Towards a Serverless Bioinformatics Cyberinfrastructure Pipeline
Presented by: Team 3 (Bhagyashree Aras and Dhruvi Kaswala)

Towards a Serverless Bioinformatics Cyberinfrastructure
Pipeline]

Shunyu (David) Yao, Muhammad Ali Gulzar, Liging Zhang, Ali R. Butt
{shunyu,gulzar,lqzhang,butta}@cs.vt.edu

Agenda

v v Vv Vv VvV Vv VvV V

ABSTRACT

Function-as-a-Service (FaaS) and the serverless computing model
offer a powerful abstraction for supporting large-scale applications
in the cloud. A major hurdle in this context is that it is non-trivial
to transform an application, even an already containerized one,
to a FaaS implementation. In this paper, we take the first step to-
wards supporting easier and efficient application transformation
to FaaS. We present a systematic scheme to transform applications
written in Python into a set of functions that can then be automat-
ically deployed atop platforms such as AWS Lamda. We target a
Bioinformatics cyberinfrastructure pipeline, CTWARS, that provides
‘waste-water analysis for the identification of antibiotic-resistant
bacteria and viruses such as SARS-CoV-2. Based on our experience
with enabling FaaS-based CIWARS, we develop a methodology that
would help the conversion of other similar applications to the FaaS
model. Our evaluation shows that our approach can correctly trans-
form CIWARS to FaaS, and the new FaaS-based CIWARS incurs
only negligible (< 2%) overhead for representative workloads.

Problem Introduction
Proposed Solution
Related Work

Summary of Technology Approach

Experimental Evaluation
Conclusion
Critique (Strengths, Weaknesses, and Evaluation)

Q&A

server resources for hosting their applications. As a result, the mar-
ket share of serverless computing is projected to grow significantly
in the near future [9, 13, 17].

The model holds promise for scientific workflows and appli-
cations as well [10], especially as innovative tasks such as deep
learning and dynamic data analysis are incorporated into the appli-
cations. However, there is a fundamental disconnect between the
underlying assumptions, e.g., containerized or virtualized resources,
etc. in the design of existing applications and the abstractions sup-
ported by the serverless model. From the resource-provider (plat-
form) point of view, traditional applications are typically stateful,
resource-intensive, and run for long periods of time. In contrast, the
serverless model creates ephemeral, stateless instances of pieces
of code that are strung together to create applications. From the
application developer’s point of view, their existing applications
need to be decomposed into lightweight functions that can be run
atop the serverless computing substrate. This yields complex ap-
plication decomposition and resource management challenges for
the developers and the resource providers, respectively. There has

Problem Introduced in the Paper

Function-as-a-Service (FaaS) and the serverless computing model offer a
powerful abstraction for supporting large-scale applications in the cloud.

A major hurdle in this context is that it is non-trivial to transform an
application, even an already containerized one, to a FaaS implementation.

How the problem is solved?

The paper proposed a systematic scheme to transform applications
written in Python into a set of functions that can then be automatically
deployed on platforms such as AWS Lambda.

Related Work

Requiring identification of the function boundaries within an application
and matching of the application characteristics to that of the target
serverless platforms.

e A number of works have started exploring this transformation, which
we categorize and discuss in the following:

Related Work: Serverless Performance Analysis

Wang et al measured the architectural, resource scheduling, and
performance isolation characteristics of AWS Lambda, Azure Functions,
and Google Cloud Functions.

Issues:

1. None of the three platforms completely hide tenants’ runtime
information from each other; exposing potential vulnerabilities to
dedicated attacks. But, container warming technique can help reduce
the cold start overhead and resource utilization.

Related Work : Serverless Performance Analysis(contrast)

Yu et al. proposes an all-in-one benchmark for serverless platforms. The

function splitting strategies here are

crucial:

1. Applications can be decomposed based on periods of consistent
resource consumption to avoid pre-configured resources being
wasted > splitting parallelizable regions into different functions

2. sequential chaining of function instances > requires less resource and
execution time than nested chaining.

3. Saving implicit states (runtime information, code, etc) of the instances
of one function > optimize the overall performance

Related Work : HPC FaaS Platforms

Issues:

1. Startup and communication latency among functions from the same
application

2. lIsolating function invocations of the same application with processes
instead of the stronger isolation through containers is viable

3. Implements a hierarchical message bus > the work does not provide
a solution for isolation among different users

4. Current serverless platforms do not integrate the HPC resources well
and the reliance on Docker requires superuser privileges, creating
security concerns.

