

1

TCSS 562: Software Engineering School of Engineering and Technology
for Cloud Computing University of Washington – Tacoma
Fall 2021
http://faculty.washington.edu/wlloyd/courses/tcss562

Tutorial 9 – Asynchronous Function Profiling with SAAF

Disclaimer: Subject to updates as corrections are found
Version 0.10

Scoring: 20 pts maximum

The purpose of this tutorial is to introduce asynchronous function profiling with the Serverless Application
Analytics Framework (SAAF) in AWS Lambda and Java.

This tutorial also provides a source code example of calling an AWS Lambda function from a AWS Lambda
function. This tutorial also provides a source code example of publishing SAAF data to an S3 bucket. This
tutorial also provides optional activities: step-by-step instructions on: (1) how to set-up a NAT gateway for a
VPC so Lambda functions in a VPC can call other Lambda functions, and (2) how to access S3 from a Lambda
function in a VPC.

Profiling asynchronous functions on AWS Lambda is performed by pushing SAAF JSON objects to an S3 bucket
for later retrieval using SAAF’s s3pull.py script.

1. Download Project Source

To begin, using git, clone the project SAAF message passing example project:

git clone https://github.com/wlloyduw/saaf_mp

This project will open directly in Netbeans 11. It is configured to use Java 8 and will need to be set to Java 11 if
using Netbeans.

The following packages need to be installed:

parallel bc jq awscli curl

These packages can be installed with “sudo apt update” and “sudo apt install”.

The message passing example project is a Lambda function that calls other Lambda functions for the purpose
of spreading a message to a set of function instances.

The idea is derived from message passing protocols such as flooding and gossiping in TCSS 558 Applied
Distributed Computing. With these protocols, we are interested in how many messages must be sent between
nodes in unstructured adhoc networks to fully disseminate data. With AWS Lambda, each function instance
can be thought of as a node. Nodes survive at least 5 minutes in the “warm” state before AWS Lambda

http://faculty.washington.edu/wlloyd/courses/tcss360
https://github.com/wlloyduw/saaf_mp

2

selectively starts to remove nodes that have not been used as described by the paper Performance evaluation
of heterogeneous cloud functions:

LINK:
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Fall2019/Group1-
PerformanceEvaluationofHeterogeneousCloudFunctions.pdf

Our goal is to SPREAD a data message to every node in the network as efficiently as possible.

Unfortunately, in AWS Lambda, it is not possible for “nodes” to directly communicate. The only way Lambda
nodes can exchange data (without using S3 for example) is by having a Lambda function call itself. When this
happens, however, the function call is routed to a random node. There is no ability to control where requests
go.

The goal of the message passing example application then is to see how quickly (in seconds) a data message
can be duplicated across all nodes for an AWS Lambda function when only making a single Lambda call, without
the use of any other services or networking. The only communication is AWS Lambda functions calling AWS
Lambda functions. This is essentially recursion on a serverless platform. In addition to the time, we also want
to determine the number of Lambda calls required to “spread” the data to every Lambda function instance.

The client only makes one Lambda call. This initial Lambda begins a process of message passing. Message
passing occurs in rounds. In each round, the current Lambda function passes the message to n other Lambdas.
When a Lambda function receives the message that already has it, then this node does not pass the message
further. Only nodes newly receiving the message pass the message on. The spread number indicates how
many Lambda function calls each node newly receiving the message will attempt to make during the succesive
rounds.

Limitations: The current source code suffers from a couple challenges. First, the current implementation
performs message passing sequentially, calling one Lambda at a time. Refactoring the code to orchestrate
multiple Lambdas in parallel with multiple threads in Java will increase the efficiency of message passing. But
even with this is optimization, Lambda have a limited number of vCPUs. Therefore, the ability to send multiple
messages at a time is limited to the number of vCPUs that can orchestrate calls in parallel. For effective
broadcasting, ideally we could send n messages in parallel from a single Lambda. (The second challenge is in
how reserved concurrency works in AWS Lambda. When concurrency for a function is limited to lets say 10,
the 11th call always fails generating the error: An error occurred (TooManyRequestsException) when calling

the Invoke operation (reached max retries: 4): Rate Exceeded. Refactoring the application to trap this error
and gracefully retry calls would be an improvement.

