
Cloud Research Paper Presentation
Cypress : Input size–Sensitive Container Provisioning and Request

Scheduling for Serverless Platforms

Authors:
Vivek M. Bhasi (The Pennsylvania State University)
Jashwant Raj Gunasekaran (Adobe Research)
Aakash Sharma (The Pennsylvania State University)
Mahmut Taylan Kandemir(The Pennsylvania State University)
Chita Das(The Pennsylvania State University)

Presented by Group 5: Yafei Li , Sue Yang

Contents

● Introduction
● Background & Related Work
● Motivation
● Technology & Approach
● Key contributions
● Experimental Evaluation
● Conclusions
● Critique: Strengths
● Critique: Weaknesses
● Critique: Evaluation
● GAPS

2

Intro – What is the Problem

● The majority of apps on serverless platforms process user-provided input to
produce the desired results

● Many such apps have input size–dependent execution times

➢ Nevertheless, existing serverless resource management
frameworks are agnostic to the input size–sensitive nature of
these apps

3

Intro – Results the problem leads

It can be demonstrated that this problem can potentially lead to

● Container over-provisioning

● End-to-end Service Level Objective (SLO) violations.

4

Background & Related Work

Existing work in the area of input-sensitive profiling has shown that many such apps,
which will be called Input size–Sensitive apps (IS apps), have execution times that
depend heavily on the provided input size.

Challenges:
➔ Spawning an inappropriate number of containers
➔ Existing serverless Resource Management frameworks do not account for ʻbuffer

timeʼ

5

Background & Related Work

1.Serverless Computing
Cold starts can take up a significant proportion of a functionʼs response time (up to tens of
seconds) and can, thus, lead to SLO violations.

Ways to solve it,
● Mitigating cold start overheads
● Hiding the effects of cold starts via proactive container provisioning
● Some of these provisioning policies minimize containers by batching multiple requests

onto fewer containers, as opposed to spawning one for each request.

6

Background & Related Work

Use Kraken[27]
● Employ a Proactive Weighted Scaler (PWS)
● Employ a Reactive Scaler (RS)

Result
❖ Kraken spawns up to 76% fewer containers

on average, thereby, improving container
utilization and cluster-wide energy savings by
up to 4× and 48%

❖ Kraken guarantees SLO requirements for up
to 99.97% of the requests

Weakness

When the execution time is input size–dependent,
request batching using average execution times
proves to be inaccurate, as there is considerable
variation in request execution times.

This can lead to inappropriate container
provisioning.

7

Background & Related Work

 2.Input size–Sensitive Functions

Use Sensitive Profiling
(Input size–Sensitive Profiling)

(i) Performing multiple profiling
runs of the function/routine with workloads spanning
several magnitudes of input size

(ii) Observing the performance

(iii) Fitting these observations to a statistical model
that predicts metrics (such as execution time) as a
mathematical function of workload size.

8

Motivation – 1

Challenge 1: Input size–Sensitive Container allocation

Solution 1: Incorporate an Input size–Sensitive container
provisioning policy in the Resource Management
framework

● No Batch (which spawns a container per incoming
request)

● Static Batch (which uses a static batch size, based on
average execution time, to batch requests)

● IS Batch (refers to batching multiple requests onto fewer
containers by taking their input size–dependent
execution times and respective Service Level Objectives
into account.)

9

Motivation – 2

Challenge 2: Input size–Sensitive Request Scheduling

Solution 2:
● IS Reordering reorders requests in the incoming
request queue such that requests with higher potential
execution times (typically, higher input sizes) are
executed first

● Input size–Sensitive Request Reordering (IS
Reordering) on top of the IS Batch scheme

➔ Experiment Result
IS Batch+Input size–Sensitive Request Reordering
policy (IS (Batch+RR))
vs. IS Batch
vs. No Batch

● Under the light distribution

IS (Batch+RR) has improved SLO
compliance compared to IS Batch
(99.98% vs. 99.35%) and nearly matches
No Batchʼs SLO compliance (99.99%)

Static Batch provisions 13% fewer
containers than IS (Batch+RR), IS
(Batch+RR) greatly surpasses it in terms
of SLO compliance (99.98% vs. 97.78%).

10

Motivation – 3

Challenge 3: Multi-Function Applications

Solution 3: Multi-function apps require additional
policies that are cognizant of some aspects of
their function chains to be incorporated into the
Resource Management frameworks to effectively
provision the requisite containers and maximize
SLO compliance.

