
Mitigating Cold Start Problem in Cloud

Computing

Ye Li
TCSS462-562
Research Paper Project

Overview

In serverless computing, when idle, the function does not occupy any resource, and the cloud provider will

subsequently allocate the resource, which will be reclaimed after execution. In busy schedules, many requests

to the function, and the serverless paradigm replicates the functions and runs them simultaneously, making it

cost-effective and more straightforward. However, serverless computing suffers from a cold start problem,

which involves a latency between the request arrival and function execution, affecting the response time and

workflow. This culminates from the analogy that the function does not occupy any resources.

Apporaches

● Optimizing Cost of Serverless Computing through Function Fusion and Placement

● Improving Serverless Application Performance through Feedback-Driven Function Fusion through a

FUSIONALIZE framework

● Eliminating Cold Startup in Serverless Computing with Inter-Action Container Sharing

● HotC: tackling the Cold Start of Serverless Applications by Efficient and Adaptive Container Runtime Reusing

● Using an application-level performance optimization approach called LambdaLite to accelerate the cold start for

serverless applications

Comparison
Approach 1 and 2 have similarities in how FUSIONALIZE and Lambda lite operate in a way
but differ in their framework despite linking to function fusion

LambdaLite and FUSIONALIZE are both different frameworks but perform the same functions

Conclusion
Costless transactions while mitigating cold startups have yet to be achieved, and this inspires
research in the future for function placement and function fusion to execute costless
transactions. There is a need to improve the total latency of serverless applications in the
future.

TCSS 562A Term Project:
Serverless Cloud Native Application

TCSS 562 Team 25:
Yuan Huang, Yifan Xie

1

Case Study: Control Flow

2

Case Study: Composition

3

Initial Results

4

Thank you for watching!

5

TERM PROJECT
PRESENTATION

RamaSoumya
Naraparaju
Sathwika Suddala

The main aim of the project is to develop an TLQ data
pipeline on AWS.Firstly, The data is extracted from csv file,
transformed then loaded and at last query operations are
performed on the data the deployed AWS Lambda
functions,then testing and analysis of the opted metrics is
done.

The main use case of the project is analysing a TLQ pipeline
on different CPU processors and the performance variability
based on their runtime, throughput and latency.

The languages used to implement the data pipeline are
Java,SQL and Bash.The technologies and tools being used
are AWS Lambda, S3 and SQLite.

INTRODUCTION

The code was tested on multiple lambda functions, and
by changing the CPU architectures in lambda, the
testing was sequential for the initial results.

Testing was done for different architectures, SAAF
would be used further for latency, throughput metrics
analysis.

And currently working on the 24-hour performance
Variability for the analysis of turnaround time,
throughput and network latency additionally will
compare performance variability in different
regions(Ohio vs Virginia).

METHODOLOGY

The Graviton2 ARM64 processor had a 0.34% higher runtime
than the Intel x86_64, when all the services were run together
in the ohio us-east-2 region.

Individually the ARM64 processor was 16%, 6.04%, 2.07% faster
than the Intel Xeon x86_64, for the ETL pipeline services
respectively.

RESULTS

Services Runtime for
x86_64

Runtime for
Graviton ARM64

Service 1 (Transform) 2.740s 2.351s

Service 2 (Load) 3.906s 3.670s

Service 3 (Query) 1.179s 1.148s

Combined 6.936s 6.960s

Gap Analysis: How Do Serverless

Function-as-a-Service Platforms

Mitigate Cold Start Latency

Team Number: 15

Team Members: Derek white

What is cold start latency?
 A cold start occurs when a new fresh container environment needs to be created by a

cloud provider

 Cold start latency occurs when a serverless platform needs time to prepare resources

 Preparing resources includes – setting up dependencies and creating the runtime

environment

 Preparation time leads to delays and slower response times

Why is it worth researching?
 In some cases cold start latency can be significantly longer than a function’s run time

 Cold start latency negatively impacts the user experience

 Mitigation of cold start latency can improve response times

 Reducing cold start latency can enhance the user experience

Techniques For Mitigating Cold Start Latency
 Most strategies for mitigating cold start latency fall into two major categories

 Reinforcement Learning – A machine learning technique that attempts to learn from usage

patterns and tries to reduce the frequency of cold starts

 Defuse – A dependency-guided function scheduler that analyzes function invocation patterns.