The message passing application can not be profiled using synchronous function profiling in SAAF because
many function calls may execute concurrently. This tutorial leverages the example application for
asynchronous profiling in SAAF, as the client only makes one Lambda call, and there are many hidden Lambda
calls in the background. The idea is to profile all of the Lambda calls by pushing SAAF results to S3, and pulling
results later to perform an analysis.

First, there are some modifications to make to the github code.

In the source code, navigate to: java_template/src/main/java/lambda/MessagePass.java

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Fall2019/Group1-PerformanceEvaluationofHeterogeneousCloudFunctions.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/Fall2019/Group1-PerformanceEvaluationofHeterogeneousCloudFunctions.pdf

3

For this tutorial, it is recommended to use the us-east-1 Virginia region.

On line 39, update the bucketname variable to be an S3 bucket in the same Region as your Lambda function. If
you don’t have an S3 bucket in US-EAST-1, please create a bucket.

On line 166, the functionName is hard coded as “tutorial9”.
If you deploy the function using another name, the code will need to be updated here. You’ll also need to
update the file message_passing/parfunction, and the message_passing/messagepass.sh script.

Please note example code:

Starting on line 131 is an example of publishing SAAF data to an S3 bucket.

Starting on line 74, and combined with the interface defined on line 164 shows how a Lambda function can be
invoked by another Lambda function.

Please note:
A Lambda function in a VPC can’t easily invoke itself. Putting a Lambda function in a VPC disables its Internet connection.
The default behavior is for the Lambda function to timeout as Lambda functions can’t be reached without the Internet.
The workaround is to add a “NAT Gateway” to the VPC and set up the proper route tables. This is described as an
optional activity at the end of the tutorial.

Additionally a Lambda function in a VPC, can’t directly publish data to S3. There is an easier workaround however. A VPC
endpoint can be added. Please contact the instructor with questions.

2. Build and deploy the message passing function

Using a favorite Java IDE or the command line, perform a maven build.

The next step is to deploy to AWS Lambda.

Navigate to “Lambda”, and create a new function.

Using the wizard, use the “Author from scratch” mode.
Specify “tutorial9” as the function name, and “Java 8”.
Selecting the defaults will create a new role for the function.

Once filling the form, click the button:

Next, upload your compiled Java JAR file to AWS Lambda:

4

Click the “Upload” button to navigate and locate your JAR file. The jar file is under the “java_template/target”
directory. It should be called “lambda_test-1.0-SNAPSHOT.jar”.

Once selecting the file, change the “Handler” to:

lambda.MessagePass::handleRequest

*** IF THE HANDLER IS NOT UPDATED, LAMBDA WILL NOT

BE ABLE TO LOCATE THE ENTRY POINT TO YOUR CODE.
THE LAMBDA FUNCTION WILL FAIL TO RUN ***

Next, for the message passing application, we would like to set the number of “nodes”.
By setting the “reserve concurrency” setting on Lambda, it limits a function to a maximum number of function
instances (e.g. like nodes).

Set this limit to 10.

Next, we need to modify the role to provide sufficient security permissions:

Scroll up to Execution role, and click on the “View” link to view the role in the Identity Access Manager:

5

While viewing the role, let’s attach the “everything” policy (not very secure):

Click on “Attach policies”.
Then filter policies by “AWSLambda” and select “AWSLambdaFullAccess”:

Click the button to attach the policy to the role:

5. Testing the Application

To test the application, navigate to the message_passing directory where there are test scripts.

Perform the following sequence.

First initialize 10 nodes:

./init.sh 10

Then try message passing:

./messagepass.sh

Usage ./messagepass.sh {# of rounds} {node spread per round}

6

The first argument is the number of rounds, and the second is the number of messages to send per round.

Try:

./messagepass.sh 9 9

Here, making 1 Lambda call initiates 9 rounds of 9 calls each.

