TCSS 562: Software Engineering School of Engineering and Technology
for Cloud Computing University of Washington — Tacoma
Fall 2021

http://faculty.washington.edu/wlloyd/courses/tcss562

Tutorial 10 — Introduction to FaaS Runner

Disclaimer: Subject to updates as corrections are found
Version 0.10
Scoring: 40 pts maximum

The purpose of this tutorial is to provide a comprehensive overview of many of FaaS Runners most important
features. This tutorial will cover creating complex experiments, automating them, and creating pipelines of
functions.
1. Download the Faa$S Runner tutorial functions.
To begin, using git, clone the GitHub repository for this tutorial.

If you do not already have git installed, plus do so.

On ubuntu see the official documentation:
https://help.ubuntu.com/Its/serverguide/git.html.en

For a full tutorial on the use of git, here is an old tutorial for TCSS 360:

If you prefer using a GUI-based tool, on Windows/Mac check out the GitHub Desktop:
https://desktop.github.com/

Once having access to a git client, create a folder and clone the source repository:

git clone https://github.com/RCordingly/faas runner tutorial

This tutorial builds upon Tutorial 4. If you have not completed that tutorial, please review it and install any
dependencies (such as Maven and the AWS CLI). This tutorial does not require code changes but does require
being able to deploy functions using the built in publish scripts.

SAAF Documentation: https://github.com/wlloyduw/SAAF/tree/master/java_template

FaaS Runner Documentation: https://github.com/wlloyduw/SAAF/tree/master/test

http://faculty.washington.edu/wlloyd/courses/tcss360
https://help.ubuntu.com/lts/serverguide/git.html.en
http://faculty.washington.edu/wlloyd/courses/tcss360/assignments/TCSS360_w2017_Tutorial_1.pdf
https://desktop.github.com/
https://github.com/wlloyduw/SAAF/tree/master/java_template
https://github.com/wlloyduw/SAAF/tree/master/test

2. Deploy the Included Functions

Included in the repository are four functions that need to be deployed to AWS Lambda. To simplify this process,
SAAF's built in publish scripts can be used to deploy them automatically. The repository contains three 'Hello
World' functions; pello_world, jello_world, and nello_world, and the CalcsService function.

The Jello/Pello/Nello naming is because these are Hello World functions written in Java, Python, and Node.js
respectively. SAAF supports functions written in each of these languages.

To deploy these, we must first configure each config.json file with a role ARN. You should already have an ARN
created from Tutorial 4 so you can retrieve that by visiting the AWS webpage, go to IAM -> Roles and select the
role you would like to use.

aWS gervices ¥ £\ RobertCordingly ¥ Global ¥ Support ¥
Identity and Access Roles > simple_microservice_role
4
Management (IAM) Summary Delete role
Dashboard Role ARN | arn:aws:iam::616835888336:role/service-role/simple_microservice_role @I

« Access management Role description Edit

Groups Instance Profile)
ARNs
Users
Path /service-role/
Roles
Creation time 2018-10-26 11:44 PDT
Policies

Last activity 2020-10-21 16:38 PDT (2 days ago)
Identity providers

Maximum session 1 hour Edit
Account settings

duration
« Access reports
Permissions Trust relationships Tags Access Advisor Revoke sessions
Access analyzer
Archive rules ~ Permissions policies (6 policies applied)
Analyzers - - .
Attach policies © Add inline policy
Settings
Credential report Policy name « Policy type «
Organization activity » AWSLambdaFullAc... AWS managed policy x
Service control policies (SCPs) > AmazonS3FullAccess AWS managed policy x

Show 4 more

Copy your ARN shown at the top of the page. All functions can share the same ARN. Next open the config.json
files located in each function's deploy folder and paste the ARN into the JSON attribute called lambdaRoleARN.
No other attributes in the config files need to be changed.

You may use any text editor to enter the ARN. The example below shows opening each file in Nano.

cd {base directory where project was cloned}
nano pello world/deploy/config.json
nano jello world/deploy/config.json
nano nello world/deploy/config.json
nano calcService/deploy/config.json

GNU nano 2.0.6 File: pello_world/deploy/config.json

"README": "See ./deploy/README.md for help!",
"functionName": "pelloWorld",

"lambdaRoleARN": "arn:aws:iam::616835888336:role/service-role/simple_microservice_role",
"lambdaSubnets": "",

"lambdaSecurityGroups": "",

"lambdaEnvironment": "Variables={EXAMPLEVAR1=VAL1, EXAMPLEVAR2=VAL2}",

"test": {
"name": "Bob"
}

¢ Get Help)¢ WriteOut W) Read File W Prev Page W4 Cut Text ¢ Cur Pos
@ Exit a8 Justify Wl Where Is W' Next Page WY UnCut Text [l To Spell

3. Deploy each Function.

Once each configuration file has an ARN, each function should be able to be deployed using the publish scripts.

cd {base directory where project was cloned}

./publish.sh AWS GCF IBM AZURE MEMORY
./pello world/deploy/publish.sh 1 0 0 0 1024

./jello world/deploy/publish.sh 1 0 0 0 1024
./nello world/deploy/publish.sh 1 0 0 0 1024
./calcs_service/deploy/publish.sh 1 0 0 0 1024

The publish scripts automatically package functions and can deploy them to AWS Lambda, Google Cloud
Functions, IBM Cloud Functions, and Azure Functions. Here we are just deploying to AWS Lambda with a
memory reservation setting of 1024 MBs. The publish scripts can be used to deploy new functions or update
existing functions.

