TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Enabling Technology IV
&

Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TR 5:50-7:50 PM

OFFICE HOURS - FALL 2022

=THIS WEEK

=Tuesday:

=4:30 to 5:30 pm - CP 229 and Zoom
=Friday

=12:00 to 1:00 pm - CP 229 and Zoom

=0r email for appointment

> Office Hours set based on Student Demographics survey feedback

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma 142

OBJECTIVES - 11/15

L= Ouestions from 44/40 I
= Tutorials Questions
= Class Presentations:
Cloud Technology or Research Paper Review

" Quiz 1

= Ch. 5: Cloud Enabling Technology
= Tutorial 7

= Containerization

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ Novemberdsi2022 School of Engineering and Technology, University of Washington - Tacoma. L3

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
= Extra Credit
for completing

* Upcoming Assignments

ity 1 - Implicit va. Explicit Pacsllelism

w ol

* Past Assigaments

|

4 TCS5 562 - Online Dalty Feedback Survey - 9/30

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ [Novemberis)2022 School of Engineering and Technology, University of Washington - Tacoma s

TCSS 562 - Online Daily Feedback Survey - 10/5

Startect Ot 7 at 1-13sm

Quiz Instructions

Question 1 0spts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 4 5 8 7 8 8 18
mestiy equu1 mastly
Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

MEElETr k202 School of Engineering and Technology, University of Washington - Tacoma L145

Slides by Wes J. Lloyd

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (43 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.77 (T - previous 6.38)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.40 (T - previous 5.38)

= Response rates:
= TCSS 462: 22/33 - 66.67%
= TCSS 562: 21/26 - 80.77%

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2022]
‘ (e School of Engineering and Technology, University of Washington - Tacoma e

L14.1

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

@ CLOUD AND DISTRIBUTED SYSTEMS LAB
FEEDBACK FROM 11/10 &

? WES LLOYD, WLLOYD@UW.EDU, -
o HTTP://FACULTY,WASHINGTON.EDU/WLLOYD .

= | am struggling to put 2 and 2 together to do the "optional

= Weekly Research Group Meetings
part 3" In tutorlal 6 (pg 7 pdf)... manipulating S3 and DB
file. =Wednesdays at 3:30 pm (via Zoom)

= The optional activity to persist a SQLite db file to S3

= The idea is on invocation of the Lambda function, check if
the SQLite file already exists under ‘/tmp’.
= YES - then use it

= NO - fetch from S3, use a user provided SQLite db filename

=Looking for Winter 2023 and beyond:

= BSCSS students
= Independent Study (TCSS 499)

obtained from a key/value pair in the request JSON object = Honors Thesls
= Each time the function ends, it should write the updated = MSCSS students
SQLite file to S3 if any writes occur = MS Thesis (TCSS 700)
= MS Capstone (TCSS 702) -
[ovembertszozs | T Sovar aorte o o o oo [o] RLOUEPEnUEnCB LI AIESSIEnT) Do
7 8

CLOUD AND DISTRIBUTED SYSTEMS LAB

L4 WES LLOYD, WLLOYD@UW.EDU, AWS CLOUD CREDITS

HTTP://FACULTY.WASHINGTON.EDU/WLLOYD

Serverless Computing (FaaS):

Service composition, performance and cost optimization/modeling
/analytics, application migration, mitigation of platform limitations,
vendor lock-in, observability/monitoring, influencing infrastructure,
Faa$S at the edge (loT), fog, and cloud, resource federation, function/load = |f you did not provide your AWS account number on the AWS
balancing/scheduling, what are the best abstractions?, CLOUD CREDITS SURVEY to request AWS cloud credits and you

side channels, resource contention/heterogeneity, autonomic would like credits this quarter, please contact the professor
configuration/deployment, software tools