Defuse pre-warms containers based on common trends in usage

 WLEC – A container management architecture to reduce cold start time. Builds on an existing

S2LRU model. WLEC creates three queues to sort containers by specific metrics

 Pause Container Pool Manager (PCPM) – Uses a pause container pool management system to

pre-create networks to attach to new containers. The use of pre-created networks mitigates a

major bottleneck in container creation

1) Decrease the frequency of cold starts

2) Reduce the preparation time of containers

Modern Research

Summary

Mitigation

Technique

Applied to

Open

Source

Platform

Applied to

Commercial

Platform

Reduce

Startup

Time

Reduce

Cold Start

Frequency

Increase In

Memory

Usage

Improvement

Over

Baseline*

Reinforcement

Learning ✓   ✓ - 

Defuse
   ✓  ✓

WLEC
✓  ✓ ✓ ✓ ✓

PCPM
✓ ✓ ✓  ✓ ✓

 Researchers use different methods to test their mitigation strategies

 Researchers use different metrics to measure their results

 The lack of consistency can make comparing strategies challenging

 Some researchers don’t test their strategies on live services

 Mitigation strategies have pros and cons

 Fewer cold starts and reduced startup time can lead to increased memory usage

*Baseline represents the standard set by existing methods defined by the researchers.

*Baseline may be the number of cold starts or container startup time.

Java vs JavaScript for Serverless
Image Processing Pipelines

Team 12: KV Le, Codi Chun, Duy Vu, Carlos Alberto Manrique Ucharico

GitHub Repo: https://github.com/kvietcong/tcss462-project/

https://github.com/kvietcong/tcss462-project/

Application:
Image Processing

Our Case Studies:
Programming Languages
Hot vs Cold performance

Technologies:
● AWS Lambda: Our code is uploaded here to

be run on a function call.
● AWS S3: Our images we manipulate are put

here before calling functions and after the
processing is done.

● JIMP: Our JavaScript library used to load the
image that has no Native Code (Pure JS).
(https://www.npmjs.com/package/jimp)

Our group implemented a simple Image Processing
Pipeline on AWS Lambda. It supports the following
operations:

● Greyscale
● Soften (Blur)
● Flip (Vertical and Horizontal)

Our case study was implementing our app with Java
and JavaScript. We took best efforts to maintain
similar logic across the versions to center differences
around language rather than implementation.

● To maintain similarity we focused our
processing around manipulating individual
pixels and their RGBA values.

We’re also looking into how “Hot” and “Cold” AWS
Lambda function calls can differ in performance and
if it’s different across languages.

https://www.npmjs.com/package/jimp

Testing Approach
FaaS runner and Bash Scripts

Our process for testing was quite simple.

● We uploaded a few images to our S3 bucket.
● Prepared identical SaaF experiment files for

each language to go through each filter
multiple times for every image.

● Collected the JSON outputs from the runs and
compile them in a Jupyter Notebook for
interactive processing.

For our SaaF experiments, we decided to use many
runs and threads, meaning our experiments ran
concurrently.

● To simultaneously get Hot and Cold calls, we
called each experiment multiple times from a
BASH script with very long sleep times
between them.

Preliminary Results
Images here are the ones used in our experiments

mountains.jpg
565.6KB
3840x2160 husky.jpeg

16.7KB
256x256

deathstar.jpg
956.7KB

1920x1200 vietfood.jpg
163KB

509x339

In our preliminary results above we noted the following:
● Java cold starts are brutal. ⬆️
● JavaScript and Java performances for hot calls are almost equivalent in runtime. ⬆️
● Cold starts are not that impactful for JavaScript but there is a slight difference. ➡️

Story Generation
Pipeline

Team 7: Anthony Carrillo, Elijah Reyes,
Roland Hanson, Showmik Roy

Use Case

● Our project uses AWS Lambda to implement FaaS and generate a small story using a
Markov model, given a text input.