To verify that each deployment was successful, the publish script will automatically invoke the function with the
test payload in the config file. Verify that each function was deployed and executed successfully. The output
should look similar to the example below.

Testing function on AWS Lambda...

{"cpuType":"Intel(R) Xeon(R) Processor @ 2.50GHz","cpuNiceDelta":9,"vmuptime":16035615
60, "cpuModel":"62","linuxVersion":"#1 SMP Fri Sep 11 23:37:26 UTC 2020","cpuSoftIrqgDel
ta":@, "cpuUsrDelta":0, "uuid":"1f315852-6bel-453d-9a91-ea@5f38ea3c7", "platform": "AWS La
mbda", "contextSwitches":18195, "cpuKrn":80, "cpuldleDelta":@, "cpulowaitDelta":8, "newcont
ainer":1,"cpuNice":0,"startTime":1603563155979,"lang":"java", "cpulUsr":87, "majorPageFau
ltsDelta":@, "freeMemory":"1044356", "frameworkRuntime" :60, "contextSwitchesDelta":0, "fra
meworkRuntimeDeltas":16, "vmcpusteal":15, "cpuKrnDelta":@, "functionName": "jelloWorld", "v

mID":"NSHog7", "cpuldle":318888, "runtime":76, "message":"Jello Bob", "version":0.5,"cpulr
gDelta":0,"pageFaultsDelta":0, "functionMemory":"1024", "functionRegion":"us—-east-1","cp
ulrq":0, "totalMemory":"1196852", "cpuCores":"2", "cpuSoftIrq":0, "cpulowait":9,"endTime":
1603563156855, "containerID":"2020/10/24/[$LATEST]2cce5bab83ec44Ta9bT598a8a21d01b3" , "ma
jorPageFaults":918, "vmcpustealDelta":@, "pageFaults":73631, "userRuntime":0}{
"ExecutedVersion": "SLATEST",
"StatusCode": 200

Each function should now be visible on the AWS Lambda web page:

Functions (51) Last fetched 3 minutes ago

Q 1 2 5> &
. A . Code Last
Function name v Description Runtime ¥ . pe
size ¥ modified ¥
262.9 16 minut
calcsServiceTutorial Java 8 minutes
kB ago
jelloworld Java 8 igZ.Z 8 hours ago
pelloWorld Python 3.7 4.2 kB 8 hours ago
Node.j
nelloWorld 1gxejs 22.1 kB 8 hours ago

4. Running an Experiment with FaaS Runner

Now that we have all of our functions deployed, we will begin running some experiments with FaaS Runner. To
work with FaaS Runner, open the test folder in a terminal and execute the faas_runner.py script.

FaaS Runner uses two types of files. Function files, which define the endpoints needed to execute a function,
and experiment files that define how to process an experiment. Let's execute the built-in calcsService
experiment to get an understanding of what FaaS Runner is doing and how the output is recorded.

cd ./test
./faas_runner.py -f ./functions/calcsService.json -e ./experiments/calcsServiceExpl.json

The -f flag defines the path to the function file and e defines the path to the experiment file. After executing
this function FaaS Runner should execute the entire experiment and automatically open a spreadsheet on
MacOS and Linux.

FaaS Runner produces a lot of output text to show what is going on. It is broken into section that will be
explained here.

robertcordingly@Roberts—iMac-2:~/Dropbox/Research/faas_runner_tutorial/test$./faas_runner.py -f ./functions/calcsService.json -e ./experiment
s/calcsServiceExpl.json

Overrides: {}

Loaded function: {'function': 'calcsServiceTutorial', 'platform': 'AWS Lambda', 'source': '../calcs_service', 'endpoint': '', 'sourceFile': '.
/functions/calcsService.json'}

-—Loaded function list: [{'function': 'calcsServiceTutorial', 'platform': 'AWS Lambda', 'source': '../calcs_service', 'endpoint': '', 'source
File': './functions/calcsService.json'}]
NOTE: parentPayload missing in experiment file! Using default option of {}

: payloadFolder missing in experiment file! Using default option of

: shufflePayloads missing in experiment file! Using default option of False

: passPayloads missing in experiment file! Using default option of False

: transitions missing in experiment file! Using default option of {}

Loaded experiment: {'callWithCLI': True, 'callAs ': False, 'memorySettings': [], 'payloads': [{'threads': 2, 'calcs': 1000, 'sleep': @, 'loo
ps': 1000, 'arraySize': 1}], 'runs': 10, 'threads': 10, 'iterations': 1, 'sleepTime': 5, 'randomSeed': 42, 'outputGroups': [], 'outputRawOfGro
up': [1, 'showAsList': []1, 'showAsSum': ['newcontainer'], 'ignoreFromAll': ['zAll', 'lang', 'version', 'linuxVersion', 'platform', 'hostname']
, ‘'ignoreFromGroups': ['1_run_id', '2_thread_id', 'cpuModel', 'cpuldle', 'cpulowait', 'cpulrq', 'cpuKrn', 'cpuNice', 'cpuSoftIrq', 'cpuUsr'l,
'ignoreByGroup': {'containerID': ['containerID'], 'cpuType': ['cpuType'l, 'vmID': ['vmID']}, 'invalidators': {}, 'removeDuplicateContainers':
False, 'overlapFilter': 'functionName', 'openCSV': True, 'combineSheets': False, 'warmupBuffer': @, 'sourceFile': './experiments/calcsServiceE
xpl.json', 'experimentName': 'calcsServiceExpl', 'parentPayload': {}, 'payloadFolder': '', ‘'shufflePayloads': False, 'passPayloads': False, 't
ransitions': {}}