HPC FaaS Platforms - 2

Faasm argues that the problems with current serverless computing mainly
arise from data access latency and resource footprint. Thus, proposed a
stateful serverless abstraction, Faaslets and its runtime Faasm.

All Faaslets instances on the same host are placed within one address
space, and share states through shared memory regions.
1. Faaslets also employ a two-tier state architecture:

a. The first tier being the local sharing

b. The second tier being a distributed state sharing across hosts.

Related Work : HPC FaaS Platforms - 3

Advantage: This model reduces cold-start latency through firing up new
instances from snapshots of pre-run Faaslets functions.

Disadvantage: with this model is that it requires user code changes to

invoke Faasm specific APIs to fully make use of the two-tier state sharing
mechanism.

10

Related Work : Serverless Function Decomposition

FaaSter proposes the idea of splitting functions based on the potential
timeout cutoff of a function.

The work also introduces the categorization of different levels of
FaaSification:

1.

Shallow FaaSification, splitting the application into the units of
functions

Medium FaaSification, splitting the application into code snippets
Deep FaaSification, splitting the application into the units of

instructions "

Related Work : Serverless Function Decomposition

Spillner propose Lambada, a tool to automate the transformation of cloud
applications to
be lambda-ready.

1.

The tool recursively scans the modules according to function
dependencies and transforms them into corresponding Lambda
modules, with Lambda runtime as the gateway across module
boundaries.

Functions are transformed into remote functions with stub functions at
the local as the entry point.

12

Related Work : Serverless Function Decomposition

3. Classes are decomposed into functions, deployed with a similar
tactic that a local proxy class and a remote proxy class exchange call
arguments and function states.

4. The transformation proposed in Lambda is useful as a skeleton
reference for general transformation from cloud application to FaaS
function

13

Approach used in this paper

14

Snort Roads. Long Reads

fasta /tasia tasta asta
Shiort Read Quality Contol Long Reed Qually Control
S m m a r Of a p p ro a C h Se d ‘ = H S e —
[snonsosas Long rsson
fastq / fasta

| esialtesa
Roforonco Databases

CARD Taxonomy D8 | | Assembly

DNA Contigs
[=
!
Alignment File) ona o
Egs. DIAMOND s o
alignment archive L -
< doa J
e W_M,.]_ e

Figure 1: The CIWARS cyberinfrastructure pipeline, which
employs tools such as MetaCompare [22], MetaStorm [7],
and DeepARG [8]. Note that given the monolithic nature of
individual components, some functionalities such as short

reads and annotations are repeated in the components.
15

.JSON
g Front End pipeline
specification

user

CIWARS
Workload
Manager

creates

Run
Input file script

Exposed to

Pipeline unit
binaries

! Exposed to

Large
Libraries & I

Database

User Temporary Workspace

Figure 2: The proposed framework for instantiating decom-
posed functions created by our approach atop AWS Lambda.
16

Summary of approach used - 2

1. Decomposition set represents a set of locations in the original
pipeline code where the suggested decomposition boundaries can be
established.

2. Generation represents the number of stages of decomposition that
have been applied to the current decomposition set.

3. Code snippet is a piece of code to be decomposed, and one
generation can contain multiple code snippets.

Baseline Granularity

Utilised shallow level of Faasification with functions as the atomic unit of
the decomposition. we leverage the already existing functions as a
possible decomposition and deploy them as FaaS to measure the
performance gains over baseline application. We define this initial
baseline decomposition.

Issue: However, relying on the user to define decomposition locations in a
program would lead to many missed opportunities to improve
performance.

Solution: incorporate static and dynamic program analysis techniques in
our approach to fully explore such parallelizable components.

