
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.1

Cloud Enabling Technology III
&
Containerization

Wes J. Lloyd
School of Engineering and Technology

University of Washington – Tacoma

TR 5:50-7:50 PM

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING
THIS WEEK

Tuesday:

▪4:30 to 5:30 pm - CP 229 and Zoom

Thursday*

▪4:30 to 5:30 pm - CP 229 and Zoom

Or email for appointment
* Rescheduled due to Veteran’s Day hol iday – Nov 11th

> Of f ice Hour s set based on Student Demographics sur vey feedback

OFFICE HOURS – FALL 2022

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

 Questions from 11/8

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Containerization

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

OBJECTIVES – 11/10

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

ONLINE DAILY FEEDBACK SURVEY

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.5

 Please classify your perspective on material covered in today’s

class (39 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.38 (- previous 6.52)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.38 (- previous 5.41)

 Response rates:

 TCSS 462: 21/33 – 63.63%

 TCSS 562: 18/26 – 69.23%

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.2

 From tutorial 4 I don't understand?
PART 8 - QUESTION 4: Report the number of runs with
newcontainer=0
(these are recycled runtime environments)
QUESTION 5: Report the number of runs with
newcontainer=1
(these are newly created runtime environments)

 AWS Lambda functions run in special runtime
environments hosted using Firecracker microVMs

▪ These are mini-VMs with a smaller footprint than full Linux VMs
such as those created with ec2 (IaaS cloud)

▪ The lifetime of these VMs is can be < 1 hour

▪ The are created and destroyed on demand solely for the
purpose of executing Lambda function securely in isolation

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

FEEDBACK FROM 11/8

 Does Lambda use Fi recracker?

▪ Yes – Firecracker was introduced Nov 2018, and by Fall 2020 it was
rolled out globally across all Regions / Availability Zones

▪ https://aws.amazon.com/blogs/aws/firecracker -lightweight-
virtualization-for-serverless-computing/

 What are the d isadvantages o f the F i recracker?

▪ Firecracker is a microVM

▪ It would be inappropriate as a replacement for standard VMs that need
to run a full operating system instance

▪ For example, VMs that need to run a GUI, or multiple applications
simultaneously

 What kind o f application we should consider to use F i recracker
over the o ther VMs?

▪ Firecracker VMs are great for hosting serverless functions,
microservices (e.g. small bits of code), or a single application with
small(er) footprints requiring less memory and where the microVM has a
shorter uptime

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

FEEDBACK - 2

 Not related to the lecture, but 3 days af ter completing

assignment 5, I received an email stating that I had used 85%

of my S3 put capacity.

 Could it be a mistake I made or d id we have to delete the

event tr igger f rom CloudTrail/EventBridge?

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

FEEDBACK - 3

 AWS accounts only allow 2,000 S3 PUT actions per month for

free

 After the free tier, each additional 1,000 PUTS costs $0.005

(half a penny)

 Cloud Trails created in the management console by default

publish event logs to S3 buckets in every region globally !!

 See the GUI column 'Multi -region trail’ - it is Yes by default

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

FEEDBACK - 4

 There are about 28 AWS regions globally

 I found over 8,000 objects in my "global" cloud trail bucket

from some testing I had performed earlier in October

 Each log event may put an object in every region using a

separate S3 PUT action

 My bill shows 10 cents for S3 PUT, COPY, POST, and LIST

actions (about 20,000 S3 actions)

 The Billing Dashboard does not breakout the specific actions

 To make the CloudTrail specific to one region using AWS CLI:

aws cloudtrail update-trail

--name (name-of-your-cloudtrail)

--no-is-multi-region-trail

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

FEEDBACK - 5

 IAM User Accounts Create – please let me know of any issues

with these accounts

 If you did not provide your AWS account number on the AWS

CLOUD CREDITS SURVEY to request AWS cloud credits and you

would like credits this quarter, please contact the professor

October 11, 2022
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

AWS CLOUD CREDITS

7 8

9 10

11 12

https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.3

Don’t Forget to Terminate (Shutdown)

all EC2 instances for Tutorial 3

Spot instances:
c5d.large instance @ ~2 cents / hour

$0.48 / day
$3.36 / week

$14.60 / month

$175.20 / year

AWS CREDITS →→→→→→→→

 Questions from 11/8

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Containerization

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

OBJECTIVES – 11/10

 Getting Started with AWS

 http://faculty.washington.edu/wlloyd/courses/tcss562/tutori

als/TCSS462_562_f2022_tutorial_0.pdf

 Create an account

 Create account credentials for working with the CLI

 Install awsconfig package

 Setup awsconfig for working with the AWS CLI

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

TUTORIAL 0

 Introduct ion to AWS Lambda with the Serverless Applicat ion
Analyt ics Framework (SAAF)