——-Loaded experiment list: [{'callWithCLI': True, 'callAsync': False, 'memorySettings': [], 'payloads': [{'threads': 2, 'calcs': 1000, 'sleep'
: @, 'loops': 1000, 'arraySize': 1}], 'runs': 10, 'threads': 10, 'iterations': 1, 'sleepTime': 5, 'randomSeed': 42, 'outputGroups': [], 'outpu
tRawOfGroup': [1, 'showAsList': [], 'showAsSum': ['newcontainer'], 'ignoreFromAll': ['zAll', 'lang', 'version', 'linuxVersion', 'platform', 'h
ostname'], 'ignoreFromGroups': ['1_run_id', '2_thread_id', 'cpuModel', 'cpuldle', 'cpulowait', 'cpulrq', 'cpuKrn', 'cpuNice', 'cpuSoftIrq', 'c
puUsr'l, ‘'ignoreByGroup': {'containerID': ['containerID'], ‘'cpuType': ['cpuType'l]l, 'vmID': ['vmID']}, 'invalidators': {}, 'removeDuplicateCont
ainers': False, 'overlapFilter': 'functionName', 'openCSV': True, 'combineSheets': False, 'warmupBuffer': @, 'sourceFile': './experiments/calc
sServiceExpl.json', 'experimentName': 'calcsServiceExpl', 'parentPayload': {}, 'payloadFolder': '', 'shufflePayloads': False, 'passPayloads':
False, 'transitions': {}}]

The first section is where the function information and experiment data are loaded. Here you can see the list of
loaded functions, and the list of loaded experiments. For this experiment we only have one function and one
experiment. If an experiment or function file is missing attributes (such as in this example parentPayload,
payloadFolder, shufflePayloads, passPayloads, and transitions) default values will be used instead.

Not loading payloads from folder. Either folder does not exist of payloadFolder is undefined.

Skipping setting memory value.
Sleeping after setting memory value...
Running test @:

The second section applies any modifications to payloads if you choose to use inheritance. FaaS Runner has the
ability to define parent payloads that children can inherit values from. This can be useful if you have an
experiment but want to override some attribute instead of recreating the entire experiment file. In this first
example we are not using this feature.

Payload: {'threads': 8 8 : 1000, 'arraySize':
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize':
Payload: {'threads': 2, 'calcs': 1000, 'sleep': 'loops 1000, 'arraySize
STDOUT: {"vmuptime":1603653043,"cpuModel”:"62","linuxVersio 1 SMP Fri Sep 11 23:37:26 UTC 2020","cpuSoftIrqDelta":@, "uuid 153aba-0322-
47f@-bb62-1dec327ccaa7", "contextSwitches":33090, "cpuNice":0, "cpuUsr":140, "majorPageFaultsDelta":0, "freeMemory":"1037120","calcs":1000, "context
3,"vmcpusteal 13, "cpuKrnDelta":0, "vmID":"7Mg8rw", "cpuldle" :543882, "runtime":116, "version":0.5, "cpulrgDelta":@, "cpuCores":"2"
,"containerID":"2020/10/25/[$LATEST19cf3944béd0escc2ae7d3223cc29aadf", "vmcpustealDelta”:1, "cpuType":"Intel(R) Xeon(R) Processor
uUsrDelta":8,"platform":"AWS Lambda", "cpuKrn":186,"cpuldleDelta":15,"sleep":0,"cpulowaitDelta":@, "newcontainer
0, "startTime":1603655765466, "lang java","finalCalcl":107966,"finalCalc@":78210, "frameworkRuntime":5, "frameworkRuntimeDeltas ,"functionNa
"calcsServiceTutorial", "threads":2,"loops":1000, "arraySize":1, "pageFaultsDelta":376,"functionMemory":"1024", "functionRegion us—east-1","
cpulrq":0, "totalMemory":"1190852", "cpulowait":15, "endTime" :1603655765582, "majorPageFaults":923, "pageFaults":182656, "userRuntime":110}{
"ExecutedVersion": "
"StatusCode": 200

Next we have the section where functions are actually being invoked. At the start you can see the payloads of
each function invocation and then shortly later you begin seeing the results of each run denoted by STDOUT.
For long running experiments this section can be useful to make sure an experiment is executing properly.

2020-10-25 12:56:06.792393 - Python Partest Version 0.5
Setting up test: runsperthread=1 threads=10 totalruns=10 payload=[{'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threa
ds': 2 'calcs': 1000 'sleep': © 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': © 'loops': 1000 'arraySize': 1} {'threads':
2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 '
calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calc
s': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs':
1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000
'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sl
eep': © 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep': @ 'loops': 1000 'arraySize': 1} {'threads': 2 'calcs': 1000 'sleep'’
: @ 'loops': 1000 'arraySize': 1}]

The next section is where the report is generated. The text shown here is the raw text of the CSV data that will
be opened as a spreadsheet.

WRITING REPORT TO FILE... (report_generator.py)

Writing raw runs to folder ./history/calcsServiceTutorial-calcsServiceExpl-@MBs-run@-1
Opening results...

Sleeping before next test...

All tests complete!

The final section is where files are written to disk. If an output path is not defined, FaaS Runner automatically
saves data to the history folder. Navigate to that folder and view its contents. After running this experiment,
you should see the CSV report alongside a folder with the same name. The folder will contain the JSON
response payloads of each run in the experiment. This data can be used to regenerate a report.

