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Intro – What is the Problem

● The majority of apps on serverless platforms process user-provided input to 
produce the desired results

● Many such apps have input size–dependent execution times

➢ Nevertheless, existing serverless resource management
frameworks are agnostic to the input size–sensitive nature of 
these apps
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Intro – Results the problem leads

It can be demonstrated that this problem can potentially lead to

● Container over-provisioning

● End-to-end Service Level Objective (SLO) violations.
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Background & Related Work

Existing work in the area of input-sensitive profiling has shown that many such apps, 
which will be called Input size–Sensitive apps (IS apps), have execution times that 
depend heavily on the provided input size.

Challenges:
➔ Spawning an inappropriate number of containers
➔ Existing serverless Resource Management frameworks do not account for  ʻbuffer 

timeʼ
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Background & Related Work

1.Serverless Computing
Cold starts can take up a significant proportion of a functionʼs response time (up to tens of 
seconds) and can, thus, lead to SLO violations.

Ways to solve it,
● Mitigating cold start overheads
● Hiding the effects of cold starts via proactive container provisioning
● Some of these provisioning policies minimize containers by batching multiple requests 

onto fewer containers, as opposed to spawning one for each request. 
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Background & Related Work

Use Kraken[27]
● Employ a Proactive Weighted Scaler (PWS)
● Employ a Reactive Scaler (RS)

Result
❖ Kraken spawns up to 76% fewer containers 

on average, thereby, improving container 
utilization and cluster-wide energy savings by 
up to 4× and 48%

❖ Kraken guarantees SLO requirements for up 
to 99.97% of the requests

Weakness

When the execution time is input size–dependent, 
request batching using average execution times 
proves to be inaccurate, as there is considerable 
variation in request execution times.

This can lead to inappropriate container 
provisioning.

7

Background & Related Work

   2.Input size–Sensitive Functions

Use Sensitive Profiling 
(Input size–Sensitive Profiling)

(i) Performing multiple profiling
runs of the function/routine with workloads spanning 
several magnitudes of input size

(ii) Observing the performance

(iii) Fitting these observations to a statistical model 
that predicts metrics (such as execution time) as a 
mathematical function of workload size.
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Motivation – 1  

Challenge 1: Input size–Sensitive Container allocation

Solution 1: Incorporate an Input size–Sensitive container 
provisioning policy in the Resource Management 
framework 

● No Batch (which spawns a container per incoming 
request)

● Static Batch (which uses a static batch size, based on 
average execution time, to batch requests)

● IS Batch (refers to batching multiple requests onto fewer 
containers by taking their input size–dependent 
execution times and respective Service Level Objectives 
into account.)
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Motivation – 2 

Challenge 2: Input size–Sensitive Request Scheduling

Solution 2: 
● IS Reordering reorders requests in the incoming
request queue such that requests with higher potential 
execution times (typically, higher input sizes) are 
executed first

● Input size–Sensitive Request Reordering (IS 
Reordering) on top of the IS Batch scheme

➔ Experiment Result
IS Batch+Input size–Sensitive Request Reordering 
policy (IS (Batch+RR))
vs. IS Batch
vs. No Batch

● Under the light distribution

IS (Batch+RR) has improved SLO 
compliance compared to IS Batch 
(99.98% vs. 99.35%) and nearly matches 
No Batchʼs SLO compliance (99.99%)

Static Batch provisions 13% fewer 
containers than IS (Batch+RR), IS 
(Batch+RR) greatly surpasses it in terms 
of SLO compliance (99.98% vs. 97.78%).
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Motivation – 3 

Challenge 3: Multi-Function Applications

Solution 3: Multi-function apps require additional 
policies that are cognizant of some aspects of 
their function chains to be incorporated into the 
Resource Management frameworks to effectively 
provision the requisite containers and maximize 
SLO compliance.

