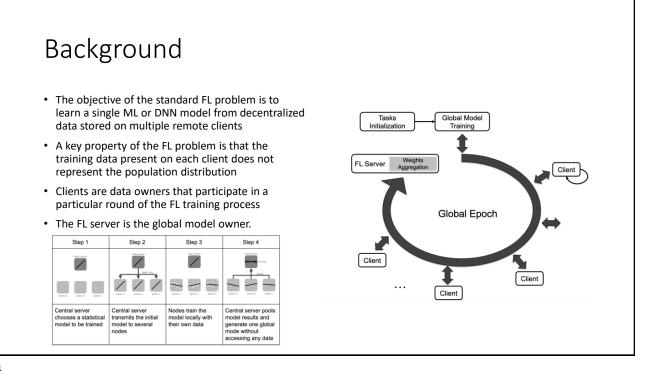
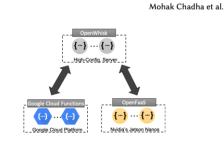
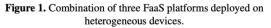

Towards Federated Learning using FaaS Fabric


Mohak Chadha mohak.chadha@tum.de Technische Universität München Garching (near Munich), Germany Anshul Jindal anshul.jindal@tum.de Technische Universität München Garching (near Munich), Germany Michael Gerndt gerndt@in.tum.de Technische Universität München Garching (near Munich), Germany

Mohammed Alshayeb Date: 12/8/2022

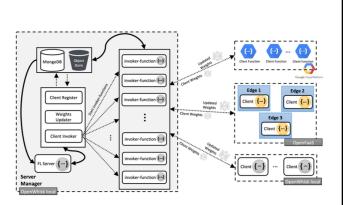
Outlines


- Motivation
- Background
- Goals
- System Design
- Experimental Setup
- Results
- Conclusion and Future Work
- Critic



Function-as-a-Service Fabric

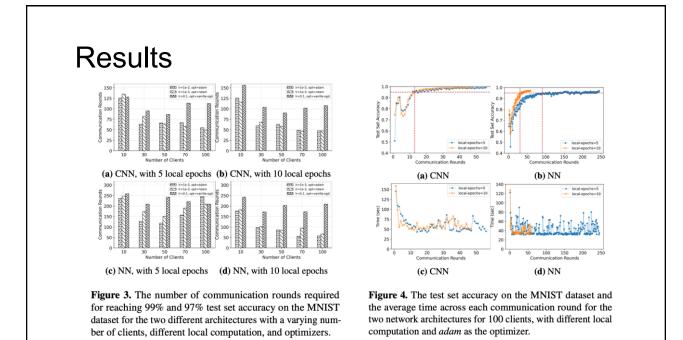
- Combine resources from FaaS platforms deployed on heterogeneous devices to support invocation of each other's functions as *Function-as-a-Service fabric*.
- Authors utilize three FaaS platforms, i.e., OpenWhisk, OpenFaaS, and GCF, shown in Figure 1 as FaaS fabric.
- Authors provide a shared model for heterogeneous devices combining resourceconstrained edge devices with the cloud to enable the efficient management of FLclients.

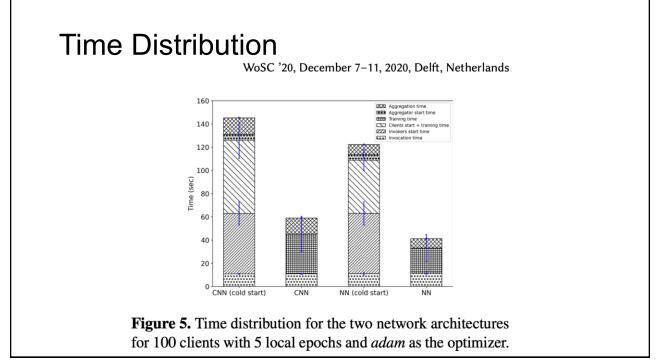

5

Goals

- Extension of FaaS to multiple heterogeneous FaaS platforms.
- Enabling Federated Learning using Serverless Computing.
- Ease of use.

System Design


- FedKeeper1 is a client-based python tool for propagating FL-client functions over FaaS fabric. It's main objective is to act as a manager or keeper of various client functions distributed over different FaaS platforms.
 - Facilitating the automatic creation, deletion, and invocation of FL-client functions for each FaaS platform.
 - *FedKeeper* keeps track of the functions running on each FaaS platform using activation IDs and automatically creates or invokes the functions which have stopped or failed.
- It consists of several sub components, i.e., *Client Register*, *Weights-Updater*, *Client-Invoker*, and the *FL-Server*.


Figure 2. High-level architecture for Federated Learning over FaaS Fabric.

7

Experimental Setup)			
 OpenWhisk (OW) Deployed over a single node Kub Two sockets, Intel Cascade Lake OpenFaaS (OF) Edge Cluster with 3 Nvidia Jetsor K3s (lightweight Kubernetes) as t Google Cloud Functions (GC) Each platform runs Tensorflow Evaluation on a Image Classific 	-SP, 22 cores each n Nano Devices (On he container-orches F)	-premise)		
	Configuration	ow	OF	GCF
 Two architectures: 				
 Two architectures: 2-layer fully connected NN CNN – convolutional neural net 	Memory	2 GiB	2 GiB	2 GiB

Conclusion and Future Work

- Federated learning can be performed on a FaaS-based environment consisting of heterogeneous devices.
- Manageability: FedKeeper offers easy creation, deletion, and invocation of FL-clients.
- Simplicity: Model training on individual clients is done using fine-grained FaaS-based functions.
- Scalability: FedKeeper offers the capability of running client functions remotely on Cloud FaaS platforms.
- Extend the FedKeeper to other FaaS platforms and add security related aspects in it. Furthermore, the paper explored techniques to optimize the performance of running client functions in parallel.

Paper Critique

- Weakness:
 - Only used with Deep learning algorithm.
 - Only tested with one dataset.
- Improvement:
 - Send updated results to client when still in training to improve running time.

Questions