¥ B history

¥ B calcsServiceTutorial-calcsServiceExp1-OMBs-run0
run0-ca74db85-4e95-4dac-83¢c7-1b122d971e1a.json
run1-caeae3bf-b29b-48a6-9a69-ea320d463e4e.json
run2-b4ba3be9-523c-4aad-87fc-bfcf476c7234.json
run3-76adf5d8-6dee-4731-8e08-157283bf46e0.json
run4-38155dc8-08b6-4bae-b248-5b39def5912b.json
runb5-7b492794-24a8-43aa-b56f-f7a09a336757.json
run6-3096fd92-29d8-4e95-9c67-b1cdafd745df.json
run7-b93a2fc7-1c46-40c4-bde9-52654364b43c.json
run8-457d91f3-3bbb-4974-bb89-30f82e5038a3.json
run9-45774f49-f84b-4ff7-b08e-c84a6f1023ce.json
B calcsServiceTutorial-calcsServiceExp1-OMBs-run0.csv

5. Overriding Attributes with Command Line Arguments

Next, let's create a more complex experiment with CalcsService. We will use the same experiment and function
files but override attributes using command line arguments. Any attribute in function or experiment files can be
defined through command line arguments.

For this experiment we are going to use the same workload but repeat it with different memory settings. FaaS
Runner can automatically reconfigure memory settings on all supported platforms. This experiment will take a
couple minutes.

mkdir memorySettingExperiment

./faas_runner.py -f ./functions/calcsService.json -e ./experiments/calcsServiceExpl.json
--memorySettings [256, 512, 1024, 2048] --openCSV false -o memorySettingExperiment

This is the most complex experiment yet so let's see what is going on. We are defining the same function and
experiment files (denoted with the -f and -e flags). Then we are overriding the experiment file's
memorySettings attribute. Overriding attributes can be done by simply using the attribute name as a flag with
'--' at the start. The memorySettings attribute is expected to be a list of memory settings you want to use. In
this case we are using 256 MBs, 512 MBs, 1024 MBs, and 2048 MBs. Next we are overriding the openCSV
attribute to be false. For larger experiments it can be annoying having many CSV files automatically opened so
we will retrieve this information later. Finally, we define the output path by using the -0 flag to be our newly
created memorySettingExperiment folder. The order of command line arguments does not matter.

¥ B memorySettingExperiment

> B calcsServiceTutorial-calcsServiceExp1-256MBs-run0
h calcsServiceTutorial-calcsServiceExp1-256MBs-run0.csv
B calcsServiceTutorial-calcsServiceExp1-512MBs-run0
B calcsServiceTutorial-calcsServiceExp1-512MBs-run0.csv
B calcsServiceTutorial-calcsServiceExp1-1024MBs-run0
B calcsServiceTutorial-calcsServiceExp1-1024MBs-run0.csv
B calcsServiceTutorial-calcsServiceExp1-2048MBs-run0

h calcsServiceTutorial-calcsServiceExp1-2048MBs-run0.csv

Just like with the first experiment, if we open the output folder, we can now see CSV reports and folders of
JSON files for each memory setting.

6. Creating a Unified Report

Instead of having 4 different reports for each memory setting, lets combine all the runs into one report. To do
this we must first create a folder will all of the json files. This can be easily done through the command line.

cd memorySettingExperiment
mkdir combined

cp -r **/*_json ./combined
cd ..

Next we can use the compile_results.py script to create a single report with all 40 runs. Simply supply the path
to the folder of json files (./memorySettingExperiment/combined) and then the path to an experiment file
(./experiments/calcsServiceExp1l.json).

./compile results.py {FOLDER PATH} {PATH TO EXPERIMENT JSON}
./compile results.py ./memorySettingExperiment/combined ./experiments/calcsServiceExpl.json

This should generate a report such as the one shown below.

2020-10-25 15:29:51.240083 - Python Partest Version 0.5

Setting up = =10 payload=[{ + 2 'eales': 1000 'sleep' 0 'loops': 1000 'arraySize': 1}]

Raw results of each run:

