
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.1

Cloud Computing –
How did we get here? - II

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 10/7

1

2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.2

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

ONLINE DAILY FEEDBACK SURVEY

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.4

3

4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.3

 Please classify your perspective on material covered in today’s

class (15 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.58 ( - previous 6.15)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.65 ( - previous 5.19)

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

MATERIAL / PACE

 Can we have a real -world example of how to spl it a problem into
small chunks using parallelism?

 The following provides a “word count” example using Hadoop and
Java to introduce Map-Reduce:

https://hadoop.apache.org/docs/stable/hadoop -mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html

 Input data is mapped to key -value pairs

 Text file is read using StringTokenizer

 Each word is converted to a key value pair:
<The, 1> (the unique word, and the number of occurrences)

 A local combiner, combines words and adds up counts for locally
processed data to produce an output map

 All of the maps are then globally reduced by a reducer to obtain full
word counts for the text file.

 Using Hadoop, tasks can run locally, or distributed across a cluster

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK FROM 10/5

5

6

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.4

 Parallelism is equivalent to multitasking, the notion of

performing several things simultaneously

 In lecture #2 different types of parallelism were

described: thread level, data level, etc.

 Does every computer now enact all types of parallelism

and determine for which tasks automatically? Or is it

configurable what type of parallelism is present on the

computer?

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

FEEDBACK - 2

Available ? Automatic ?

Thread-Level

Parallelism (TLP)

Data-Level

Parallelism (DLP)

Bit-Level Parallelism

Instruction-Level

Parallelism

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

7

8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.5

Available ? Automatic ?

Thread-Level

Parallelism (TLP)
YES NO

Programmer implements threads

Data-Level

Parallelism (DLP)

Bit-Level Parallelism

Instruction-Level

Parallelism

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?

Thread-Level

Parallelism (TLP)
YES NO

Programmer implements threads

Data-Level

Parallelism (DLP)

YES 1

But only available when

using special extensions

(e.g. SIMD instructions)

NO
Programmer implements

code to use DLP features

Bit-Level Parallelism

Instruction-Level

Parallelism

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

9

10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.6

Available ? Automatic ?

Thread-Level

Parallelism (TLP)
YES NO

Programmer implements threads

Data-Level

Parallelism (DLP)

YES 1

But only available when

using special extensions

(e.g. SIMD instructions)

NO
Programmer implements

code to use DLP features

Bit-Level Parallelism YES YES

Instruction-Level

Parallelism

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?

Thread-Level

Parallelism (TLP)
YES NO

Programmer implements threads

Data-Level

Parallelism (DLP)

YES 1

But only available when

using special extensions

(e.g. SIMD instructions)

NO
Programmer implements

code to use DLP features

Bit-Level Parallelism YES YES

Instruction-Level

Parallelism
YES YES

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

11

12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.7

 Can we measure granularity in parallel computing?

Granularity (grain size) is measured as the ratio between:
Tcomp (computation time) and Tcomm (communication time)

 Fine grained parallelism indicates small grains

▪ Lots of communication overhead is required for the parallel

computation to proceed

 Coarse-grained parallelism indicates large grains (rocks)

▪ Little/no communication is required for parallel work

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

GRANULARITY IN PARALLEL COMPUTING

 Recommended paper on the

future of computing in light

of the decline of Moore’s law →

PDF:

https://tinyurl.com/y4p8yeyj

https://dl .acm.org/doi/abs/10.1145/3282307

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

FEEDBACK - 3

13

14

https://tinyurl.com/y4p8yeyj
https://dl.acm.org/doi/abs/10.1145/3282307

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.8

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

OBJECTIVES – 10/7

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

OBJECTIVES – 10/7

15

16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.9

 We will form groups of ~3 using Zoom breakout rooms

 Each group will complete a Google Doc worksheet

 Add names to Google Doc as they appear in Canvas

 The activity can be completed in class or after class

 The activity can also be completed indivually

 When completed, one person should submit a PDF of the
Google Doc to Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get started:

▪ Log into your UW Google Account (https://drive.google.com)
using you UW NET ID

▪ Follow the link:

https://tinyurl.com/kp2jm9pj
October 7, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

ACTIVITY 1

 Solutions to be discussed..

