
12/7/2022

1

A Prediction based Autoscaling in
Serverless Computing
Ha-Duong Phung, Younghan Kim
School of Electronic Engineering, Soongsil University, Seoul, Korea

TCSS 562 Team 15:
Yuan Huang, Yifan Xie, Alan Liu

> Introduction

> Describe the Knative and analyze some related forecasting models.

> Detail of the proposed method structure.

> Presents the results showing how different concurrency limits impact
performance and the efficiency of their prediction model Bi-LSTM compared to
the Knative default.

> Conclusion and the future work plans.

OUTLINE

1

2

12/7/2022

2

> What is Knative?

> What is Auto-Scaling?

Problem being solved:

Knative cannot adapt well to the fluctuation of a request's trend.

Introduction: Paper Overview

Why is it a problem?
1. Users have no idea about the appropriate parameter values, while those predefined values

can strongly impact the performance.

2. The negative influence can cause response time increase and throughput reduction if
those are overprovisioning or under-provisioning.

3. Knative uses a moving average method to calculate the number of pods based on past
data but cannot reflect the future workload trend, leading to the delay effect.

Why is it a problem the research community is interested?
Due to the fast growth of serverless computing offerings, they focus on maximizing
performance with the lowest resource utilization and optimizing response time to satisfy the
quality of service (QoS) requirements so that it is content with users’ experience while users
only must pay the least cost.

Introduction: Paper Overview

3

4

12/7/2022

3

Address the problem:
Automatically optimizes an effective scaling policy to a specific application.

How?
> With the same amount of resources per pod, the purpose focuses on outputting an

appropriate parameter level showing the throughput maximum and an acceptable latency to
satisfy SLO violation.

> A new service revision with the new scheduling policy is created, and then apply the
forecasting model de to optimize the calculation of the number of pods.

Introduction: Paper Overview

A. Knative Serverless Platform

B. Forecasting model

BACKGROUND

5

6

12/7/2022

4

● open source serverless platform

● two main components:

○ Eventing component

○ Serving component

A. Knative Serverless Platform

● Kubernetes Custom

Resource Definitions

(CRDs)

Serving Component

7

8

12/7/2022

5

● Knative

Pod

Autoscaler

(KPA)

Auto-scaling

Moving average method to compute number of pods required in the future

N: Number of pods required

Cp: Maximum request concurrency one pod can handle at any time

Ct: Actual average concurrency per pod at time t

● Concurrency

● request

per

second

(rps)

Auto-scaling metrics

9

10

12/7/2022

6

● not reflect trend

● how to choose Cp

Drawbacks

● machine learning algorithm to time series forecasting
● traditional method - not applicable
● Deep neural method - applicable
● LSTM and Bi-LSTM

B. Forecasting model

11

12

12/7/2022

7

> Two primary states to address above challenges.
– First State: Parameter values for the primary service

function to optimize performance & the latency of service
– Second State: Improve the calculation of the number of

pods to be more adaptive to the changes in request trends
by applying the prediction model Bidirectional LSTM(Bi-
LSTM)

> The activator controls these two states, which run
separately

Proposed Architecture

> Finding appropriate configurations for
parameters of the service version and using
them to create a new service revision

> Knative automatically transfers all 100% current
workload to the latest revision, and the activator
redirects the system to state 2

> The time series forecasting model Bi-LSTM will
be applied to improve the calculation of the
number of pods. The decision controller controls
the flow and executes results received from two
states by communicating with Knative
components

Proposed Architecture

13

14

12/7/2022

8

> Knative resources installed on Kubernetes with
the help of service mesh Istio

> All incoming requests will pass through the Istio
ingress before coming to Knative serving
components, which control the state of the
deployed sample service and enable autoscaling
of additional pods based on demand

Proposed Architecture

> Split the workload into 2 kinds of revisions due
to Knative serving flexibility: a stage revision and
a production revision

– The stage revision: testing & calculating
the appropriate parameter values for the
current load

– The production revision: serve the
requests continuously

> Route: distribute inbound requests between the
stage and production revision on a 25-75%
basis.

> Choose the value of 25% because results
extracted from lower values of traffic (e.g., 5-
10%) could be affected by the noisy behavior of
the system

Proposed Architecture

15

16

12/7/2022

9

> Run performance tests for varying concurrency levels
> Collect the output information:

– maximum throughput, request latency distribution, and
corresponding concurrency level for each test iteration

> Begin at a concurrency limit of 10 and use steps of 10 to update the
next limit. Stop when latency is over SLO violation

> Create a new service revision using the output and transfer 100%
workload to the latest revision

Parameter Values Optimization

Proposed Architecture

> Extract metrics from Prometheus (the value of the current workload
each time interval)

> Sum it up and have the dataset for training the model (80% of total for
training and 20% for testing)

> Used ten historic workload values to predict the future workload in Bi-
LSTM model

> Optimize the model by tuning params so as to make RMSE and MAE
small

Workload Forecasting

Proposed Architecture

17

18

12/7/2022

10

> Compare the proposed method to the Knative default configuration of the
100-concurrency level through two different applications

> Two applications with different resource consumption per request:
– Application A: consumes CPU and memory exclusively
– Application B: low resource usage

> An SLO violation is considered to maintain user experience (configured
250ms)

Preliminary Experimental Result

> The appropriate concurrency level of application A is 50 with 50 rps
> Compared with the 100-concurrency level, the result not only is the latency

low and acceptable but also the throughput is higher by approximately 40%

Preliminary Experimental Result

19

20

12/7/2022

11

> The appropriate concurrency level of application B is 120 with 120 rps
> Compared with the 100-concurrency level, although the latency values of

the two levels are acceptable, max throughput of our method is higher than
20%

Preliminary Experimental Result

> The number of pods obtained based
on the Bi-LSTM model is closer to the
number of ho

> The predicted workload from the Bi-
LSTM model is more accurate than the
moving average, so the predicted
number of pods value can be quickly
adaptive to the workload trend

Preliminary Experimental Result

21

22

12/7/2022

12

> Find the appropriate parameter values for Knative
service revision to improve performance and keep
acceptable latency

> Optimize the calculation of the number of pods for
Knative based on the prediction model Bi-LSTM

> The preliminary experiments worked well and show
better performance than Knative scheme

Conclusion

> Clear logic in paper design

> The underlying principle and implementation logic of the algorithm
and forecasting models are introduced in detail

> The algorithm has a substantial improvement (over 20%) in
performance and the effect is shown in the graphs

> Well-designed and described experimental architecture and
controls

Strengths

23

24

12/7/2022

13

> The amount of test cases could be small

> Few experiment details

Weaknesses

> No result chart for the Knative default configuration of the 100-
concurrency level for the two applications

> Result for workload forecasting is comparatively convincing

Evaluation

25

26

12/7/2022

14

> Future works: plan to implement Knative's
Autoscaler based on our experiments based on
the production environment.

Gap

Thank you for watching!

27

28