17

18

Summary of approach used

Control-flow-based Decomposition

acc = @

for ki in range(kl):

e [k1l = len(kernel) e

: e for kj in range(kl):
25 = =

s = (k-1)/2 if @ <= i-ks <= kl:
3 imx = len(matrix) R

acc = acc + (matrix[i-ks+ki][j-ks+kj] * kernel[ki][kj])
4. imy = len(matrix[@])
return acc

o for i in range(imx):
6. for j in range(imy): Data-flow-based Analysis
T acc = 0@
8. for ki in range(kl): def decomposed(i,j,kl,matrix, kernel):
9. for kj in range(kl): acc = @
10. if @ <= i-ks <= kl: for ki in range(kl):
11. acc = acc + (matrix[i-ks+ki][j-ks+kj] * kernel[ki][k3j]) for kj in range(kl):
12 matrix[i][j] = acc if @ <= i-ks <= kl:
33 acc = acc + (matrix[i-ks+ki][j-ks+kj] * kernel[ki][kj])

matrix[i][j] = acc

19

Control-flow-based Decomposition

Employed existing static analysis, control flow analysis, to generate a
control-flow graph (CFG) of a given pipeline.

Why this approach?

The insight behind using control flow as a criterion to decompose a
program is that if we want to achieve deep Faasification, splitting code at
the control points maintains correctness and sequential

order, and is also coarse-grained

Issues:

1. may overlook some trivial parallelizing opportunities ”

Data-flow-based Analysis

Perform a dependency analysis, we extend our static analysis to construct
a data dependency graph (DDG) of the given pipeline. DDG provides
fine-grained information on how a variable or a code region is formed and
what variables are needed for its correct execution

Advantage:

1. May improve performance.

2. The performance of the decomposed result is better than the code
prior to this generation’s decomposition efforts, we keep the
decomposed code as the new generation.

How fine-grained decomposition is achieved for an application code after several generations of
control-flow-based decomposition and data-flow-based analysis

Generation(0) ’ Monolithic Component A1
g REES a 1 e
Generation(1) \ Code Snippet B1 Soxlo Srippet Code Snippet B3 ’ Code Snippet B4
- i Funct\unylmér’vla\"l‘:l At e >

]
Code Snippst
Ca==82

o
s H Cé ‘ c7 ‘ Cc8 ‘

‘o ‘ Y !
Generation(2) Cc3

[« Function Interval of B1 —»| <«——— Function Interval of B3 ——#| |[«—— Function Interval of B4 ——»|

h
Deeper Decomposition

Figure 4: A sample evolution of the decomposition on a monolithic application. Each code snippet is decomposed into a set of
multiple smaller functions. If the overall performance of the resulting set is better than the preceding set, then we keep the

21

22

Just-in-Time Analyzer

Experimental Evaluation

Does our decomposition implementation preserve correctness, and what

Application
Code

Input Files ||

Runumu‘PrMIIInq
Workload Information
Manager

~~ . __ According to the DAG

= s i

Firing Up Instances

Figure 5: Overall structure of our decomposition runtime.

are the performance loss and potential gain exposed by our

decomposition approach?

Experimental Evaluation

6000

4000

- ﬂ
sequential

EMonolithic [1Decomposed Winvocation1 @invocation2 Qlinvocation 3

Figure 6: Execution time Figure 7: Execution time
for Monolithic Vs. Decom- With Sequential vs. Paral-
posed implementations. lelized library invocations

in MetaCompare.
25

Conclusion

The author has provided a general framework for decomposing the
monolithic app through an example, and explained various approaches
used in the framework, with a goal to maintain the correctness and not to
increase the performance overhead.

Static and dynamic flow of the code has been leveraged to separate the
functions.

The paper contains the solution of decomposition (of CIWARS)

automating the existing FAAS implementation too 9y

Strengths of the Paper

Manually FaaSifying the existing monolithic application shows the great
insight(such as common libraries and meta data requirement) and
problems(which needs to be addressed while automating the process for
similar application.

Dividing the decomposition into two methods, the static analysis and
dynamic data flow analysis, leveraging them was a great technique used in
this paper.

Profiling for the resource usage(memory, CPU etc) for the decomposed
function to make sure the performance is not degraded was one of the
strength of this paper.

27

Weakness of the Paper

The decomposition of the monolithic application into independent
functions depends entirely on the accuracy of the MetaCompare’s and
DeepArgs’s component.

Assuming the custom limited user input data, for design purpose can be
misleading as the code flow are entirely dependent on the input variables.

Control flow based decomposition missing the cyclic dependencies, which
can be present in monolithic applications, and needs to be addressed.

28

Critique: Evaluation

Data-flow based analysis could include different combinations of input
variables(the user input, configurations, etc)

It would be great to see cost analysis and find the relationship between
decomposition degree to the platform cost.

The compiler optimization may be lost while decomposing the functions,
which needs to be considered as well.

Thank you for listening!
Q&A session

29

30