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/
TCSS462_562_f2022_tutorial_4.pdf

 Obtaining a Java development environment

 Introduct ion to Maven build fi les for Java

 Create and Deploy “hello” Java AWS Lambda Function

▪ Creation of API Gateway REST endpoint

 Sequential test ing of “hello” AWS Lambda Funct ion

▪ API Gateway endpoint

▪ AWS CLI Function invocation

 Observing SAAF profi l ing output

 Parallel test ing of “hello” AWS Lambda Funct ion with faas_runner

 Performance analysis using faas_runner reports

 Two funct ion pipeline development task

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

TUTORIAL 4 – NOV 6

 Students completing tutorial 4 with an IAM user account may

encounter permission issues

 Please contact the instructor if encountering any issues

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

IAM USERS – TUTORIAL 4

 For tutorial 4 submissions, several submission indicate
Thread.sleep(10000) was added but the results for the quest ion 6
do not confirm this.

 It is possible that :

1. The provided results from the SAAF Report Generator were from a
test run before the Thread.Sleep() statement was added to the
code

- OR -

2. The Thread.Sleep() statement was added in the incorrect location
of the code

- OR -

3. When opening the CSV output from the Report Generator, the fi le
separator characters were set incorrect ly.

 The only separator for a CSV fi le is the comma ",“
Be sure to correct ly open the CSV fi le in the spreadsheet.
Columns can be of fset result ing in the wrong answers being
provided for Quest ion 6.

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

TUTORIAL 4 - RESUBMISSION

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_0.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_4.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.4

 The sleep statement must go between the START FUNCTION and

END FUNCTION comments in the handleRequest () method specified

as the AWS Lambda funct ion’s handler under runt ime sett ings in

the AWS Lambda GUI.

//****************START FUNCTION IMPLEMENTATION*************************

try

{

Thread.sleep(10000);

}

catch (InterruptedException ie)

{

System.out.println("Interruption occurred while sleeping.");

}

//****************END FUNCTION IMPLEMENTATIO N***************************

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

TUTORIAL 4 – RESUBMISSION - 2

 SANITY CHECK: consider that adding 10 seconds of sleep to your
AWS Lambda funct ion wil l cause the funct ion to run for at least 10
seconds. This wil l impact the outputs requested for Quest ion 6:

 avg_runtime is the server -side (cloud) runt ime of the funct ion

 This is the t ime it takes for the funct ion to run on AWS Lambda
(cloud)

 Adding sleep of 10 seconds should increase a funct ion’s
avg_runtime

 avg_roundTripTime is the total t ime for a request from a cl ient
(laptop?) to travel to the server (cloud), make the funct ion call , and
return.

 I f t rying to make 50 calls at once on a laptop with a small # of CPU
cores this t ime may be slow

 Adding sleep of 10 seconds should increase a funct ion’s
avg_roundTripTime

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

TUTORIAL 4 – RESUBMISSION - 3

 avg_cpuIdleDelta time is the amount of time the Lambda

function’s Firecracker vCPUs are idle during the function call

on the server measured in centiseconds:

100 centiseconds = 1 second

100 centiseconds = 1000 milliseconds

 By default, AWS Lambda functions with 512 MB run in a

runtime environment with access to two vCPU cores

 This is the total vCPU idle time for both cores (it is doubled)

 Adding sleep of 10 seconds should increase your function’s

avg_cpuIdleDelta

 How much should avg_cpuIdleDelta increase ?

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.21

TUTORIAL 4 – RESUBMISSION - 4

 Introduction to Lambda II: Working with Files in S3 and
CloudWatch Events

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_5.pdf

 Customize the Request object (add getters/setters)
▪ Why do this instead of HashMap ?

 Import dependencies (jar files) into project for AWS S3

 Create an S3 Bucket

 Give your Lambda function(s) permission to work with S3

 Write to the CloudWatch logs

 Use of CloudTrai l to generate S3 events

 Creating CloudWatch rule to capture events from CloudTrai l

 Have the CloudWatch rule tr igger a target Lambda function with
a static JSON input object (hard -coded fi lename)

 Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

TUTORIAL 5 – NOV 13

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2022_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3 tool

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. f ile-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

TUTORIAL 6 – NOV 21

 Questions from 11/8

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Containerization

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

OBJECTIVES – 11/10

19 20

21 22

23 24

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_6.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.5

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)

with desired dates of presentation via Canvas by:

TODAY: Wednesday November 16 th @ 11:59pm

 Presentation dates:

▪ Tuesday November 22, Tuesday November 29

▪ Tuesday December 6, Thursday December 8

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

GROUP PRESENTATION

 Questions from 11/8

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Containerization

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

OBJECTIVES – 11/10

 Opens Monday Nov 14 at 8:00 am

 Closes Fr iday November 18 at 11:59 am

 Individual work only

 Please answer every question

 Book, notes , s l ides, calculator, and internet are al lowed

 Gr ading:

 The Canvas autograder produces a pre l iminary score, not the f inal score.