1_run_id 2 thread id arraySize | calcs containerD contextSwitches contextSwitchesDelta cpuCores cpuldie cpuldieDelta cpulowait cpulowaitDelta cpulrg cpulDetta cpukm | cpuKmDeha cpubodel | cpuNice
0 8 11000 2020/10/25/1$LATEST) 21417 79 2 491128 6 7 0 0 o 107 0 62 0
] 1 1/ 1000 10/25/[$LATI 30621 7% 2 944228 8 10 0 0 o 129 0 62 0
[4 1/ 1000 10/25/[$LATI 123156 18299 820 2 287045 7 7 0 0 0 70 6 62 0
] 9 11000 2020/10425/[SLATEST)c712080313b; 24880 688 2 867337 134 E] 0 0 o 116 7 62 0
[8 11000 2020/10/25/[SLATEST)287cc4d551dd4bg98ca46al dbadbsems 24753 814 2 620808 147 7 0 0 o 112 7 62 0
] 6 11000 2020/10425/[SLATEST)4fed1albia1 14cdca0B52054ebeded? 18801 89 2 344820 29 5 0 0 0 %6 0 62 0
[5 11000 2020/10/25/[SLATEST}3d14a11661b544b5b0402188a020118d 18380 95 2 300838 34 7 0 0 0 87 0 6 0
0 2 11000 2020/10/25/|SLATEST}33656 74630104700 bbead2cdd0des 17451 855 2 227433 145 5 0 0 0 66 5 & 0
o 0 1 1000 1 TSLATI 110fe672c 17633 582 2 221853 61 7 o o o 93 3 62 o
o 8 1 1000 1 TSLATEST]3b01 17481 808 2 278458 64 7 o o o 88 8 62 o
[3 11000 2020/10/25/[SLATEST]1147ab0507 a448beb066864a02a7 112 27236 782 2 762451 147 8 0 0 0 1 E] 62 0
0 1 1/ 1000 10/25/[$LATH af9ldbeT2 21036 261 2 469084 54 7 0 0 0 86 1 62 0
0 0 11000 2020/10/25/[$LATE 11c201 25304 77 2 696118 121 8 0 0 0 120 5 62 0
] 1 11000 2020/10/25/[SLATEST)96aBA64e513443a0abb04 2elddbb1aB5 19425 768 2 414888 157 6 0 0 [} 76 8 62 0
[4 11000 2020/10/25/|SLATEST)7f0ea27702204d19981e1681393a813c 17021 114 2 240843 a4 6 0 0 0 7 0 62 0
[5 11000 2020/10/25/[SLATEST] 18519 476 2 274596 64 7 0 0 0 101 3 62 0
[9 1| 1000 2020/10425/[SLATEST}e8406554451ad421b087aabdeb725568 17172 567 2 267614 65 5 0 0 0 76 2 62 0
0 7 1| 1000 2020/10/25/[SLATESTIB077c61601ci421ch118bbBE0aISETE0 22818 67 2 806500 8 7 0 0 0 94 0 62 0
[5 1/ 1000 10/25/[SLATI 25682 932 2 786264 155 8 0 0 0 124 7 62 0
[0 1/ 1000 TSLATI 17987 75 2 204841 2 9 0 0 0 %2 0 62 0
o 6 1 1000 1! TSLATI CATT34421a8f 18849 444 2 279069 53 1 o o o 84 a 62 o
0 1 11000 2020/10/25/[SLATEST) 1106a97da7dss 15430 79 2 124586 2% 4 0 0 0 82 0 62 0
0 9 11000 2020/10425/[SLATEST}57a156efc66046509666336206dbbbea 18467 86 2 305805 26 5 0 0 0 91 1 62 0
[3 11000 2020/10/25/[SLATES)oK 19078 579 2 316580 65 4 0 0 0 92 2 62 0
[2 11000 2020/10/25/SLATH 24169 66 2 839570 7 7 0 0 o 107 0 62 0
[4 11000 2020/10/25//SLATEST) 177438198 25709 681 2 737277 135 10 0 0 o 117 5 62 0
[7 11000 2020/10/25/[SLATEST}a3i00b6089884 dablad406eac608348 25749 813 2 722416 146 7 0 0 0 91] 62 0
[6 1| 1000 2020/10/25/[SLATEST}S650b740d26b4c0lad 1 3fa1e0cazbd23 25408 765 2 863583 154 13 0 0 0 112 5 62 0
0 7 1 1000 2020/10/25/[SLATESTI9a5b0ecTeddd46id8 15dbdcddc50b668 19850 81 2 379082 30 6 0 0 0 88 0 62 0
0 3 11000 2020/10/25/1$LATE 22371 87 2 542461 il s 0 0 0 88 0 62 0
0 7 11000 2020/10/25/I$LATE 18200 342 2 328416 55 10 0 0 0 97 1 62 0
0 2 11000 2020/10/25/|$LATES Tlacbad 1332ead4deeac050e93749e34a7 18053 100 2 267552 32 7 0 0 0 62 0 62 0
0 6 11000 2« ISLATI 1dd0r41175¢ 20370 68 2 438534 7 8 0 0 o 103 0 62 0
] 2 11000 2020/10425/[SLATEST] 14959 473 2 129953 59 5 0 0 0 72 2 62 0
[9 11000 2020/10425/[SLATEST) 20826 68 2 456841 8 0 0 o 100 0 62 0
[4 11000 2020/10/26/[SLATEST)2cbec482314b47d8a255¢97ach d2ae3 22185 7 2 482063 8 8 0 0 o 100 0 62 0
] 3 1/ 1000 ISLATESTje617a1 20288 %0 2 418077 s 5 0 0 0 83 1 62 0
0 0 1/ 1000 1SLATI 23794 73 2 570063 7 8 0 0 0 %0 0 62 0
0 5 11000 2020/10/25/1$LATEST}4t42 1 26543 78 2 746690) 8 0 0 0 124 0 62 0
] 8 11000 2020/10/26/$LATE 106771651 17344 8 2 231021 24 6 0 0 0] 0 62 0

‘Successful Runs: 40

Now that we can regenerate reports, this gives us the ability to create experiment files dedicated to formatting
a report. Let's create a new experiment file to categorize this data.

cd ./experiments

cp calcsServiceExpl.json report.json
nano report.json

cd ..

Edit the report.json file so that the ReportGenerator will create groups based on the functionMemory attribute.

FaaS Runner has the ability to automatically aggregate data returned by functions. By adding an attribute to the
outputGroups attribute in an experiment file the ReportGenerator will automatically group runs with shared
values together. For example if you run an experiment with 256MBs and 512MBs of memory, grouping by
functionMemory will automatically calculate the average of all runs at each memory setting. By adding an
attribute to outputRawOfGroup the ReportGenerator will simply print out the raw data of an entire group
together in one block of CSV. These two attributes can be incredibly useful to get quick experiment results
without having to use other tools like Excel.

