
Apollo: Modular and Distributed Runtime System 
for Serverless Function Compositions on Cloud, 
Edge, and IoT Resources
Fedor Smirnov, Behnaz Pourmohseni, Thomas Fahringer

Presented by: Angela Mu, Xiaojie Li and Ruigeng Zhang
Team 6

Outline

1. Introduction

2. Implementation 

3. Conclusions and Critique

4. Q&A

2



Introduction

1. Overview

To fully exploit the potential for the optimization of the overall performance and 
costs of application implementations, Apollo, a runtime system for serverless 
function compositions distributed across the cloud-edge-IoT continuum is 
presented.

3

Introduction

2. Background

● FaaS offers many advantages of serverless computing and is particularly 
promising for usage in the context of ad hoc clouds consisting of mobile 
IoT devices.

● Yet the adoption of a loosely coupled application paradigm makes the 
implementation of applications significantly more complex.

● There is unprecedented potential for optimization, which can only be 
exploited by a sufficiently modular and flexible runtime system.

4



Introduction

3. Related Work

● Amazon Step Functions, IBM Composer, or Google Cloud Composer

–close-sourced, not extensible, focus on short running workflows or 
impose significant parallelization overheads

 ”Step functions can only submit one spark streaming job in an EMR. It should be 
enhanced to be able to submit multiple spark streaming jobs in the same EMR in parallel.”

External reference: https://www.g2.com/products/aws-step-functions/reviews 5

Introduction

3. Related Work

● Academic Proposed orchestration systems

–rely on non-serverless or dedicated resources, use complex patterns, is 
centralized, or have no support for implementation on IoT devices. . 

6



Introduction

4. A New Runtime System

Apollo

developed specifically for the implementation of loosely coupled distributed 
applications based on FaaS services

7

Introduction

8



Introduction

9

Apollo models more 
complex data and control 
flow structures such as 
parallel, conditional, or 
cyclic execution of tasks 
by means of special task 
nodes and edges.

10



Introduction

5. Key Contributions

● improves the performance by enabling a full parallelization of the 
implementation process

● high modularity of the system
● Flexibility for the optimization of different implementation decisions to 

take advantage of available resources
● avoids vendor lock-in by supporting FaaS services of different providers 

and is open-source
11

The implementation process is realised by coordinating 
three types of implementation agents

- Main agent M
- Supervisor agents S ← blocking queues Q which 

contain activation tokens
- Worker agents W

Four types of activation tokens
- Transmission T → blocking queue QT 
- Scheduling S → blocking queue QS

- Enactment E → blocking queue QE

- Extraction X → blocking queue QX

Implementation

12



Implementation - Transmission

Transmission queue/token Q𝑇

- Activation token associated with a data node in the 
enactment graph (a data payload for the 
subsequent tasks)

Transmission supervisor ST

- Activates one transmission worker for each 
successive task

Transmission worker W𝑇

- Transmits the payload to consumer task
- In case that all data required by successor task is 

present, generates a scheduling token and places it 
into the scheduling queue Q𝑆 . 13

Implementation - Scheduling

Scheduling queue/token QS

- Activation token associated with a data node in the 
enactment graph

- Represents a task whose input data is available.
Scheduling supervisor SS

- Activates one scheduling worker for each task
Scheduling worker WS

- Schedules the enactment of the task (chooses one 
or multiple resources from the set of mapping 
targets)

- Generates an activation token and places it into the 
enactment queue Q𝐸 14



Implementation - Enactment

Enactment queue/token QE

- Activation token associated with a data node in the 
enactment graph

- Represents a task which is scheduled
Enactment supervisor SE

- Activates one enactment worker for each task
Enactment worker WE

- Triggers the enactment task on the binding targets 
chosen in the scheduling step, monitors the task 
execution, and reacts to potential errors

- Generates an activation token and places it into the 
extraction queue QX 15

Implementation - Extraction

Extraction queue/token QX

- Activation token associated with a data node in the 
enactment graph

- Represents a task which was successfully enacted, so 
that its output data is available at its binding target(s).

Extraction supervisor SX

- Activates one extraction worker for each out-edge of 
the task

Extraction worker WX

- Makes the part of output data of the task available for 
further processing as part of input of the next task

- Generates an activation token and places it into the 
transmission queue QT

16



Implementation - Optimization

The system is optimised through a series of runtime implementation decisions
- Task Scheduling
- Data Transmission

Optimization method: Configure the behaviour of each agent
Transmission

- transmission methods (e.g., decide between transmitting the data as the request body or uploading it to an S3 bucket)

- transmission destinations (e.g., transmit the data to every mapping target of the task or decide to transmit the data to merely 
a subset of the mapping targets)

Extraction
- Transmission decision (e.g. transmits the data from the resource that carrying out the computation to the host machine or 

annotates the data node to indicate that the data is available).

17

Implementation - Distributed system

- Parts of the implementation 
process are offloaded from 
one resource to another 
resource

- Definition of cut C: two sets of 
severed edges, i.e. the 
cut-input edges 𝐸𝑖𝑛 and the 
cut-output edges 𝐸𝑜𝑢𝑡.

18



Conclusion

In this paper, we have presented Apollo, a novel runtime system for serverless function compositions 
distributed across the cloud-edge-IoT continuum. 

We have described its system model, as well as its implementation and distribution process, 
highlighting Apollo’s modular design and the scalability resulting from its high degree of 
parallelization and arbitrarily fine-grained distribution.

19

Critique: Strengths 

Strengths:

(a) It enables moving implementation operations closer to the processing to optimize performance 
and costs by leveraging data locality, while at the same time ameliorating the downsides of 
centralized implementation schemes.

(b) It becomes possible to adjust the amount of compute power available for making the 
implementation decisions. Consequently, while the parts of the implementation process which can be 
managed by lightweight heuristics can be executed directly on edge/IoT devices, the more complex 
implementation decisions can be made in the cloud, where the abundant compute power can be used 
for powerful global optimizers. 

20



Critique: Implementation

1. The description of Apollo’s implementation process is different from the actual work. It only 
contains the comprehensive description of the core functionality. In the actual system, there 
are additional implementation steps (e.g., graph-transformation operations performed at 
runtime), each of which has an extra token queue and an extra supervisor agent which creates 
specific workers. 

2. The actual interaction between the implementation steps is more dynamic. For instance, an 
enactment worker agent which encounters an error during the enactment will place the 
activation token into Q𝑆 instead of Q𝑋 to trigger a rescheduling of the corresponding task so 
that it can be re-executed (potentially on a different resource). 

21

Future Works
Future works: 

Develop optimization approaches for:

(a) task scheduling

(b) data transmission

(c) the optimal distribution of Apollo across the available resources, with a particular focus on a 
combination of global and local optimization approaches.

Lack of experiment and performance evaluation. （This appears to be in the long paper version published at 
the IEEE/ACM UCC conference 2021: https://dl-acm-org.offcampus.lib.washington.edu/doi/pdf/10.1145/3468737.3494103）

22

https://dl-acm-org.offcampus.lib.washington.edu/doi/pdf/10.1145/3468737.3494103


Questions?
Apollo: Modular and Distributed Runtime System for Serverless Function 

Compositions on Cloud, Edge, and IoT Resources

Group 6

23