Contalnerization (Docker):
Containers, container orchestration frameworks, observability/
monitoring, resource allocation, checkpointing
Infrastructure-as-a-Service (laaS) Cloud:
Application/workload deployment, performance and cost optimization/
modeling/analytics, infrastructure management, resource contention
detection/mitigation, HW heterogeneity, observability/ —
monitoring, side channels to infer characteristics of the host & ! 1 —

o TCSS462/562: (Software Er for) Cloud Cor iting [Fall 2022]
VM placement, virtualization overhead with increasing vCPU density D | l November 15, 2022 arefEnginesring forl Couc Computing us10

= |AM User Accounts Create - please let me know of any issues
with these accounts

School of Engineering and Technology, University of Washington - Tacoma

9 10

Don’t Forget to Terminate (Shutdown)
all EC2 instances for Tutorials 3 & 7

OBJECTIVES - 11/15

= Questions from 11/10
Sot instances: | = Tutorials Questions |
. = Cl P tati 8
c5d.large instance @ ~2 cents / hour ol Toohmology or

Cloud Technology or Research Paper Review

" Quiz 1
$$3°é4és//v;‘eaeyk = Ch. 5: Cloud Enabling Technology
. = Tutorial 7
$14.60/ month = Containerization

$175.20 / year

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2022]
l (e School of Engineering and Technology, University of Washington - Tacoma en

11 12

Slides by Wes J. Lloyd L14.2

mailto:wlloyd@uw.edu
http://faculty.washington.edu/wlloyd
mailto:wlloyd@uw.edu
http://faculty.washington.edu/wlloyd

TCSS 462: Cloud Computing [Fall 2022]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL O TUTORIAL 4 - NOV 6

= Getting Started with AWS
= http://faculty.washington.edu/wlloyd/courses/tcss562/tutori

Introduction to AWS Lambda with the Serverless Application
Analytics Framework (SAAF)

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials,
als/TCSS462_562_f2022_tutorial_0.pdf

TCSS462_562_f2022_tutorial_4.pdf
Obtaining a Java development environment
Introduction to Maven build files for Java
Create and Deploy “hello” Java AWS Lambda Function
= Creation of APl Gateway REST endpoint
= Sequential testing of “hello” AWS Lambda Function
= APl Gateway endpoint
= AWS CLI Function invocation
Observing SAAF profiling output
Parallel testing of “hello” AWS Lambda Function with faas_runner
Performance analysis using faas_runner reports
Two function pipeline development task

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (i) School of Engineering and Technology, University of Washington - Tacoma L1 (I 2 School of Engineering and Technology, University of Washington - Tacoma u

= Create an account

= Create account credentials for working with the CLI
= [nstall awsconfig package

= Setup awsconfig for working with the AWS CLI

13 14

IAM USERS - TUTORIAL 4 TUTORIAL 4 - RESUBMISSION

0 B p = For tutorial 4 submissions, several submission indicate

= Students completing tutorial 4 with an IAM user account may Thread.sleep(10000) was added but the results for the question 6
encounter permission issues do not confirm this.

= Please contact the instructor if encountering any issues " Itis possible that:

1. The provided results from the SAAF Report Generator were from a
test run before the Thread.Sleep() statement was added to the
code
-OR -

2. The Thread.Sleep() statement was added in the incorrect location
of the code
-OR -

3. When opening the CSV output from the Report Generator, the file
separator characters were set incorrectly.

= The only separator for a CSV file is the comma ",“
Be sure to correctly open the CSV file in the spreadsheet.
Columns can be offset resulting in the wrong answers being
provided for Question 6.