Case Studies

● Comparing performance differences between the x86_64 and arm64 architectures

Implementation

● Our implementation used Python, AWS Lambda, AWS Rest API Gateways, and Bash

Overview

Client

● Locally hosted Ubuntu VM using a two sequential curl Bash script per test
● Communicated via SAAF function handlers and JSON to AWS Lambda

Uniqueness

● Performed using a live Lambda function and using a 6KB portion of a Sherlock Holmes
story as input. Called on hot functions.

Testing

Performance Comparison

Testing runtime between arm64 and x86_64 architectures (in ms)

Each lambda function was run three times and times were reported from the JSON results
Using the results from the three tests, an average runtime was calculated

Extract Transform Extract Transform Extract Transform Avg runtime Extract Avg runtime Transform

x86_64 622 759 599 662 567 664 596 695

arm64 619 680 512 614 527 605 552.6666667 633

We found that on average arm64 was 7.54% faster on the extract function and 9.34%
faster on the transform function. Additional data will be gathered on larger input.

Performance Comparison (cont.)

A FaaS Comparison of Amazon Web Services and
Google Cloud Platform using an Image Process Pipeline

TEAM 1:

Jeff Stockman

Rick Morrow

Austin Carter Luu

Mahmoud Elkamhawy

Overview
Use case: Compare performance, accuracy, and cost variations across AWS and GCP FaaS and storage
services

Implementation:

Python 3.09; associated AWS/GCP libraries; Pillow & Numpy libraries for image processing

• Function 1: uploads an image from a URL into input storage bucket

• Function 2: retrieves stored image, creates mirrored array & difference array, stores to input bucket

• Function 3: retrieves mirrored array, creates greyscale array & difference array, stores to input bucket

• Function 4: retrieves greyscale/greyscale_difference array & mirrored_difference array,

constructs [3] image: greyscale, mirrored, & original image

Function 1: Retrieve Image Function 2: Mirrored Array Function 3:Greyscale Array Function 4: Compile Images

Testing Approach
Pipeline Composition:

• Asynchronous, sequential pipeline
• Single Trigger starting with first function

• O(n)^3 Time Complexity meant to be relatively compute and memory-heavy
• Long-running pipeline will promote performance differences between AWS & GCP

Experimental Design
• Varying Image Size

• Promotes degrees of performance difference based on computing requirements

• Single Pipeline Deployment
• One image processed

• Multi-concurrent Pipeline Deployment
• Up to 500 concurrent images

Evaluation Criteria
• Runtime

• Average pipeline runtime

• Average pipeline runtime at scale

• Cost (FaaS + storage)
• Failure rates (e.g. timeouts)

Performance Comparison

AWS:

• Initial Test Runtime: ~10 minutes

• All functions processed in memory; O(n)^3 time complexity

• Function 3 maxes out memory (128MB) at 100%; suspected speed degradation based on
collisions and disk caching

• 20% speed improvement using 512MB (Function 3 only)

GCP: Not fully implemented yet

AWS Lambda TLQ (Transform,
Load, Query) Data Pipeline

Team 10
Nehaa Vuppala
Chhavi Gupta
Divya Jacob
Nandhini Dhanasekaran

Project Overview

Implementing TLQ pipeline as a set of independent AWS Lambda services and analyzing the performance of the services using
different case studies.

Case Studies

● Alternate CPU Architecture

To analyze the performance of the services using ARM 64 and X86 64 Architecture

● Switchboard Architecture

 Minimizing the number of deployment packages by bundling all source code together into a single Lambda function to
check the overall cost and performance

● Performance Variability

To analyze the performance by measuring the end to end turnaround time of the pipeline in multiple AWS regions.