 The instructor wi l l manually review al l quizzes and add par tial credit

 A cur ve adjustment wi l l also be appl ied as appropriate

 These updates may not occur unti l several days af ter the quiz closes

 Please report suspected grading problems to the instructor

 A ttempts:

 1 quiz attempt, 120 minute l imit , 20 questions.

 Coverage is inclus ive of Lectures ~1 -8

 Please plan accordingly. Once star ted, there wi l l be 2 hours to complete

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

QUIZ 1

 Questions from 11/8

 Tutorials Questions

 Class Presentations:

Cloud Technology or Research Paper Review

 Quiz 1

 Ch. 5: Cloud Enabling Technology

 Containerization

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

OBJECTIVES – 11/10

CLOUD ENABLING

TECHNOLOGY

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

CLOUD ENABLING TECHNOLOGY

25 26

27 28

29 30

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.6

 Tradeoff space:

What is the “right” level of abstraction in the cloud

for sharing resources with users?

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

KEY VIRTUALIZATION TRADEOFF

Degree of
Hardware

Abstraction

Abstraction
Concerns:

• Overhead

• Performance
• Isolation

• Security

Too muchToo little

 Vir tual Machines – original IaaS cloud abstraction

 OS and Application Containers – seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

TYPES OF ABSTRACTION IN THE CLOUD

_

FIRECRACKER MICRO VM

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.33

From https://firecracker-microvm.github.io/

 Provides a vir tual machine monitor (VMM) (i.e. hypervisor)

using KVM to create and manage microVMs

 Has a minimalist design with goals to improve security,

decreases the startup time, and increases hardware utilization

 Excludes unnecessary devices and guest functionality to

reduce memory footprint and attack surface area of each

microVM

 Supports boot time of <125ms, <5 MiB memory footprint

 Can run 100s of microVMs on a host, launching up to 150/sec

 Is available on 64-bit Intel, AMD, and Arm CPUs

 Used to host AWS Lambda and AWS Fargate

 Has been open sourced under the Apache 2.0 license

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

FIRECRACKER MICRO VM

 Minimalistic

 MicroVMs run as separate processes on the host

 Only 5 emulated devices are available: vir tio-net, vir tio-block,

vir tio-vsock, serial console, and a minimal keyboard controller

used only to stop the microVM

 Rate limiters can be created and configured to provision

resources to support bursts or specific bandwidth/operation

limitations

 Configuration

 A RESTful API enables common actions such as configuring

the number of vCPUs or launching microVMs

 A metadata service between the host and guest provides

configuration information

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

FIRECRACKER - 2

 Security

 Runs in user space (not the root user) on top of the Linux

Kernel-based Vir tual Machine (KVM) hypervisor to create

microVMs

 Lambda functions, Fargate containers, or container groups can

be encapsulated using Firecracker through KVM, enabling

workloads from dif ferent customers to run on the same

machine, without sacrificing security or ef ficiency

 MicroVMs are fur ther isolated with common Linux user -space

security barriers using a companion program called “jailer”

which provides a second line of defense if KVM is

compromised

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

FIRECRACKER - 2

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.7

 Vir tual Machines – original IaaS cloud abstraction

 OS and Application Containers – seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

TYPES OF ABSTRACTION IN THE CLOUD

_

 Lightweight alternative to containers and VMs

▪ Custom Cloud Operating System

▪ Single process, multiple threads, runs one program

▪ Launch separately atop of hypervisor (XEN/KVM)

▪ Reduce overhead, duplication of heavy weight OS

▪ OSv is most well known unikernel

▪ Several others exist has research projects

▪More information at: http://unikernel.org/

▪ Google Trends

OSv →

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

38

UNIKERNELS

WE WILL RETURN AT

~7:15 PM

 Vir tual infrastructure management (VIM) tools

 Tools that manage pools of vir tual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead

▪ Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be dif ficult to migrate

cross-clouds

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

VIRTUALIZATION MANAGEMENT

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

Middleware to manage virtual machines and

infrastructure of IaaS “clouds”

Examples

▪OpenNebula

▪Nimbus

▪Eucalyptus

▪OpenStack

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

VIM FEATURES

Create/destroy VM Instances

 Image repository

▪Create/Destroy/Update images

▪Image persistence

Contextualization of VMs

▪Networking address assignment

▪DHCP / Static IPs

▪Manage SSH keys

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

37 38

39 40

41 42

http://unikernel.org/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.8

VIM FEATURES - 2

Virtual network configuration/management

▪Public/Private IP address assignment

▪Virtual firewall management

 Configure/support isolated VLANs (private

clusters)