GNU nano 2.0.6 File: report.json Modified

"callWithCLI": true,
"callAsync": false,
"memorySettings": [1,
"payloads": [{
"threads": 2,
"calcs'
"sleep": 0,
"loops": 1000,
"arraySize": 1

"iteration
"sleepTime": 5,
"randomSeed": 42,

"outputGroups": ["functionMemory"]1,Ml
"outputRawOfGroup": ["functionMemory"],
"showAsList": [1],

"showAsSum": ["newcontainer"],

"ignoreFromAll": "version", "linuxVersion", "platform", "hostname"],
"ignoreFromGroups": ["1_run_id", "2_thread_id", "cpuModel", "cpuIdle", "cpulowait", "cpulrq", "cpuKrn", "cpuNice", "cpuSoftIrq", "cpuUsr"$
"ignoreByGroup": {

"containerID": ["containerID"],

"cpuType": ["cpuType"l,

"vmID": ["vmID"]

h

"invalidators": {},
"removeDuplicateContainers": false,
"overlapFilter": "functionName",

"openCSV": true,

"combineSheets": false,
"warmupBuffer": @

Once edited and saved, run the report_compiler.py script again with the newly created report.json file.

./compile results.py ./memorySettingExperiment/combined ./experiments/report.json

In the report you should now see aggregated categories for functionMemory. Alongside that, the results of each
run should also be consolidated together in the report.

10

48 Category functionMemory:

49 functionMemory uses avg_arraySize avg_calcs avg_ itches avg_cor itchesDelta avg_cpuCores avg_cpuldleDelta | avg_cpulowaitDelta | avg_cpulrqDelta
50 1024 10 1.00 1000.00 18162.10 89.30 2.00 29.60 0.00 0.00
51 2048 10 1.00 1000.00 23520.00 73.30 2.00 7.90 0.00 0.00
52 256 10 1.00 1000.00 24160.70 787.60 2.00 144.10 0.00 0.00
63 512 10 1.00 1000.00 18122.60 535.20 2.00 61.60 0.00 0.00

B

Total number of unique functionMemorys: 4

=}

--- Runs of Group functionMemory ---

~

no o GO
[4)]

a
o

Category functionMemory with 1024:

59 arraySize calcs containerlD es | cor Delta cpuCores cpuldleDelta cpulowaitDelta cpulrgDelta cpuKrnDelta

60 1 1000 | 2020/10/25/[SLATE! 18801 89 2 29 0 0 0
61 1 1000 | 2020/10/25/[SLATE! 18380 95 2 34 0 0 0
62 1 . 1000 ' 2020/10/25/[SLATE! 17021 114 2 34 0 0 0
63 1 1000 ' 2020/10/25/[SLATE! 17987 75 2 26 0 0 0
64 1 1000 | 2020/10/25/[SLATE! 15430 79 2 26 0 0 0
65 1 1000 ' 2020/10/25/[SLATE! 18467 88 2 26 0 0 1
66 1 1000 | 2020/10/25/[SLATE! 19850 81 2 30 0 0 0
67 1 1000 | 2020/10/25/[SLATE! 18053 100 2 32 0 0 0
68 1 1000 | 2020/10/25/[SLATE! 20288 80 2 35 0 0 1
69 1 1000 2020/10/25/[SLATE! 17344 84 2 24 1] 0 0

70

7 Category functionMemory with 2048:

72 | arraySize cales containerlD col itches | cor hesDelta cpuCores cpuldieDelta cpulowaitDelta | cpulrgDelta cpuKrnDelta

73 1 1000 ' 2020/10/25/[SLATE! 21417 79 2 6 0 0 0
74 1 1000 ' 2020/10/25/[SLATE! 30621 76 2 8 0 0 0
75 1 1000 | 2020/10/25/[$LATE! 22818 87 2 8 0 0 0
76 1 1000 | 2020/10/25/[SLATE! 24169 66 2 7 0 0 0
77 1 1000 | 2020/10/25/[$LATE! 22377 87 2 11 0 [} 0
78 1 1000 | 2020/10/25/[SLATE! 20370 68 2 7 0 0 0

7. Creating Complex Experiments with Scripts

Now that you have the ability to run multiple experiments and combine the results together into one report, we
can create even more complex experiments with FaaS Runner. For the most complex experiments it is best to
create a script that then invokes FaaS Runner. We can leverage many features of FaaS Runner to improve this
process.

For this experiment we will use all the features of our calcsService application. CalcsService is a CPU bound
workload that does random math (a * b / c). The amount of calculations can be defined using the calcs
attribute. For our next experiment we want to add variability to our runtime and measure how runtime changes
as the number of calculations increases or decreases. To do this we can add many payloads to the list of
payloads attribute and FaaS Runner will distribute them between function invocations. Here we will use
payload inheritance to define a single parentPayload that will contain attributes that all function invocations
will use. Then the values in the payloads list will override the values in the parentPayload if there are conflicts.

Next, we want to measure the impact of the FaaS freeze/thaw lifecycle. After a memory value is changed all
infrastructure allocated to the function will be destroyed, entering the function into a luke-warm state where
the application code is cached but infrastructure must be reallocated. To fully achieve the “cold” state we must
wait around 45 minutes. To measure the impact of the “luke-warm” state we simply need to run an experiment
a second time after getting to the luke-warm state. So one experiment run is in the luke-warm state and the
next will be warm. This same methodology can apply when comparing cold to warm states. To run an
experiment twice in succession we can use FaaS Runner’s iterations attribute.