Language : Java, Shell Script

Technologies: AWS Lambda, S3, SQlite, JSON

Testing Approach

● Developed and tested individual services on different systems

● Merged all 3 services on one environment and tested if all of them working properly together

● Ran the services multiple times by changing the architecture in the same environment

● Recorded the timestamp for each run and compared them with each other

Performance comparison

We used lambda functions and and conducted a case study

“CPU Architecture” in which we ran all 3 services multiple

times with each run having a different architecture . The

goal of the case study was to record timestamp of

individual runs & use these values to compare the

performance .

Java vs JavaScript for Serverless
Image Processing Pipelines

Team 12: KV Le, Codi Chun, Duy Vu, Carlos Alberto Manrique Ucharico

GitHub Repo: https://github.com/kvietcong/tcss462-project/

https://github.com/kvietcong/tcss462-project/

Application:
Image Processing

Our Case Studies:
Programming Languages
Hot vs Cold performance

Technologies:
● AWS Lambda: Our code is uploaded here to

be run on a function call.

● AWS S3: Our images we manipulate are put

here before calling functions and after the

processing is done.

● JIMP: Our JavaScript library used to load the

image that has no Native Code (Pure JS).

(https://www.npmjs.com/package/jimp)

Our group implemented a simple Image Processing
Pipeline on AWS Lambda. It supports the following

operations:

● Greyscale

● Soften (Blur)

● Flip (Vertical and Horizontal)

Our case study was implementing our app with Java
and JavaScript. We took best efforts to maintain
similar logic across the versions to center differences

around language rather than implementation.

● To maintain similarity we focused our

processing around manipulating individual
pixels and their RGBA values.

We’re also looking into how “Hot” and “Cold” AWS
Lambda function calls can differ in performance and if

it’s different across languages.

https://www.npmjs.com/package/jimp

Testing Approach
FaaS runner and Bash Scripts

Our process for testing was quite simple.

● We uploaded a few images to our S3 bucket.
● Prepared identical SaaF experiment files for

each language to go through each filter
multiple times for every image.

● Collected the JSON outputs from the runs and
compile them in a Jupyter Notebook for
interactive processing.

For our SaaF experiments, we decided to use many
runs and threads, meaning our experiments ran
concurrently.

● To simultaneously get Hot and Cold calls, we
called each experiment multiple times from a
BASH script with very long sleep times
between them.

Preliminary Results
Images here are the ones used in our experiments

mountains.jpg
565.6KB
3840x2160 husky.jpeg

16.7KB
256x256

deathstar.jpg
 956.7KB

1920x1200 vietfood.jpg
 163KB

509x339

In our preliminary results above we noted the following:
● Java cold starts are brutal. ⬆
● JavaScript and Java performances for hot calls are almost equivalent in runtime. ⬆
● Cold starts are not that impactful for JavaScript but there is a slight difference. ➡

IMAGE PROCESSING
PIPELINE

Gurleen Grewal, Nicole Guobadia, Tony Le
Team 19

● Analyze the performance variation of serverless image processing functions

○ Grayscale, Soften & Mirror

● Store image in aws S3

● Process image using aws Lambda functions

● Record average workflow round trip time, cold pipeline and warm pipeline

performance

● Implement project in Java

PROJECT OVERVIEW

● Run 24 hours of sequential image processing calls

● Experiment in 5 regions

○ us-west-2

○ af-south-1

○ ap-northeast-2

○ eu-west-2

○ me-central-1

● Process a singular 115kB jpeg image

● Modify SAAF to handle image processing

TEST APPROACH

Figure 1 : Average duration in us-west-2

INITIAL COLD START RESULTS

Figure 2 : Average duration in af-south-1

INITIAL COLD START RESULTS

Figure 3 : Average duration in ap-northeast-2 Figure 4 : Average duration in
eu-west-2

Figure 5 : Average duration in me-central-1

TCSS 562 Software Engineering for Cloud Computing

AWS Lambda TLQ Data Pipeline -
Performance Comparison of CPU Architectures across Three Availability Zones
in Cold/Warm Start