‘ November 15, 2022 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] s ‘ November 15, 2022 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] 16

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

15 16

TUTORIAL 4 - RESUBMISSION - 2 TUTORIAL 4 - RESUBMISSION - 3

e e o FuNCTIoN ane e s L S (A i o 0 e Bt s
END FUNCTION comments in the handleRequest() method specified seconds. This will impact the outputs requested for Question 6:
as the AWS Lambda function’s handler under runtime settings in
the AWS Lambda GUI.

avg_runtlme is the server-side (cloud) runtime of the function

This is the time it takes for the function to run on AWS Lambda
J/#*ARR AN ke R RS START FUNCTION IMPLEMENTATIONS #4444 &k ks hassssssssshss (cloud)

try
{

Adding sleep of 10 seconds should increase a function’s
Thread.sleep(10000) ; ug—mmlm
)

catch (InterruptedException ie) = avg_roundTripTIme is the total time for a request from a client
{ (laptop?) to travel to the server (cloud), make the function call, and
System.out.println("Interruption occurred while sleeping."); return.
} = If trying to make 50 calls at once on a laptop with a small # of CPU
J/**ARRAA KRR AR AEND FUNCTION IMPLEMENTATIO Nk #5444 %% kkhhss s s sk kkhhnas

cores this time may be slow
= Adding sleep of 10 seconds should increase a function’s
avg_roundTripTime

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (T B School of Engineering and Technology, University of Washington - Tacoma e (U EREIRE R School of Engineering and Technology, University of Washington - Tacoma e

17 18

Slides by Wes J. Lloyd L14.3

http://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_0.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_4.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

TUTORIAL 4 - RESUBMISSION - 4

= avg_cpuldleDelta time is the amount of time the Lambda
function’s Firecracker vCPUs are idle during the function call
on the server measured in centiseconds:
100 centiseconds = 1 second
100 centiseconds = 1000 milliseconds

By default, AWS Lambda functions with 512 MB run in a
runtime environment with access to two vCPU cores

This is the total vCPU idle time for both cores (it is doubled)
Adding sleep of 10 seconds should increase your function’s
avg_cpuldleDelta

= How much should avg_cpuldieDelta Increase ?

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (i) School of Engineering and Technology, University of Washington - Tacoma 19

19

TUTORIAL 6 - NOV 21

Introduction to Lambda Ill: Serverless Databases

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_6.pdf

Create and use Sqlite databases using sqlite3 tool

Deploy Lambda function with Sqlite3 database under /tmp
Compare in-memory vs. file-based Sqlite DBs on Lambda
Create an Amazon Aurora “Serverless” v2 MySQL database

= Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

Deploy an AWS Lambda function that uses the MySQL
“serverless” database

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ November 15,2022 School of Engineering and Technology, University of Washington - Tacoma szt

21

GROUP PRESENTATION

TWO OPTIONS:
Cloud technology presentation
Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://f Ity.washington.. wll r 2, r:

= Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:
TODAY: Wednesday November 16" @ 11:59pm

Presentation dates:
= Tuesday November 22, Tuesday November 29
= Tuesday December 6, Thursday December 8

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (T B School of Engineering and Technology, University of Washington - Tacoma ue

TUTORIAL 5 - NOV 13

= |Introduction to Lambda Il: Working with Files in S3 and
CloudWatch Events

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_5.pdf

= Customize the Request object (add getters/setters)
= Why do this instead of HashMap ?

= Import dependencies (jar files) into project for AWS S3

= Create an S3 Bucket

= Give your Lambda function(s) permission to work with S3

= Write to the CloudWatch logs

= Use of CloudTrail to generate S3 events

= Creating CloudWatch rule to capture events from CloudTrail

= Have the CloudWatch rule trigger a target Lambda function with
a static JSON input object (hard-coded filename)

= Optlonal: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
(I 2 School of Engineering and Technology, University of Washington - Tacoma 11420

20

OBJECTIVES - 11/15

= Questions from 11/10
= Tutorials Questions

= Class Presentations:
Cloud Technology or Research Paper Revlew

= Quiz 1

= Ch. 5: Cloud Enabling Technology
= Tutorial 7

= Containerization

TC55462/562:(Software Engineering for) Cloud Computing [Fal 2022]
‘ November 15,2022 School of Engineering and Technology, University of Washington - Tacoma sz

22

OBJECTIVES - 11/15

= Questions from 11/10
= Tutorials Questions

= Class Presentations:
Cloud Technology or Research Paper Review

= Quiz 1 |
= Ch. 5: Cloud Enabling Technology

= Tutorial 7

= Containerization

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2022]
‘ (U EREIRE R School of Engineering and Technology, University of Washington - Tacoma Laz