➔ Chained Prediction
➔ Experiment Result

(No Chained Prediction vs. Chained Prediction 
vs.  Chained Prediction + Look-Ahead Scaling)
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Input size–Sensitive Profiling of Real-World Serverless Applications

1.Mapping Input Size to Execution Time
●Linear Models

●Powerlaw Models:

2.Mapping Input Size to Output Size
● Chained Prediction
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Overall Design of Cypress

1. Proactive Scaler (PS)

2. Input size–Sensitive Request Batching (IS Batching)

3. Reactive Scaler (RS)

4. Look-Ahead Scaler (LAS)
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Key contributions

1. Proposed and Implemented Cypress
● Input size–Sensitive Request Batching (IS Batching)
● Input size–Sensitive Request Reordering (IS Reordering)
● Scaling services of Cypress(the Proactive Scaler, the Reactive Scaler, the 

Look-Ahead Scaler)
● Chained Prediction

2. Results
❖ Cypress spawns up to 66% fewer containers, improves container utilization and 

cluster-wide energy savings by up to 2.95× and 23%
❖ Cypress guarantees the SLO requirements for up to 99.99% of requests
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Experimental Evaluation
Implementation

● Evaluation Methodology: 6 node Kubernetes. 48 cores(Intel Cascade Lake), 192 GB 

RAM, 1TB Storage

● Request Traces: 

A synthetic trace: Poisson (The average rate 𝜇 = 250 rps) 

Real-world traces: Twitter(peak-to-mean ratio 5450:3139); Wiki(331:302)

● Size: Heavy(50-55%), Medial, Light(~33%, descending)

● Applications: 5 apps (3 are single-function, 2 are multi-function)

● Container Provisioning Schemes Baselines: Atoll, Kraken, Fifer
● Large Scale Simulation: Build a simulator in Python using container cold start 

latencies and function execution times profiled from real system counterpart. ~6.4K 
core cluster, ~5500 requests
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Experimental Evaluation
Real System Results
Containers Spawned vs. SLOs Satisfied

● Single-function apps—-Cypress spawns much fewer containers than Atoll (66% fewer containers in light distribution)

● Multi-function apps—-Cypress spawns fewer containers than 3 other schemes

End-to-End Response Times and Latency Distribution

● Cypress is 4% slower than Atoll, but 15%, 10%, 6% faster than Fifer, Kraken and IS Batch.

Container Utilization

● Cypress has 52% and 71% more container utilization compared to Atoll for the heavy and light distributions, 
respectively.

Energy Efficiency

● Cypress consumes 19% and 22% less energy than Atoll for the heavy and light distributions, respectively

Resilience to Erratic Traces

● Cypress outperforms than others
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Experimental Evaluation
Simulator Results
Heavy Distribution 

● Cypress spawns fewer containers than all other schemes (up to 43% fewer)

Light and Medial Distribution 

● Cypress spawns 65% fewer containers than Atoll

● Performances vary from different apps when compared to Kraken/Fifer

Cypress spawns 15% more containers than Kraken/Fifer for Image Compression for the light distribution for the stable trace
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Author’s Conclusions
The Performance of Cypress

● 66% fewer containers spawned

● Improving container utilization by up to 2.95x
● Cluster-wide energy savings by up to 23%
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Critique: Strengths
Big improvements

● 66% fewer containers

● Improving container utilization by up to 2.95x
● Cluster-wide energy savings by up to 23%

Using a simulator in a large scale to cross-verify the results
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Critique: Weaknesses

● In conclusion part, the improvement of container utilization by up to 2.95x 

is not mentioned in any experiment results.

● In simulator, compared to Kraken and Fifer, the improvements on 

containers spawned of Cypress are slight.
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Critique: Evaluation

● In large scale simulation, it does not mention how they build the simulator 

based on the real system. 

● The input sizes are randomly generated. Why can they be defined as 

heavy, medial or light?
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GAPS

● To predict input size distribution, the least-squares linear regression is not 

compared to other ways, eg.Gradient descent( If the distribution is not 

linear).

● For light and medial distributions, how to improve Cypress’s performances 

on containers spawned when compared to Kraken/Fifer

Cypress spawns 9% more containers than Kraken/Fifer for Image Compression for the medial 
distribution
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Thanks for listening

Questions?