GROUP 20

Team Members: Angela Mu, Xiaojie Li, Ruigeng Zhang, Yihan Ma

Transform-Load-Query data processing pipeline
Case studies:
> 1. Architecture of Intel vs Arm
> 2. Availability zones: us-east-2, us-east-1, ap-east-1
> 3. Freeze-thaw infrastructure lifecycle: cold vs warm
Implementation:
> Language: Java (JDK 11)
> Tools/Technologies: AWS Lambda, Amazon RDS for MySQL,

Amazon S3, AWS Step Functions, Amazon EC2

Use Case

> We are using sequential client to test the application.

> HW: On step functions.

> We are using step functions to run the LTQ data pipeline application
instead bash script on local computer or ec2 instance.

> SAAF is employed as lambda function which is called by step function.

Testing Approaches

> Cold v.s. Warm Function (x86-64, us-east-2)

Performance Comparison (Initial Data)

dataset (# of rows) runtime (s) throughput (# of rows/s)

100 10.141 9.860960458

1,000 12.23 81.76614881

10,000 37.14 269.2514809

100,000 206.575 484.0856832

dataset (# of rows) runtime (s) throughput (# of rows/s)

100 1.127 88.73114463

1,000 2.806 356.3791875

10,000 20.214 494.706639

100,000 73.467 1361.155349

Cold Start Warm Start

Performance Comparison (Initial Data)

TLQ Pipeline on AWS and GCP

Group 5 - Tsung-Jui Wang, Jinming Yu, Sue Yang, Yafei Li

1

TLQ pipeline

● Our application is the assigned topic: TLQ pipeline.
● Our case study is the comparison between two different serverless platforms.

○ The two platforms are AWS Lambda and Google Cloud Functions.
○ Both platforms run the same Java code to do the pipeline except some dependent settings for

each platform.
○ Both platforms are in us-west(Oregon) region.

● Service 1: Transform the CSV file and upload the result to Cloud storage.
○ S3 bucket for AWS and Cloud Storage for GCP.

● Service 2: Load the CSV to Cloud databases.
○ Aurora MySQL for AWS and Cloud SQL for Google Could.

2

TLQ pipeline

● Service 3: Filters and aggregations.
○ Inputting 2 filters and get a column output by using WHERE clause in AWS Lambda and

Google Cloud Functions.
○ Support 9 types of aggregations, group by by Region, Item Type, Sales Channel, Order

Priority and Country, clausing on AWS Lambda and Google Cloud Functions.

3

Testing Approaches

Testing approaches

● FaaS Runner(https://github.com/wlloyduw/SAAF/tree/master/test)

Laptop

● VM in Ubuntu on Macbook Pro M1 Pro

Using parallel testing.

4

https://github.com/wlloyduw/SAAF/tree/master/test

Performance Comparison

● Service 3 in AWS:
○ Run 50 instances in parallel, using Faas Runner.
○ Average latency: 10065.19 ms
○ Average runtime: 2383.29 ms
○ Average round trip time: 12448.48 ms

● Others in progress …

5

Programming language project proposal

Use case: Determining the performance of a language’s pipeline over a period of time.

Case Study: Java TLQ performance over a 24 hour period.

Details: A Java TLQ pipeline was used to deploy to AWS lambda functions with s3

buckets for data. The criteria were average round trip time performance, warm function

performance, and throughput measured in rows of data processed per second.

Testing approaches

Client type: We will be utilizing a sequential client called from a laptop to lambda
for our function calls using s3 buckets for data.

Unique aspect: 24 test runs potentially with regional testing or greater than 24
hour test runs.

SAAF employment: We utilize AWS lambda with API Gateways and s3 buckets
for data in the TLQ pipeline.

Initial performance results for a 5 hour period
For our initial test run over a smaller period, the runtime was marginally improved and found
its best time at 8pm.