Then, check whether all nodes have received the message:

./check.sh 10

Fri Dec 6 01:30:27 PST 2019
Checking data spread nodecount=10 runsperthread=1 threads=10 totalruns=10

uuid,host,data,calls,totalcalls,uses,avgruntime_cont,avgsstuntime_cont,avglatency_cont
"1d7b3abc-01c6-440a-b044-8f9b1e752f4a",1575621251,"The Data",10,0,1,14478,12160,2318
"1b3df4d8-7664-4c36-84ca-f5163ecae9bc",1575621182,"The Data",16,0,1,14540,12175,2365
"92fdbae6-f8f4-4b6c-ad66-a97a2e98ccfc",1575622149,"The Data",1,0,1,14566,12267,2299
"32b4c15c-08fa-4855-ab30-c9e470bcaf7f",1575621126,"The Data",1,0,1,14587,12274,2313
"733a422b-f148-4b97-bbc6-a3331238dc91",1575623281,"The Data",1,0,1,14610,12209,2401
"a3926221-b3ed-40f5-ae4e-3e8287fd48e2",1575623154,"The Data",3,0,1,14589,12212,2377
"4e20075b-daf3-4d2c-a255-e2d788aa1d04",1575622027,"The Data",12,0,1,14881,12100,2781
"d0065991-d779-4039-a201-4bdcdeaf2265",1575622873,"The Data",1,0,1,16383,12196,4187
"ad7fb301-43ef-4ced-a9bf-b05613dca76f",1575621186,"The Data",15,0,1,16960,12361,4599
"dc6e2330-10f9-4d16-93ae-e2ad1318ca63",1575621690,"The Data",1,0,1,17527,12281,5246
Current time of test=1575624646

Here, we’ve been able to spread the message “The Data” to all 10 nodes without using S3 by making only one
Lambda call. This was very inefficient however, as many Lambda calls were required.

The number after “The Data” indicates how many calls each node received.
Lambda does a poor job at distributing the calls. (10, 16, 1, 1, 1, 3, 12, 1, 15, 1)
When calling Lambda, calls tend to go to the initial function instance unless many are run in parallel.
The issue is that a function instance immediately exists and accepts a new request if it already has the data.
This behavior makes it difficult to reach the tail end of the fleet of function instances.
Adding a sleep delay to keep function instances busy (doing nothing) to prevent functions from exiting too
quickly could help force incoming requests to the tail end of the set of function instances.
The load balancing behavior is not round-robin, but greedy, as Lambda tries to spread requests as narrowly as
possible across the fewest number of function instances to save server capacity.

6. Profiling with SAAF

All Lambda calls have been publishing JSON results to an S3 bucket.

Using the s3pull.py script, SAAF can grab and analyze results.
S3pull.py requires boto3. If you have not installed boto3, please install it:

pip3 install boto3

Navigate to the test directory:

cd ../test

7

./s3pull.py tcss562.mylogs.aaa experiments/mp.json 0

** Replace tcss562.mylogs.aaa with the name of your bucket. **

The s3pull script pulls all files from the S3 bucket, and produces a CSV report file. If your platform
automatically opens CSV files, it will immediately appear in a spreadsheet. If not, using a spreadsheet
application such as Microsoft Excel, open the CSV file.

CSV files are saved locally under the history directory.

Tutorial 9 is optional and offered as extra credit in fall 2021.

To submit this tutorial

To submit Tutorial #9, upload the CSV file produced by s3pull.py to Canvas.

Scoring

20 points Providing a CSV file showing the message passing application running
 the commands: init 10, messagepassing 9 9, check 10

Tutorial 9 - Optional Activity

Configuring a NAT Gateway to provide Internet access
to Lambda Functions running in a VPC

To enable a Lambda function in a VPC to call a Lambda function in a VPC or not, it is necessary to add a “NAT
Gateway” appliance to the VPC and add route tables. A “NAT Gateway” acts like a network router device. It
routes traffice from the private subnet through the NAT Gateway and out through the public subnet. The
major drawback is that NAT gateways cost 4.5 cents/hour, or $1.08/day, $7.56/week, $32.40/month, or
$394.20 a year. Because of this cost, NAT gateways should be set up for temporary usage only.

To begin, navigate to “VPC”. For the VPC, let’s create two subnets, one public, and one private. First, we need
to identify your account’s default VPC. Click on “Default VPC”. In the display, look for the row with Default
VPC labeled as “Yes”. Note the VPC ID.

Next, on the left side-bar select “Subnets”. And then click “Create Subnet”:

8

Specify a name: public-net-1a (where 1a is the availability zone)
Select the default VPC discovered above.
Choose an availability zone, for example in Virginia us-east-1a (or 1b, 1c, etc as desired).
Then specify a IPv4 CIDR block. This block must not already be defined by another subnet in the VPC.
Try: 172.31.112.0/20
Then click Create.