23

Slides by Wes J. Lloyd

24

L14.4

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_6.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing [Fall 2022]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

= Opened Monday Nov 14 at 8:00 am = Questions from 11/10
= Closes Friday November 18 at 11:59 am : :
[]
= Individual work only Tutorials Questlons
= Please answer every question = Class Presentations:
= Book, notes, slides, calculator, and internet are allowed Cloud Technology or Research Paper Review
O = Quiz 1
= The Canvas autograder produces a preliminary score, not the final score. N o
= The instructor will manually review all quizzes and add partial credit I = Ch. 5: Cloud Enablmg TechnOIOgy I
= A curve adjustment will also be applied as appropriate = Tutorial 7
= These updates may not occur until several days after the quiz closes = Containerization
= Please report suspected grading problems to the instructor
= Attempts:
= 1 quiz attempt, 120 minute limit, 20 questions.
= Coverage is inclusive of Lectures ~1-8
= Please plan accordingly. Once started, there will be 2 hours to complete

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (i) School of Engineering and Technology, University of Washington - Tacoma Lzs (I 2 School of Engineering and Technology, University of Washington - Tacoma 11426

25 26

CLOUD ENABLING TECHNOLOGY

= Adapted from Ch. 5 from Cloud Computing
Concepts, Technology & Architecture

= Broadband networks and internet architecture

C OUD ENABLING i . = Data center technology
TECHNOLOGY LS = Virtualization technology

= Multitenant technology

|lWeb/web services technology |
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ November 15,2022 ‘ School of Engineering and Technology, University of Washington - Tacoma L1428

27 28

5. WEB SERVICES/WEB HYPERTEXT TRANSPORT PROTOCOL (HTTP)
= Web services technology is a key foundation of cloud = An ASCll-based request/reply protocol for transferring
computing’s “as-a-service” cloud delivery model information on the web

HTTP request includes:

= request method (GET, POST, etc.)

= Uniform Resource Identifier (URI)

= HTTP protocol version understood by the client

= SOAP - “Simple” object access protocol
= First generation web services
= WSDL - web services description language
= UDDI - universal description discovery and integration

= SOAP services have their own unique interfaces = headers—extra Info regarding transfer request

HTTP response from server HTTP status codes:
= Protocol version & status code > s —all is well
- Response headers XX —lesouree mawzd

= REST - instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

= HTTP GET, PUT, POST, DELETE - - doc - aceess problem
esponse body Sxx — server eror
TCS462/562:(Software Engineering for) Cloud Computing [Fall 2022] TCS5462/562:(Sof tware Engineering for) Cloud Computing [Fall 2022]
‘ (T B School of Engineering and Technology, University of Washington - Tacoma b (e School of Engineering and Technology, University of Washington - Tacoma e

29 30

Slides by Wes J. Lloyd L14.5

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

REST: REPRESENTATIONAL STATE TRANSFER

= Web services protocol
= Supersedes SOAP - Simple Object Access Protocol

= Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

= Requests are made to a URI

= Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

= HTTP verbs: GET, POST, PUT, DELETE, ...

School of Engineering and Technology, University of Washington - Tacoma

‘ November 15, 2022 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022] s

31

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

e el School of Engineering and Technology, University of Washington - Tacoma L1433

33

REST CLIMATE SERVICES EXAMPLE

= USDA // REST/JISON
Lat/Long // Request climate data for Washington
Climate {
Service "parameter": [
Demo

. "name": "longitude",
= Just provide "value":-122.4443

a Lat/Long])

‘ (ErEi i e 2R School of Engineering and Technology, University of Washington - Tacoma

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] L35

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m: >The F1 ket</m: >
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