11

On AWS Lambda, the CPU allocated to a function varies in performance depending on the memory setting
assigned to a function. At low settings (<256MBs) a function may have allocated 1/10 of a single CPU core up to
over 2 CPU cores after 1536MBs. We can measure this performance variability by executing an experiment
across multiple memory settings. Like we did in the previous experiment, we can define multiple memory
settings using the memorySettings attribute in FaaS Runner.

Finally, the calcsService application has the feature to produce memory stress by setting the arraySize attribute
to a large number. When doing random math (a * b / c), calcsService does not use primitive variables (e.g.
int/double) but instead creates arrays and accesses the random numbers from those arrays. By setting
arraySize to be a large number (e.g. 1,000,000) we create memory stress in two ways. First, creating large arrays
requires allocating and freeing large amounts of memory. Second, the numbers to do math with are assigned
and read from random indices in the arrays. Reading and writing to random positions in memory can greatly
impact performance as it can cause something called page faults. Pieces of memory are frequently cached in
different levels of memory (e.g. L1/L2/L3) so when an application reads something that is not cached a
slowdown occurs. We can measure the memory performance of AWS Lambda by running the experiment once
without memory stress (arraySize = 1) and with memory stress (arraySize = 1000000).

Here is the summarized process of what we want the experiment to do:

Vary the number of calculations (calcs) calcsService does between 1,000 and 100,000 in steps of 1,000 in
each experiment run.
Repeat the experiment a second time to measure cold/warm performance.
Change memory setting between 256 MBs, 1024 MBs and 2048 MBs.
ﬂ Repeat all the steps once again with memory stress (arraySize = 1,000,000).

We can create a bash script to easily create FaaS Runner arguments and execute this experiment. The script is
included below, see highlighted sections for the implementation of each step. Review comments to see what
arguments are being defined. Save and execute this script as complexTest.sh in the test directory. This
experiment will take a few minutes to complete.

12

args="--function calcsServiceTutorial --runs 100 --threads 100 --warmupBuffer 0 --combineSheets 0 --sleepTime 0
--openCSV 0 --iterations 2 --memorySettings [256, 1024, 2048]"

parentPayloadNoMemory="{\"threads\":2,\"sleep\":0,\"loops\":1000,\"arraySize\":1}"
parentPayloadMemory="{\"threads\":2,\"sleep\":0,\"loops\":1000,\"arraySize\":1000000}"

payloads="[
for calcs in $(seq $start $step $end)
do
payloads="$payloads{\"calcs\":$calcs}"
if ["$calcs" -It "$end"]
then
payloads="$payloads,"
else
payloads="$payloads]"
fi
done

echo "Created Payloads List:"
echo $payloads

mkdir complexExperiment
mkdir complexExperiment/NoMemory
mkdir complexExperiment/Memory

\[faas_runner.py -o ./complexExperiment/NoMemory --payloads $payloads --parentPayload $parentPayloadNoMemory $args
.[faas_runner.py -o ./complexExperiment/Memory --payloads $payloads --parentPayload $parentPayloadMemory $args

echo "Experiments Done!"

This script leverages FaaS Runner's payload inheritance. We first create a parentPayload that contains
attributes that all function invocations in an experiment will use. In this case we create two parents, one with
memory stress and one without. Then we create the payloads attribute to vary the number of calculations. This
list of payloads will be distributed randomly between the threads. Finally, we define all other attributes in the
args variable. This script also creates a few folders to keep our output organized. Unlike previous experiments,
this experiment does not use any experiment or function files. Everything is defined through command line
arguments and makes use of FaaS Runner's default parameters. For example, by default FaaS Runner assumes
you are using AWS Lambda. Save and execute this script as complexTest.sh in the test directory. This
experiment will take a few minutes to complete.

Run the Experiment
cd ./test
./complexTest.sh

Task 1: Create a single report with all data from the complex experiment. In your report.json file add
"newcontainer" and "arraySize" to the outputGroups list just like you did in section 6 for functionMemory.
Copy all json files from both the NoMemory and Memory folders into one combined folder. Run the
report_compiler.py script on the folder to generate the report.

FaaS Runner can aggregate data for any attribute returned by a function. For all data returned by SAAF and their
definitions see: https://github.com/wlloyduw/SAAF/tree/master/java template

For all FaaS Runner experiment execution, data aggregation, and report generation options see:
https://github.com/wlloyduw/SAAF/tree/master/test

Create a single report.

cd ./complexExperiment

mkdir combined

find . | grep json | xargs -I{} -nl cp '{}' ./combined/

cd ..

./compile results.py ./complexExperiment/combined ./experiments/report.json

Task Questions:
1. Read the report and scroll down to the aggregated results for newcontainer, what was the impact on
the avg_userRuntime column of the cold (newcontainer = 1) versus warm (newcontainer = 0)?
2. What was the impact of memory stress on average runtime? Look at the aggregated results for
arraySize.
3. What was the impact of different memory settings on average runtime? Look at the aggregated results
for functionMemory.

8. Using FaaS Runner with Function Pipelines
Alongside running individual functions, FaaS Runner can execute complex pipelines of functions. To begin we
must first explain the syntax. To execute a pipeline, you must define lists of functions and experiments. Like with

single function calls, both functions and experiments can be defined through either files or command line
arguments. For these examples we will use both.