Now, create a second subnet.
Specify a name: private-net-1a (where 1a is the availability zone)
Select the default VPC discovered above.
Choose an availability zone, for example in Virginia us-east-1a (or 1b, 1c, etc as desired).
Then specify a IPv4 CIDR block. This block must not already be defined by another subnet in the VPC.
Try: 172.31.128.0/20
Then click Create.

After creating both subnets, next on the left side-bar select “NAT Gateways”.
The click “Create NAT Gateway”:

9

In the user interface,
Subnet: select the subnet ID for the public subnet you just created
Elastic IP Allocation ID: Click the button for “Create New EIP”.

PLEASE NOTE, CREATING AND SAVING AN UNUSED ELASTIC IP COSTS $3.60 a month. Elastic IPs are FREE
when they are actively associated with a NAT Gateway or an EC2 instance. When they sit in your account
unused, they cost 12 cents a day or $3.60/month ($43.20/year).

When ready, create the NAT Gateway:

Remember to DELETE the NAT Gateway after this tutorial as the cost is $1.08/day or
$32.40/month to retain it in your account.

Once the NAT gateway has been created, click on the “Internet Gateways” link in the LEFT-Hand sidebar menu:

Identify the ID of the Internet Gateway that is attached to your Default VPC.

Next click on the “Route Tables” link in the LEFT-Hand sidebar menu.

Create two new route tables, one for the public subnet, one for the private subnet:

Provide a name such as “pubnet-route-1” and select the default VPC:

10

Repeat the procedure creating the private network route:
Name tag: privnet-route-1

VPC: (your default VPC ID)

Now, select the pubnet-route-1, and click on the “Routes” tab, and select the “Edit Routes” button.

Click the “Add Route” button.
Destination: 0.0.0.0/0

Target: (select “Internet Gateway”, then the Internet gateway ID from above)

Then click the “Save routes” button.

Then click on the “Subnet associations” tab.
Click the “Edit subnet associations” button.
Identify and select your public subnet (public-net-1a).
Click Save.

Next, select the “privnet-route-1” and select the “Edits Routes” button.
Click the “Add Route” button.
Destination: 0.0.0.0/0

Target: (select “NAT Gateway”, then the NAT gateway ID you’ve created from above)

Then click the “Save routes” button.

Then click on the “Subnet associations” tab.
Click the “Edit subnet associations” button.
Identify and select your private subnet (private-net-1a).
Click Save.

Now, while still in VPC, create an “Endpoint” so the VPC can access S3.
Click on the “Endpoints” link in the LEFT-Hand sidebar menu.

Click the button “Create Endpoint”.
Scroll down through the long list and select: “com.amazonaws.us-east-1.s3”

Make sure the default VPC is selected.
When the route tables, appear, select your public and private route tables.
Then create the endpoint, by clicking the button:

11

Next, to use the VPC with the newly configured NAT Gateway and routes, go to your Lambda function, and
select the VPC, and private subnet (privnet-route-1) you’ve just created. You’ll also need to select a security
group. The “default” security group should work.

It should now be possible to run the message passing application using the Lambda function in a VPC. The
Lambda should be able to call itself, and write to S3.

./init.sh 10

./messagepass.sh 9 9

./check.sh 10

cd ../test

./s3pull.py tcss562.mylogs.aaa experiments/mp.json 0

** Replace tcss562.mylogs.aaa with the name of your bucket. **

For additional information, see:

https://stackoverflow.com/questions/39144688/aws-lambda-invoke-not-calling-another-lambda-function-node-js

https://aws.amazon.com/blogs/aws/new-access-resources-in-a-vpc-from-your-lambda-functions/

Be sure to DELETE the NAT Gateway and ALL Elastic IP addresses in the VPC
after completing this tutorial as the cost is $1.08/day or $32.40/month to

retain the NAT Gateway, and 12 cents/day, $3.60/month, or $43.20/year to
retain each Elastic IP address in your account.

https://stackoverflow.com/questions/39144688/aws-lambda-invoke-not-calling-another-lambda-function-node-js
https://aws.amazon.com/blogs/aws/new-access-resources-in-a-vpc-from-your-lambda-functions/