November 15, 2022 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

School of Engineering and Technology, University of Washington - Tacoma 2

32

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"7>
<definitions name ="DayOfWesk"
tp:, au

p://1
ttp: //schemas . xmlsoap. org/wsd1/soap/"
w3 0rg/2001/XMLSchema”
hemas _xnlsosp. org/wsd1/">
ayOfWeekInput >
te" type="xsd:date"/>

ayOfHieekResponse”>
yOfWeek" type="xsd:string"/>

pace="http: //;
1 ">
</input>
<output>
<soap:body use="encoded"
p: P
"http://sch 1 />
</operation>
</binding>
<service name="DayOfWeckservice” >
<documentation>

Returns the day-of-week name for a given date
</documentation>
<port name= o=

="heep:// 7>

</port>
</serv
</detinitions>
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022] i
222 School of Engineering and Technology, University of Washington - Tacoma L1434

34

REST - 2

= App manipulates one or more types of resources.

= Everything the app does can be characterized as some
kind of operation on one or more resources.

= Frequently services are CRUD operations
(create/read/update/delete)
= Create a new resource
= Read resource(s) matching criterion
= Update data associated with some resource
= Destroy a particular a resource

= Resources are often implemented as objects in 00
languages

School of Engineering and Technology, University of Washington - Tacoma

35

Slides by Wes J. Lloyd

‘ November 15, 2022 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2022] a3

36

L14.6

TCSS 462: Cloud Computing [Fall 2022]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST ARCHITECTURAL ADVANTAGES OBJECTIVES - 11/15

= Performance: component interactions can be the dominant = Questions from 11/10

factor in user-perceived performance and network efficiency = Tutorials Questions
= Scalabllity: to support large numbers of services and = Class Presentations:

interactions among them Cloud Technology or Research Paper Review
= SImpllclty: of the Uniform Interface = Quiz 1
= Modifiab : of services to meet changing needs (even while the = Ch. 5: Cloud Enabling Technology

application is running) | = Tutorial 7 |
= Visibility: of communication between services = Containerization

= Portabllity: of services by redeployment

= Rellabllity: resists failure at the system level as redundancy of
infrastructure is easy to ensure

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (i) School of Engineering and Technology, University of Washington - Tacoma 137 (I 2 School of Engineering and Technology, University of Washington - Tacoma 11438

37 38

TUTORIAL 7 - DEC 5

Introduction to Docker

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_7.pdf

Must complete using Ubuntu 22.04 (for cgroups v2)

Use docx file for copying and pasting Docker install commands
Installing Docker

Creating a container using a Dockerfile

Using cgroups virtual filesystem to monitor CPU utilization of a
container

Persisting container images to Docker Hub image repository
Container vertical scaling of CPU/memory resources
Testing container CPU and memory isolation

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 15, 2022 School of Engineering and Technology, University of Was
Tacoma

39 40

TCSS462/562:(Software Engineering for) Cloud Computi
v |

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
November 15,2022 School of Engineering and Technology, University of Washington - Tacoma Laso

TUTORIAL COVERAGE

= Docker CLI > Docker Engine (dockerd) > containerd - runc

= Working with the docker CLI:

= docker run create a container
= docker ps -a list containers, find CONTAINER ID
= docker exec --it run a process in an existing container
= docker stop stop a container
= docker Kill kill a container
= docker help list available commands
= man docker Docker Linux manual pages
[ovemberiszvzs | e ovar orne o v om0z | e]

41

Slides by Wes J. Lloyd L14.7

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 7

= Tutorial introduces use of two common Linux performance
benchmark applications

= stress-ng
= 100s of CPU, memory, disk, network stress tests

= Syshench
= Used in tutorial for memory stress test

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
l (i) School of Engineering and Technology, University of Washington - Tacoma e

[Fall 2022]

OBJECTIVES - 11/15

= Questions from 11/10
= Tutorials Questions

= Class Presentations:
Cloud Technology or Research Paper Review

= Quiz 1
= Ch. 5: Cloud Enabling Technology
= Tutorial 7

| = Containerization |
TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
l (I 2 School of Engineering and Technology, University of Washington - Tacoma Lsas

43

WE WILL RETURN AT
~7:15 PM

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution
= Linux cgroups, namespaces, etc.