➔ Chained Prediction
➔ Experiment Result

(No Chained Prediction vs. Chained Prediction
vs. Chained Prediction + Look-Ahead Scaling)

11

Input size–Sensitive Profiling of Real-World Serverless Applications

1.Mapping Input Size to Execution Time
●Linear Models

●Powerlaw Models:

2.Mapping Input Size to Output Size
● Chained Prediction

12

Overall Design of Cypress

1. Proactive Scaler (PS)

2. Input size–Sensitive Request Batching (IS Batching)

3. Reactive Scaler (RS)

4. Look-Ahead Scaler (LAS)

13

Key contributions

1. Proposed and Implemented Cypress
● Input size–Sensitive Request Batching (IS Batching)
● Input size–Sensitive Request Reordering (IS Reordering)
● Scaling services of Cypress(the Proactive Scaler, the Reactive Scaler, the

Look-Ahead Scaler)
● Chained Prediction

2. Results
❖ Cypress spawns up to 66% fewer containers, improves container utilization and

cluster-wide energy savings by up to 2.95× and 23%
❖ Cypress guarantees the SLO requirements for up to 99.99% of requests

14

Experimental Evaluation
Implementation

● Evaluation Methodology: 6 node Kubernetes. 48 cores(Intel Cascade Lake), 192 GB

RAM, 1TB Storage

● Request Traces:

A synthetic trace: Poisson (The average rate 𝜇 = 250 rps)

Real-world traces: Twitter(peak-to-mean ratio 5450:3139); Wiki(331:302)

● Size: Heavy(50-55%), Medial, Light(~33%, descending)

● Applications: 5 apps (3 are single-function, 2 are multi-function)

● Container Provisioning Schemes Baselines: Atoll, Kraken, Fifer
● Large Scale Simulation: Build a simulator in Python using container cold start

latencies and function execution times profiled from real system counterpart. ~6.4K
core cluster, ~5500 requests

15

Experimental Evaluation
Real System Results
Containers Spawned vs. SLOs Satisfied

● Single-function apps—-Cypress spawns much fewer containers than Atoll (66% fewer containers in light distribution)

● Multi-function apps—-Cypress spawns fewer containers than 3 other schemes

End-to-End Response Times and Latency Distribution

● Cypress is 4% slower than Atoll, but 15%, 10%, 6% faster than Fifer, Kraken and IS Batch.

Container Utilization

● Cypress has 52% and 71% more container utilization compared to Atoll for the heavy and light distributions,
respectively.

Energy Efficiency

● Cypress consumes 19% and 22% less energy than Atoll for the heavy and light distributions, respectively

Resilience to Erratic Traces

● Cypress outperforms than others
16

Experimental Evaluation
Simulator Results
Heavy Distribution

● Cypress spawns fewer containers than all other schemes (up to 43% fewer)

Light and Medial Distribution

● Cypress spawns 65% fewer containers than Atoll

● Performances vary from different apps when compared to Kraken/Fifer

Cypress spawns 15% more containers than Kraken/Fifer for Image Compression for the light distribution for the stable trace

17

Author’s Conclusions
The Performance of Cypress

● 66% fewer containers spawned

● Improving container utilization by up to 2.95x
● Cluster-wide energy savings by up to 23%

18

Critique: Strengths
Big improvements

● 66% fewer containers

● Improving container utilization by up to 2.95x
● Cluster-wide energy savings by up to 23%

Using a simulator in a large scale to cross-verify the results

19

Critique: Weaknesses

● In conclusion part, the improvement of container utilization by up to 2.95x

is not mentioned in any experiment results.

● In simulator, compared to Kraken and Fifer, the improvements on

containers spawned of Cypress are slight.

20

Critique: Evaluation

● In large scale simulation, it does not mention how they build the simulator

based on the real system.

● The input sizes are randomly generated. Why can they be defined as

heavy, medial or light?

21

GAPS

● To predict input size distribution, the least-squares linear regression is not

compared to other ways, eg.Gradient descent(If the distribution is not

linear).

● For light and medial distributions, how to improve Cypress’s performances

on containers spawned when compared to Kraken/Fifer

Cypress spawns 9% more containers than Kraken/Fifer for Image Compression for the medial
distribution

22

23

Thanks for listening

Questions?

