
11/29/2022

1

Migrating from Microservices to
Serverless: An IoT Platform Case Study
- M. Chadha, V. Pacyna, A. Jindal, J. Gu.
M. Gerndt

TCSS562 Cloud Computing Team 1:
Jeffrey Stockman, Rick Morrow, Mahmoud Ali Elkamhawy

> Evaluation of performance and cost across varying load-testing scenarios

> Microservice architecture is the standard of cloud-based application deployment

– Isolation, replaceability, and scalability of code base

– Outsourced infrastructure, elasticity, fault tolerance

– Well-defined interfaces

– Challenges include: Complexity of deployment, provisioning of services, DevOps overhead

> Serverless computing enhances microservices and cloud deployments to include:

– No infrastructure to manage

– Pay-per-use billing

– On-demand scaling (scale-to-zero)

Migration of a complex microservice IoT platform onto Google Kubernetes Engine
[GKE], OpenWhisk [OW] and Google Cloud Run [GCR] FaaS applications

Overview

1

2

11/29/2022

2

IoT System Design
Components of IoT Model:

IoT Core: React Front-End; Node.Js backend

MariaDB: relational database

Kafka: publish-subscribe topic management

Kafka-Connect: streaming data service into ES, DBs

Elasticsearch: search & analytics engine via inverted index

Kibana: data visualization

Data Model:

Users: name, credentials; grants access to consumers

Devices: Users have devices with multiple sensors

Consumers: Retrieve sensor data; users can have
multiple consumers

Sensors: single, multiple parameters; credentials

> Compare competing software architectures for an IoT platform:

– OpenWhisk

– Google Cloud Run

> Performance & cost evaluation against deployment strategies:

– Google Kubernetes Engine [GKE] standard

– OpenWhisk

– Google Cloud Run

> Ease of migration from microservices to FaaS

Investigation

3

4

11/29/2022

3

> Focus on performance comparison between microservices and serverless
deployment strategies

– AWS Lambda vs. Elastic Container Service. Fan et. al.

– GKE, OW, GCP functions. Jindal et. al.

> Migration of stateful microservices onto OpenWhisk. Jin et. al.

– Focus on minimizing code changes with equal performance

“Using application knowledge to Reduce Cold Starts in FaaS Service.” D. Bermbach et. al.

Related Work

> IoT is inherently challenged by:

– Performance on the edge

– Latency

> HTTP has excess overhead in comparison to more efficient MQTT or CoAP

– Security issues & associated overhead

> “Currently… no open FaaS platforms built specifically for IoT data processing at the edge.”

> “Lean OpenWhisk… on a Raspberry Pi… is unable to successfully respond to 2/3 of all requests.”

– “TinyFaaS: A Lightweight FaaS platform for Edge Environments.” T. Pfandzelter et al.

Considerations

5

6

11/29/2022

4

> Migrating the IoT platform application

– off-the-shelf software components, i.e.,Kafka, Kafka-connect, MariaDB,
Elastic Search, and Kibana.

– OpenWhisk (OW) and Google Cloud Run (GCR).

> Migrating IoTCore backend.

– Focus on migrating the API endpoints.

– Decompose the application logic for each API endpoint into a separate
function.

Migration Approach

> Sensors-Get API study case
– Authentication handler.

> IoTCore vs. individual functions
– The runtimes contain only required packages in individual functions.
– Docker images for the individual functions are smaller in size compared to IoTCore.

> OpenWhisk sequencing functionality
– Utilizing sequencing functionality to chain the authentication function with middleware functions.

> Google Cloud Run migration
– Sequencing function.
– Adding application logic.

Migration of IoTCore Backend

7

8

11/29/2022

5

> Implementing an Interconnect interface

– Intercepting the incoming request to API endpoint
and forward it to OW or GCR function.

– Responsible for forwarding the function response to
the user.

> Migration of stateless microservices onto OpenWhisk

– Migrating the HTTP gateway into separate OW and
GCR functions

Migration of IoTCore Backend (Cont.)

> Migrating a microservices-based IoT platform
application to OW and GCR.

> Evaluating the performance of the IoT platform across
different deployment strategies i.e., Google
Kubernetes Engine (GKE), OW, and GCR with different
load testing scenarios.

Key Contributions

9

10

11/29/2022

6

> Off the shelf components of the tech stack couldn’t be broken down into functions.

– MariaDB (data storage)

– ElasticSearch (metrics storage and search)

– Kibana (data visualization)

– Kafka (pub/sub)

> Tested three deployment strategies after migrating microservices to two serverless delivery
methods.

– Original microservices deployed on Google Kubernetes Engine (GKE).

– OpenWhisk (OW) functions on GKE.

– Functions deployed on Google Cloud Run (GCR) FaaS platform.

Experiment Design

> Used the “k6” performance and regression testing tool

– Open source load test script

– Virtual Users (VUs)

– Quickly repeated HTTP(s) requests

> Deployment architectures tested with three workload scenarios

– Linear: request volume increases over time as experiment runs

– Random: random request volume random lengths of time

– Spike: low volume request plateau for most of the experiment, with a spike to the
highest volume of request in the middle.

Experiment Methodology

11

12

11/29/2022

7

Results

> Cost

– Google Cloud Run is cheapest cost
per 1000 requests in all scenarios

– High loads would make fixed-cost
structures cheaper

> Performance

– FaaS and CaaS have high response
times on bursts of requests

– Microservices architecture is
faster when there is action
sequencing or function chaining

– Migrating microservices to FaaS
and CaaS is expensive

Author’s Conclusions

13

14

11/29/2022

8

> One of the few papers that assesses cost vs performance, as
cloud pricing is

1. variable across providers, and

2. should be part of any cloud-optimization case study

> HTTP data transfer has more overhead than MQTT or CoAP.
It would be interesting to see how these protocols fared
using this model.

Strengths

> Aside from cold starts, the model didn’t factor in 1) latency or 2)
edge computing

> The model incorporated some VMs with abnormally high memory
and processor speed, whereas most IoT devices are relatively much
smaller and less powerful

> Not using function chaining in the Google Cloud Run deployment
misses an opportunity to compare managed FaaS infrastructure
against self-deployed infrastructure

Weaknesses

15

16

11/29/2022

9

> Slide 18 Critique: Evaluation

> How good is the paper’s evaluation? Is something missing? Are the results believable? Is enough information
available to repeat/reproduce tests? Are there problems with the graphs or the discussion? Is the analysis
complete, or are some points left for the Page 5 of 7 reader to try and understand on their own?

header

Evalutation

> Future work potential:

– Compare other microservice application migration
to the cloud using the same model to see if there is
a correlation with this study’s results

> Slide 19 Identify Gaps ONE SLIDE ONLY

> Are there gaps and open problems remaining in the research? Did the authors fail to solve some aspect of the
problem? What constraints and limitations exist for the solution? What future work remains?

Gaps

17

18

11/29/2022

10

> Probably don’t need anything here.

Thank you

Questions?

19