= Containers can run on bare metal, or atop of VMs

T[T
olofolofo|a
nlnn

I [W

© Container Wb
o 3
3 Appiiciion [V)[va][vm] v o D

Sl Ll L) Depembern s
THlost OS ™ L i Hypervisor engine or engine |
Containers engine Hardware Host U5,

Hast 08 . Type 1 Hardware
Containers :
[Hudwe | Hypervisor/VM Typel

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] vesr
School of Engineering and Technology, University of Washington - Tacoma

l November 15, 2022

47

Slides by Wes J. Lloyd

44

CONTAINERIZATION

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 20}
(it 212 School of Engineering and Technology, University of Washington -

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

Comparison

" Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:
A

MFleps thizher is brster)

KM BOCKER LXC NATIVE o8V

Fig. 4. The value of Linpack results on each platform over 1§ runs. This is
the particular case of N=1000.

l (e [School of Engineering and Technology, University of Washington -Tacoma

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022] Lass

48

L14.8

TCSS 462: Cloud Computing [Fall 2022]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

Y-CRUNCHER: Pl CALCULATOR CONTAINER PERFORMANCE - BONNIE++
Performance data from IC2E 2015: Performance data from IC2E 2015:
Hypervi: vs. Li i Vir i Hypervisors vs. Lightweight Virtualization:
ARV | A Performance Comparison 250000 Comparison
1790 | lapocker @KVVM EDOCKER BLXC ENATIVE
1700 BLXC
i ENATIVE 5
5650 H
H = 150000
2 1600 2
E H
3 155 £ 100000
]
N £ s
Z
140
0
1350 / Block Output Block Input
i //,k Fig. 6. Disk Throughput achieved by running Bonniet+ (test file of 25 GiB)
Computution Tine Total Time Results for sequential writes and sequential read arc shown.
TCS8462/562:(Software Engineering for) Cloud Computing [Fall 2022) TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (rzatoAC e School of Engineering and Technology, University of Washington - Tacoma Lad ‘ WO, 292 ‘ School of Engineering and Technology, University of Washington - Tacoma 1as0

49 50

WHAT IS A CONTAINER? OPERATING SYSTEM CONTAINERS

According to NIST (National Institute of Standards Technology) = Virtual environments: share the host kernel

= Virtualization: the simulation of the software and/or hardware p q q
upon which other software runs. (800-125) " Provide user space isolation

= Replacement for VMs: run multiple processes, services

= System Virtual Machine: A System Virtual Machine (VM) is a S GRFERemt (Ui CHeires om Same [est
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Examples: LXC,

OpenVZ,
= Operating System Virtuallzation (aka OS Container): Provide Linux Vserver,
multiple virtualized OSes above a single shared kernel (800- BSD Jails
190). E.g., Solaris Zone, FreeBSD Jails, LXC]
)- B8 ! ! Solaris zones
= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt e Identical OS containers Different flavoured OS containers
TCSS462/562:(Software Engil ring for) Cloud Cc iting [Fall 2022] TCS5462/562:(Soft: Er for) Cloud C uting [Fall 2022]
\ November15, 2022 | (i1 Gt e cincerng and Technology, University of wadington - Tacoma uest \ November1S, 2022 | 00731t cincerng and Technoloy, University of Wadnington - Tacoma

51 52

APPLICATION CONTAINERS APPLICATION CONTAINERS - 2

Designed to package and run a single service = Container images are “layered”

= Base image: common for all components

= Add layers that are specific
for components, services

All containers share host kernel
Subtle differences from operating system containers

references

= Examples: Docker, Rocket o6 el Garent
= Docker: runs a single process on creation = Layering promotes reuse image
= 0S containers: run many OS services, for an entire 0S = Reduces duplication of