Cloud Performance Variation over Time for

Different Availability Zones: TLQ Pipelines

Team Members: Kannika, Jessie, Bao, Stephanie

Overall Project

Use Case is TLQ pipeline

- There are 3 services; Transform data, Load data, and Query data

Case Study

- Perform the TLQ Pipelines with three services; transform, load and query.

- Run 3 services in the different times such as morning (6am), afternoon (12pm),

evening (6pm), night (midnight)

- Run 3 services in the different available timezone/area.

Tools and Technologies used
Language

- Java and MySQL

Tools

- Apache Netbeans IDE 11.1, IntelliJ 2.3

Cloud Service

- AWS lambda

- AWS EC2(t2.micro)

- AWS S3

- Amazon RDS Aurora 5.6 database

Testing approaches

- Running three services separately in the different times.

- Running three services separately in the different area.

- Analyze the cloud performance variation over time for different availability

zones using the TLQ Pipelines with three services; transform, load and query.

- Implement an identical processing pipeline with two different backends - cold

and warm functions

Transform Service

100 rows 1000 rows 10,000 rows 50,000 rows 100,000 rows

Runtime (ms) 13,556 14,503 19,359 24,283 27,840

User Runtime
(ms) 13,378 14,319 19,218 24,061 27,695

Latency (ms) 178 184 141 222 145

This table shows the results of Transform Service testing, running in the us-east-2 area
(Ohio), at 5 - 7 am. And the function get "errorMessage": "Java heap space" when we run the
500,000 rows of data.

100 rows 1,000 rows 10,000 rows 50,000 rows 100,000 rows

Runtime (ms) 11,978 11,617 11,921 12,218 143,585

User Runtime
(ms) 11,822 11,459 11,780 12,019 143,425

Latency (ms) 156 158 141 199 160

Load Service
This table shows the results of Load Service testing, running in the us-east-2 area (Ohio), at
5 - 7 am. Since, we use the data from the Transform Service, so largest data that we can run
with the Load service is 100,000 rows.

100 rows 1,000 rows 10,000 rows 50,000 rows 100,000 rows

Runtime (ms) 13,578 14,516 15,103 17,865 21,452

User Runtime
(ms) 13,432 14,392 14,888 17,738 21,279

Latency (ms) 146 124 215 127 173

Query Service
This table shows the results of Query Service testing, running in the us-east-2 area (Ohio),
at 5 - 7 am. Since, we use the data from the Load Service, so largest data that we can run
with the Query service is 100,000 rows.

Image Processing
Lambda vs. Cloud
Functions

Jared Pines Oleg Uvarov
Dylan Churchward Andrew Moreno-Escareno

Team 2

Lambda functions vs. Cloud Functions

Use case: Create two image processing pipelines in the cloud, one using AWS
lambda functions and S3 and the other using Google Cloud functions and Cloud
storage. Both pipelines utilize python and publicly available python image
processing libraries, and are made to be as similar as possible during execution

Case study: Analyze the overall runtime to process a single image on both
pipelines to determine which pipeline is more efficient time wise. We collect the
runtime to process the same image 1000 times (ignoring the cold start data) on
each pipeline to compares the average runtimes, standard deviations and
coefficients of variation

Testing Approach

We made 1000 sequential calls to each image processing
pipeline using the same image and the same image
manipulation parameters, and collected the runtime of each call

We then use this runtime information to determine the average
runtimes, standard deviation, and coefficient of variation of each
pipeline

Using our analysis of the runtimes, we can determine which
pipeline is faster and more consistent for this specific use case

Results

Conclusions

For this use case, Google Cloud functions appear to have a much faster average runtime
than AWS Lambda functions. So, if you want to process images with FaaS functions,
Google is the way to go! The next comparison to do would be the costs of all of the
services.

Additionally, while working on our AWS functions we discovered that reading the images
from S3 as a byte stream, processing the images in memory (no downloading to /tmp) and
writing as a byte stream back to S3 can be about 0.7 seconds faster than reading the
images as “files”, saving them to disk and processing them that way. So processing images
in memory can greatly reduce I/O and increase speeds.