14

https://github.com/wlloyduw/SAAF/tree/master/java_template
https://github.com/wlloyduw/SAAF/tree/master/test

Using the included function and experiment files. Try executing this experiment:

./faas_runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json
-e ./experiments/jello.json ./experiments/pello.json ./experiments/nello.json

Now let's explain what happened. The first experiment, in this case jello.json, is considered our parent
experiment. This experiment file defines how many runs are going to be executed, the number of threads, and
will be used to generate the report. In this case, this experiment file says that there will be 3 runs with 1 thread.
In our output we saw a total of 9 function calls. For pipelines, the number of runs are runs of the entire
pipeline. 1 Threads means that the pipeline was called sequentially so we saw responses come back in the
expected order of Jello, Pello, Nello, Jello, Pello, Nello, etc. If we chose 3 threads, then 3 instances of the
pipeline would run concurrently.

load .
payloa Mmessage Now take a look at the message and payload column of each function:
"name": "Jello"} Jello Jello
{"name": "Pello"} Pello Pello Since each experiment file defined payloads for the function, those payloads
{"name": *Nello"} Nello Nello ~ Were used in the function invocation.
{name*: *Jello’} Jello Jello Instead of supplying a specific set of payloads to each function in the pipeline
{"name": "Pello"} Pello Pello it may be necessary to pass the results from one function invocation to
{"name": "Nello"} Nello Nello another.
{"name": "Jello"} Jello Jello .
Let's try and pass the response message from each function to the next,
{name®: *Pello’} Pello Pello resulting in a final message of "Nello Pello Jello Jello"
{"name": "Nello"} Nello Nello

15

9. Command Line Arguments and Passing Attributes in a Pipeline

FaaS Runner has the built-in attribute passPayloads that does just that! By default, this attribute is false so we
can override that with command line arguments just like with single function experiments. Run the same
experiment again but add the "--passPayloads true" flag.

./faas runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json -e
./experiments/jello.json ./experiments/pello.json ./experiments/nello.json --passPayloads
true

As we can see now ALL attributes returned by previous functions
are passed onto the payload of the next function invocation. But
{"name": "Jello"} Jello Jello | oyr message response is still unchanged.

payload message

{"cpuType": "Intel(R) Xeon(R) Proce| Pello Pello

This is because the Hello World functions expects an attribute
called "name" as the input and returns the response in the
"message" attribute. Between function invocations we need to
["cpuType": "Intel(R) Xeon(R) Proce Pello Pello | rename "message" to "name" to get the desired output we want.

{"version": "0.5"; "lang": "python"; | Nello Nello

{"name": "Jello"} Jello Jello

{"version": "0.5"; "lang": "python"; | Nello Nello) . .
To do this, we can use FaaS Runner's transitions attribute. This

attribute expects a JSON object of key value pairs that will
{"cpuType": "Intel(R) Xeon(R) Proce| Pello Pello . rename one attribute to another between function invocations.
Like we did with passPayloads we can define this through
command line arguments:

{"name": "Jello"} Jello Jello

{"version": "0.5"; "lang": "python"; | Nello Nello

./faas_runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json -e
./experiments/jello.json ./experiments/pello.json ./experiments/nello.json --passPayloads
true --transitions {\"message\":\"name\"}

FaaS Runner is passing all attributes from the response of one function into the request of the next. While it
does that, it renames the "message" attribute to "name" as defined by the transition attribute.

By default, when a command line argument is used to override something it applies it to ALL
experiment/function files. If you want to only apply an argument to one specific function in the pipeline you
can add array-style indexes to the argument (starting at 0). For example, if we want to do the same experiment
but only pass arguments from the first function to the second, we can apply passPayloads only to the second
function:

./faas_runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json -e
./experiments/jello.json ./experiments/pello.json ./experiments/nello.json
--passPayloads[1l] true --transitions {\"message\":\"name\"}

This syntax can be applied to any attribute. If you want to have specific transitions between functions in a
pipeline you can define that this way. This also allows complete pipelines to be entirely defined through
command line arguments. For example, the same pipeline can be executed without using function or
experiment files:

16

./faas_runner.py --function[0] jelloWorld --function[l] pelloWorld --function[2] nelloWorld
--runs 3 --threads 1 --payloads [{\"name\":\"Jello\"}] --passPayloads true --transitions
{\"message\":\"name\"}

10. Dynamic Pipelines and State Machines

For the most complex pipelines, FaaS Runner can be used to orchestrate function execution by modifying
test/tools/pipeline_transition.py.

def transition_function(index, functions, experiments, payloads, lastPayload):

return (index + 1, functions, experiments, payloads, lastPayload)

This is the default transition function, after each execution, increment the index to go to the next function;
leaving the functions, experiments, and payloads unchanged. To better understand what data is being passed
through here, add a few comments to pipeline_transition.py and rerun the previous pipeline:

def transition_function(index, functions, experiments, payloads, lastPayload):

return (index + 1, functions, experiments, payloads, lastPayload)

Task 2: Using the experiment defined below, create a transition function that skips the 2nd function
(pelloWorld) if the first function returns a message of "Jello End" otherwise execute the pipeline normally.

./faas_runner.py --function[0] jelloWorld --function[l] pelloWorld --function[2] nelloWorld
--runs 10 --threads 1 --payloads [{\"name\":\"Jello\"},{\"name\":\"End\"}] --passPayloads
true --transitions {\"message\":\"name\"} --shufflePayloads true

17

Spoiler: Solution. Copy and Paste text from box below to reveal.

18

