 MB run in a

runtime environment with access to two vCPU cores

 This is the total vCPU idle time for both cores (it is doubled)

 Adding sleep of 10 seconds should increase your function’s

avg_cpuIdleDelta

 How much should avg_cpuIdleDelta increase ?

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

TUTORIAL 4 – RESUBMISSION - 4

 Introduction to Lambda II: Working with Files in S3 and
CloudWatch Events

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_5.pdf

 Customize the Request object (add getters/setters)
▪ Why do this instead of HashMap ?

 Import dependencies (jar files) into project for AWS S3

 Create an S3 Bucket

 Give your Lambda function(s) permission to work with S3

 Write to the CloudWatch logs

 Use of CloudTrai l to generate S3 events

 Creating CloudWatch rule to capture events from CloudTrai l

 Have the CloudWatch rule tr igger a target Lambda function with
a static JSON input object (hard -coded fi lename)

 Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

TUTORIAL 5 – NOV 13

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3 tool

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. f ile-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

TUTORIAL 6 – NOV 21

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

OBJECTIVES – 11/15

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)

with desired dates of presentation via Canvas by:

TODAY: Wednesday November 16 th @ 11:59pm

 Presentation dates:

▪ Tuesday November 22, Tuesday November 29

▪ Tuesday December 6, Thursday December 8

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

GROUP PRESENTATION

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

OBJECTIVES – 11/15

19 20

21 22

23 24

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_6.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.5

 Opened Monday N ov 14 at 8 :00 am

 Closes Fr iday N ovember 18 at 11 :59 am

 Individual work only

 Please answer every question

 Book, notes , s l ides, calculator, and internet are al lowed

 Gr ading:

 The Canvas autograder produces a pre l iminary score, not the f inal score.

 The instructor wi l l manually review al l quizzes and add par tial credit

 A cur ve adjustment wi l l also be appl ied as appropriate

 These updates may not occur unti l several days af ter the quiz closes

 Please report suspected grading problems to the instructor

 A ttempts:

 1 quiz attempt, 120 minute l imit , 20 questions.

 Coverage is inclus ive of Lectures ~1 -8

 Please plan accordingly. Once star ted, there wi l l be 2 hours to complete

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

QUIZ 1

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

OBJECTIVES – 11/15

CLOUD ENABLING

TECHNOLOGY

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

25 26

27 28

29 30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.6

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

REST: REPRESENTATIONAL STATE TRANSFER

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.32

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>

</soap:Body>

</soap:Envelope>

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.33

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.34

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>

</message>

<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>

</message>

<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">

<input message="tns:DayOfWeekInput"/>

<output message="tns:DayOfWeekResponse"/>

</operation>

</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">

<soap:operation soapAction="getdayofweek"/>

<input>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="DayOfWeekService" >

<documentation>

Returns the day-of-week name for a given date

</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>

</service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪ Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

REST - 2

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.7

 Performance: component interactions can be the dominant

factor in user -perceived per formance and network ef ficiency

 Scalabi lity : to suppor t large numbers of services and

interactions among them

 Simplicity : of the Uniform Inter face

 Modifiabil ity: of services to meet changing needs (even while the

appl ication is running)

 Visibil ity: of communication between services

 Por tabil ity: of services by redeployment

 Reliabil ity: resists fai lure at the system level as redundancy of

infrastructure is easy to ensure

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

REST ARCHITECTURAL ADVANTAGES

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

OBJECTIVES – 11/15

TUTORIAL #7

DOCKER, CGROUPS,

RESOURCE ISOLATION

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington -
Tacoma

L14.39

 Introduction to Docker

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_7.pdf

 Must complete using Ubuntu 22.04 (for cgroups v2)

 Use docx file for copying and pasting Docker install commands

 Installing Docker

 Creating a container using a Dockerfile

 Using cgroups vir tual filesystem to monitor CPU utilization of a
container

 Persisting container images to Docker Hub image repository

 Container vertical scaling of CPU/memory resources

 Testing container CPU and memory isolation

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

TUTORIAL 7 – DEC 5

 Docker CLI → Docker Engine (dockerd) → containerd → runc

 Working with the docker CLI:

 docker run create a container

 docker ps -a list containers, find CONTAINER ID

 docker exec --it run a process in an existing container

 docker stop stop a container

 docker kill kill a container

 docker help list available commands

 man docker Docker Linux manual pages

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

TUTORIAL COVERAGE

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.42

Docker CLI

37 38

39 40

41 42

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.8

 Tutorial introduces use of two common Linux performance

benchmark applications

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

TUTORIAL 7

 Questions from 11/10

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Tutorial 7

 Containerization

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

OBJECTIVES – 11/15

WE WILL RETURN AT

~7:15 PM
CONTAINERIZATION

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.46

 Containers provide “light -weight” alternative to full OS

virtualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand

boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

43 44

45 46

47 48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.9

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Vir tual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l og . r i s i n g s t a c k . c o m / o p e r a t i ng - s ys t e m - c o nt a i ne r s - v s - a p pl i c a t i o n - c on t a i n e r s /

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

OPERATING SYSTEM CONTAINERS

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

APPLICATION CONTAINERS - 2

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.10

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Star t ing in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

DOCKER

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc inter faces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

55 56

57 58

59 60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.11

 Docker CLI: inter faces with dockerd daemon

 Docker engine: dockerd daemon, inter faces with containerd

 Containerd: simple daemon, inter faces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) inter face;

 runc: lightweight command-line tool for running containers;
Inter faces with Linux cgroups, namespaces; Runs an OCI
container

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvir t-lxc,

libvir t-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing) : provides separate host and domain

names
November 15, 2022

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

NAMESPACES - 2

 Collect ion of Linux processes

 Group-level resource allocat ion: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Pr ioritization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup f ilesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

CGROUPS - 2

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.12

 Docker leverages overlay f i lesystems

 1st: AUFS - Advanced mult i - layered unification f i lesystem

 Now: overlay2

 Union mount f i le s ystem: combine mult iple di rectories into one that
appears to contain combined contents

 Idea: Docker uses layered f i le systems

 Only the top layer is wri teable

 Other layers are read-only

 Layers are merged to present the notion of a real f i le system

 Copy -on-write- impl ici t sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc-talk-1/

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

OVERLAY FILE SYSTEMS

 Dockerfile:

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

CONTAINER ISOLATION

Host kernel

Container

runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

LXC (LINUX CONTAINERS)

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

OTHER DOCKER TOOLS

67 68

69 70

71 72

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L14.13

 Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L14.75

CONTAINER ORCHESTRATION

FRAMEWORKS - 2 QUESTIONS

November 15, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L14.76

73 74

75 76