= Create application containers for each component of an app data across images

Supports a micro-services architecture
DevOPS: developers can package their own components in
application containers

Supports horizontal and vertical scaling

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (T B School of Engineering and Technology, University of Washington - Tacoma bes (e School of Engineering and Technology, University of Washington - Tacoma Last

53 54

Slides by Wes J. Lloyd L14.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing

School of

Engineering and Technology, UW-Tacoma

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

0 Uss Bockar 1o
migrate workioads to cloud enviranments

& dockar

uass

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

‘ (i) School of Engineering and Technology, University of Washington - Tacoma

55

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

= (1) Original Docker engine relied on LXC
= LXC itself is a containerization tool predating Docker
= Original Docker API just called it

= LXC originally provided access
to Linux kernel features:

$Docker client
namespaces and cgroups
= LXC was Linux specific - caused ocker

issues if wanting to be multi-platform

= Docker implemented their own
replacement for LXC

Capabilities

TCS462/562: (Software Engineering for) Cloud Computing (Fall 2022]

November 15,2022 School of Engineering and Technology, University of Washington - Tacoma

cgroups
Host Kernel
uas7

57

OPEN CONTAINER INITIATIVE (OCI)

OCl created container standards for:

= Image specification

= Container runtime specification

Docker 1.1 (2016): Docker refactored the docker engine to be

compliant with OCI standards

= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

= Runc was added to implement the OCI container runtime spec

= Provides small, lightweight wrapper for libcontainer

= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.

The Docker APl is much more user friendly

Support for OClI compliant images was added to Containerd

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]

(T B School of Engineering and Technology, University of Washington - Tacoma

L1459

[Fall 2022]

DOCKER

= Docker daemon “dockerd”
= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

Starting in 2017 version
numbering switches from Q,
1.x to YR.x

2047 releases: 17.03 - 17.12
2018 releases: 18.01 - 18.09
2019 releases: 19.03.0 - 19.03.13 g

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma

56

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: |lIbcontalner introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

| libcontainer |

Capabilities

Host Kernel

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]

‘ November 15,2022 School of Engineering and Technology, University of Washington - Tacoma

L1458

58

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo
= Daemon calls containerd

= Containerd passes of request to runc
OCI compliant bundle containerd
= This step would allow any OCI compliant container

= Contalnerd converts docker image into
to be plugged into the back-end
= Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container

= Shim: once a container is created, runc exits
= Shim remains as a daemonless stub to
implement the container
= Allows Docker to be upgraded w/o
stopping the container !!!

Namespaces

cgroups
Host Kernel

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 15, 2022

Las0

59

Slides by Wes J. Lloyd

60

L14.10

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

CREATING A CONTAINER - 2

=

Docker CLIUI

container

(o —{ — =

Runc and olher OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon
= Docker engine: dockerd daemon, interfaces with containerd
= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API > Google RPC (gRPC) interface;
= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI

‘ November 15, 2022

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

s

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

= Enables docker to support many *
alternate container backends Docker c :

= OpenVZ, system-nspawn, libvirt-Ixc, ' * — B
libvirt-sandbox, gemu/kvm, e - repaa

BSD Jails, Solaris Zones, and chroot |
Linux

cgroups mamespaces netlink

selinux nethilter
capabilivies ——
o

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022) Lag2
School of Engineering and Technology, University of Washington - Tacoma

‘ November 15, 2022

61

62

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

LINUX KERNEL NAMESPACES

‘ November 15, 2022

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

Las3

NAMESPACES - 2

= Provides Isolation of 0S
entities for containers

= mnt: separate filesystems
= pld: independent PIDs; first process in containeris PID 1
= |pc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= user: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

