
Towards a Serverless Bioinformatics Cyberinfrastructure Pipeline
Presented by: Team 3 (Bhagyashree Aras and Dhruvi Kaswala)

1

Agenda

▷ Problem Introduction
▷ Proposed Solution
▷ Related Work
▷ Summary of Technology Approach
▷ Experimental Evaluation
▷ Conclusion
▷ Critique (Strengths, Weaknesses, and Evaluation)
▷ Q&A

2

Problem Introduced in the Paper

Function-as-a-Service (FaaS) and the serverless computing model offer a
powerful abstraction for supporting large-scale applications in the cloud.

A major hurdle in this context is that it is non-trivial to transform an
application, even an already containerized one, to a FaaS implementation.

3

How the problem is solved?

The paper proposed a systematic scheme to transform applications
written in Python into a set of functions that can then be automatically
deployed on platforms such as AWS Lambda.

4

Related Work

Requiring identification of the function boundaries within an application
and matching of the application characteristics to that of the target
serverless platforms.

● A number of works have started exploring this transformation, which
we categorize and discuss in the following:

5

Related Work: Serverless Performance Analysis

Wang et al measured the architectural, resource scheduling, and
performance isolation characteristics of AWS Lambda, Azure Functions,
and Google Cloud Functions.
Issues:
1. None of the three platforms completely hide tenants’ runtime

information from each other; exposing potential vulnerabilities to
dedicated attacks. But, container warming technique can help reduce
the cold start overhead and resource utilization.

6

Related Work : Serverless Performance Analysis(contrast)

Yu et al. proposes an all-in-one benchmark for serverless platforms. The
function splitting strategies here are
crucial:
1. Applications can be decomposed based on periods of consistent

resource consumption to avoid pre-configured resources being
wasted > splitting parallelizable regions into different functions

2. sequential chaining of function instances > requires less resource and
execution time than nested chaining.

3. Saving implicit states (runtime information, code, etc) of the instances
of one function > optimize the overall performance 7

Related Work : HPC FaaS Platforms
Issues:

1. Startup and communication latency among functions from the same
application

2. Isolating function invocations of the same application with processes
instead of the stronger isolation through containers is viable

3. Implements a hierarchical message bus > the work does not provide
a solution for isolation among different users

4. Current serverless platforms do not integrate the HPC resources well
and the reliance on Docker requires superuser privileges, creating
security concerns. 8

HPC FaaS Platforms - 2

Faasm argues that the problems with current serverless computing mainly
arise from data access latency and resource footprint. Thus, proposed a
stateful serverless abstraction, Faaslets and its runtime Faasm.

All Faaslets instances on the same host are placed within one address
space, and share states through shared memory regions.
1. Faaslets also employ a two-tier state architecture:

a. The first tier being the local sharing
b. The second tier being a distributed state sharing across hosts.

9

Related Work : HPC FaaS Platforms - 3

Advantage: This model reduces cold-start latency through firing up new
instances from snapshots of pre-run Faaslets functions.

Disadvantage: with this model is that it requires user code changes to
invoke Faasm specific APIs to fully make use of the two-tier state sharing
mechanism.

10

Related Work : Serverless Function Decomposition

FaaSter proposes the idea of splitting functions based on the potential
timeout cutoff of a function.
The work also introduces the categorization of different levels of
FaaSification:
1. Shallow FaaSification, splitting the application into the units of

functions
2. Medium FaaSification, splitting the application into code snippets
3. Deep FaaSification, splitting the application into the units of

instructions
11

Related Work : Serverless Function Decomposition

Spillner propose Lambada, a tool to automate the transformation of cloud
applications to
be lambda-ready.
1. The tool recursively scans the modules according to function

dependencies and transforms them into corresponding Lambda
modules, with Lambda runtime as the gateway across module
boundaries.

2. Functions are transformed into remote functions with stub functions at
the local as the entry point.

12

Related Work : Serverless Function Decomposition

3. Classes are decomposed into functions, deployed with a similar
tactic that a local proxy class and a remote proxy class exchange call
arguments and function states.
4. The transformation proposed in Lambda is useful as a skeleton
reference for general transformation from cloud application to FaaS
function

13

Approach used in this paper

14

Summary of approach used

15

16

Summary of approach used - 2

1. Decomposition set represents a set of locations in the original
pipeline code where the suggested decomposition boundaries can be
established.

2. Generation represents the number of stages of decomposition that
have been applied to the current decomposition set.

3. Code snippet is a piece of code to be decomposed, and one
generation can contain multiple code snippets.

17

Baseline Granularity
Utilised shallow level of Faasification with functions as the atomic unit of
the decomposition. we leverage the already existing functions as a
possible decomposition and deploy them as FaaS to measure the
performance gains over baseline application. We define this initial
baseline decomposition.
Issue: However, relying on the user to define decomposition locations in a
program would lead to many missed opportunities to improve
performance.
Solution: incorporate static and dynamic program analysis techniques in
our approach to fully explore such parallelizable components.

18

Summary of approach used

19

Control-flow-based Decomposition

Employed existing static analysis, control flow analysis, to generate a
control-flow graph (CFG) of a given pipeline.
Why this approach?
The insight behind using control flow as a criterion to decompose a
program is that if we want to achieve deep Faasification, splitting code at
the control points maintains correctness and sequential
order, and is also coarse-grained
Issues:
1. may overlook some trivial parallelizing opportunities

20

Data-flow-based Analysis

Perform a dependency analysis, we extend our static analysis to construct
a data dependency graph (DDG) of the given pipeline. DDG provides
fine-grained information on how a variable or a code region is formed and
what variables are needed for its correct execution

Advantage:
1. May improve performance.
2. The performance of the decomposed result is better than the code

prior to this generation’s decomposition efforts, we keep the
decomposed code as the new generation. 21

How fine-grained decomposition is achieved for an application code after several generations of
control-flow-based decomposition and data-flow-based analysis

22

Just-in-Time Analyzer

23

Experimental Evaluation

Does our decomposition implementation preserve correctness, and what
are the performance loss and potential gain exposed by our
decomposition approach?

24

Experimental Evaluation

25

Conclusion

The author has provided a general framework for decomposing the
monolithic app through an example, and explained various approaches
used in the framework, with a goal to maintain the correctness and not to
increase the performance overhead.

Static and dynamic flow of the code has been leveraged to separate the
functions.

The paper contains the solution of decomposition (of CIWARS)
automating the existing FAAS implementation too

26

Strengths of the Paper
Manually FaaSifying the existing monolithic application shows the great

insight(such as common libraries and meta data requirement) and

problems(which needs to be addressed while automating the process for

similar application.

Dividing the decomposition into two methods, the static analysis and

dynamic data flow analysis, leveraging them was a great technique used in

this paper.

Profiling for the resource usage(memory, CPU etc) for the decomposed

function to make sure the performance is not degraded was one of the

strength of this paper. 27

Weakness of the Paper

The decomposition of the monolithic application into independent

functions depends entirely on the accuracy of the MetaCompare’s and

DeepArgs’s component.

Assuming the custom limited user input data, for design purpose can be

misleading as the code flow are entirely dependent on the input variables.

Control flow based decomposition missing the cyclic dependencies, which

can be present in monolithic applications, and needs to be addressed.

28

Critique: Evaluation

Data-flow based analysis could include different combinations of input

variables(the user input, configurations, etc)

It would be great to see cost analysis and find the relationship between

decomposition degree to the platform cost.

The compiler optimization may be lost while decomposing the functions,

which needs to be considered as well.

29

Thank you for listening!
Q&A session

30