Support common virtual machine managers

(VMMs)

▪XEN, KVM, VMware

▪Support via libvirt library

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

VIM FEATURES - 3

Shared “Elastic” block storage

▪Facility to create/update/delete VM disk volumes

▪Amazon EBS

▪Eucalyptus SC

▪OpenStack Volume Controller

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

 Middleware to manage Docker application container

deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

CONTAINER ORCHESTRATION

FRAMEWORKS

 Public cloud container cluster services

 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service

 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add -on (alpha-July 2018)

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

CONTAINER SERVICES

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

CLOUD ENABLING TECHNOLOGY

 Each tenant (like in an apartment) has their own view of the

application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to

data and configuration that is not their own

 Customizable features

▪ UI, business process, data model, access control

 Application architecture

▪ User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

4. MULTITENANT APPLICATIONS

43 44

45 46

47 48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.9

 Forms the basis for SaaS (applications)

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

MULTITENANT APPS - 2

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

REST: REPRESENTATIONAL STATE TRANSFER

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.54

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>

</soap:Body>

</soap:Envelope>

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.10

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.55

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.56

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>

</message>

<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>

</message>

<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">

<input message="tns:DayOfWeekInput"/>

<output message="tns:DayOfWeekResponse"/>

</operation>

</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">

<soap:operation soapAction="getdayofweek"/>

<input>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="DayOfWeekService" >

<documentation>

Returns the day-of-week name for a given date

</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>

</service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪ Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

REST - 2

 Performance: component interactions can be the dominant

factor in user -perceived per formance and network ef ficiency

 Scalabi lity : to suppor t large numbers of services and

interactions among them

 Simplicity : of the Uniform Inter face

 Modifiabil ity: of services to meet changing needs (even while the

appl ication is running)

 Visibil ity: of communication between services

 Por tabil ity: of services by redeployment

 Reliabil ity: resists fai lure at the system level as redundancy of

infrastructure is easy to ensure

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

REST ARCHITECTURAL ADVANTAGES

CONTAINERIZATION

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.60

55 56

57 58

59 60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.11

 Containers provide “light -weight” alternative to full OS

virtualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand

boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Vir tual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l og . r i s i n g s t a c k . c o m/o p er a t i ng - s ys t e m - c o nt a i ne r s - v s - a p pl i c a t i o n - c on t a i n e r s /

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

OPERATING SYSTEM CONTAINERS

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.12

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

APPLICATION CONTAINERS - 2

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Star t ing in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

DOCKER

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.71

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

67 68

69 70

71 72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.13

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.73

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc inter faces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

 Docker CLI: inter faces with dockerd daemon

 Docker engine: dockerd daemon, inter faces with containerd

 Containerd: simple daemon, inter faces with runc to manage
containers; CRUD inter face for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) inter face;

 runc: lightweight command-line tool for running containers;
Inter faces with Linux cgroups, namespaces; Runs an OCI
container

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.75

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvir t-lxc,

libvir t-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.76

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing) : provides separate host and domain

names
November 10, 2022

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.78

NAMESPACES - 2

73 74

75 76

77 78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.14

 Collect ion of Linux processes

 Group-level resource allocat ion: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Pr ioritization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.79

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup f ilesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.80

CGROUPS - 2

 Docker leverages overlay f i lesystems

 1st: AUFS - Advanced mult i - layered unification f i lesystem

 Now: overlay2

 Union mount f i le system: combine mult iple directories into one that
appears to contain combined contents

 Idea: Docker uses layered f i le systems

 Only the top layer is wri teable

 Other layers are read-only

 Layers are merged to present the notion of a real f i le system

 Copy -on-write- impl ici t sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc-talk-1/

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.81

OVERLAY FILE SYSTEMS

 Dockerfile:

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.82

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.83

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.84

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

79 80

81 82

83 84

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.15

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.85

LXC (LINUX CONTAINERS)

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.86

OTHER DOCKER TOOLS

 Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.87

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.88

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.89

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

TUTORIAL #7

DOCKER, CGROUPS,

RESOURCE ISOLATION

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington -
Tacoma

L13.90

85 86

87 88

89 90

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2022]

Slides by Wes J. Lloyd L13.16

 Docker CLI → Docker Enginer (dockerd) → containerd → runc

 Concepts:

 Docker installation

 Working with docker files

 Docker run – create a container

 Docker ps – list containers

 Docker exec – it – run a process in an existing container

 Docker stop –stop container

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.91

TUTORIAL COVERAGE

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.92

Docker CLI

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

L13.93

TUTORIAL 7 QUESTIONS

November 10, 2022
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma L13.94

91 92

93 94