‘ November 15, 2022 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2022] s

School of Engineering and Technology, University of Washington - Tacoma

63

= Prioritization
= CPU share

= Accounting

= Control

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk 1/0, network I/0

= Resource limiting

= Memory, disk cache

= Disk 1/0 throughput

= Track resource utilization
= For resource management and/or billing purposes

= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

‘ November 15, 2022

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

Lass

65

Slides by Wes J. Lloyd

64

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts a;ix;:ivs name [hierarchy | num_cgroups [enabled
for CPU usage pu
puacct
blkio
memory 8
= cgroup filesystem: jdevices
reozer
= /sys/fs/cgroup net_cls
. . f_event T
= Can browse resource utilization et pro
. uget!
of containers... ids T
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (U EREIRE R School of Engineering and Technology, University of Washington - Tacoma L1456

66

L14.11

TCSS 462: Cloud Computing [Fall 2022]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OVERLAY FILE SYSTEMS LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04

= Docker leverages overlay filesystems = Dockerfile: copy . /app

= 1st: AUFS - Advanced multi-layered unification filesystem RUN make /app

= Now: overlay2 CMD python /app/app.py
.

Unlon mount flle system: combine multiple directories into one that
appears to contain combined contents
ThinR/W layer +—— Container layer

Idea: Docker uses layered file systems
Only the top layer is writeable

_ l l ! i i

= Other layers are read-only

= Layers are merged to present the notion of a real file system Run make /app 2

= Copy-on-write- implicit sharing T
1 n Image layers (R/0)

" h ://medium.com/@n
demystified-b6ed8112a04a

Ubuntu base image - [FE T 188.1 M8

ubuntu:15.04
= h ://Www.sli hare.net/j 2z leldx-Ixc-talk-1,
Container
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ (i) School of Engineering and Technology, University of Washington - Tacoma e (I 2 School of Engineering and Technology, University of Washington - Tacoma L1468

67 68

THREE-TIER ARCHITECTURE CONTAINER ISOLATION

= |s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

Application
App | App containers
eins/is | ming/ios
Container
runtime

mples - LXC. OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2022]
‘ Novemberdsi2022 School of Engineering and Technology, University of Washington - Tacoma 16 [Novemberis)2022 School of Engineering and Technology, University of Washington - Tacoma 1a70

OS containers App containers

= Meant o used as an OS - run mulliple + Meant to run for a sing

69 70

LXC (LINUX CONTAINERS) OTHER DOCKER TOOLS

= Operating system level virtualization = Docker Machine:
. . . automatically provision
= Run multiple isolated Linux systems on a host and manage sets of
using a single Linux kernel docker hosts to

form a.c D CERET G
= Control groups(cgroups) orm a cluster containerd containerd-shi
“Including in Linux kernels => 2.6.24 bockerswarn: (D O O

=Limit and prioritize sharing of CPU, memory, Clusters multiple docker hosts together to manage as a
block/network 1/0 cluster.
. = Docker Compose: Config file (YAML) for multi-container
= Linux namespaces application; Describes how to deploy and configure multiple
= Docker initially based on LXC containers
[o m | o o e s [vowmberis on | S e quree ooy

71 72

Slides by Wes J. Lloyd L14.12

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

infrastructure
= Generate to cost savings
=" Reduce vendor lock-in

= Compact multiple apps onto shared public cloud

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

l (i) School of Engineering and Technology, University of Washington - Tacoma

uars

[Fall 2022]

KEY ORCHESTRATION FEATURES

= Management of container hosts

= Launching set of containers

= Rescheduling failed containers

= Linking containers to support workflows

= Providing connectivity to clients outside the container cluster

= Firewall: control network/port accessibility

= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers

= Load balancing over groups of containers

= Rolling upgrades of containers for application

|

73

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]

(I 2 School of Engineering and Technology, University of Washington - Tacoma

a7

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

a-service
= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

= Many public cloud provides moving to offer Kubernetes-as-

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2022]

l Novemberdsi2022 School of Engineering and Technology, University of Washington - Tacoma

ua7s

74

75

Slides by Wes J. Lloyd

QUESTIONS

‘TCSS462/562:(Software Engineering for) Cloud Computing [Fall 20}
School of Engineering and Technology, University of Washington -

November 15, 2022

76

L14.13