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

ACTIVITY 1

17

18

https://tinyurl.com/kp2jm9pj

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.10

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

OBJECTIVES – 10/7

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

19

20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.11

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

(SIMD): VECTOR PROCESSING

ADVANTAGES

21

22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.12

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

FLYNN’S TAXONOMY - 2

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

ARITHMETIC INTENSITY

23

24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.13

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (left) → floating point performance (right)

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

OBJECTIVES – 10/7

25

26

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.14

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

GRAPHICAL PROCESSING UNITS (GPUS)

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

OBJECTIVES – 10/7

27

28

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.15

Parallel hardware and software systems allow:

▪ Solve problems demanding resources not available on
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

SPEED-UP EXAMPLE

29

30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.16

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement

of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is the maximum possible speed -up?

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

AMDAHL’S LAW

31

32

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.17

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

GUSTAFSON'S LAW

33

34

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.18

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: If deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the availability of

two processor cores to run code in parallel?

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

GUSTAFSON'S LAW

35

36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.19

 QUESTION:

What is the maximum theoretical speed-up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoretical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoretical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoretical speed-up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

37

38

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.20

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Heat dissipation at faster clock rates leads to cooling

challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors offer a higher speedup

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

MOORE’S LAW

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

OBJECTIVES – 10/7

39

40

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.21

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

DISTRIBUTED SYSTEMS - 2

41

42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.22

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency : concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency: system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

OBJECTIVES – 10/7

43

44

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.23

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

45

46

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.24

 Bit- level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

47

48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.25

INTRODUCTION TO

CLOUD COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.49

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia

extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 7, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

OBJECTIVES – 10/7

49

50

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.26

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

OBJECTIVES – 10/5

 LINKEDIN - TOP IT Skills f rom job app data

▪ #1 Cloud and Distributed Computing

▪ https://learning.linkedin.com/week-of-learning/top-skills

▪ #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

▪ #1 Data Science

▪ #2 Cloud and Distributed Computing

▪ http://www.forbes.com/sites/laurencebradford/2016/12/

19/6-tech-skills-thatll-help-you-earn-more-in-2017/

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

WHY STUDY CLOUD COMPUTING?

51

52

https://learning.linkedin.com/week-of-learning/top-skills
http://www.forbes.com/sites/laurencebradford/2016/12/19/6-tech-skills-thatll-help-you-earn-more-in-2017/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.27

 Computerworld

Magazine

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

WHY STUDY CLOUD COMPUTING? - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

OBJECTIVES – 10/5

53

54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.28

 John McCarthy, 1961

▪ Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the

computers of the future, then computing may someday be

organized as a public utility just as the telephone system is a

public utility… The computer utility could become the basis of

a new and important industry…”

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

CLOUD HISTORY - 2

55

56

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.29

 Late 1990s – Early Software-as-a-Service (SaaS)

▪ Salesforce: Remotely provisioned services for the enterprise

 2002 -

▪ Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business

functionality

 2006 – Infrastructure-as-a-Service (IaaS)

▪ Amazon launches Elastic Compute Cloud (EC2) service

▪ Organization can “lease” computing capacity and processing power

to host enterprise applications

▪ Infrastructure

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

▪ Google: Offers Google DOCS, “MS Office” like fully -web

based application for online documentation creation and

collaboration

 2009 – Platform-as-a-Service (PaaS)

▪ Google: Offers Google App Engine, publicly hosted

platform for hosting scalable web applications on google-

hosted datacenters

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

CLOUD HISTORY: SERVICES - 2

57

58

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.30

CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources

(networks, servers, storage, applications and

services) that can be rapidly provisioned and

reused with minimal management effort or service

provider interaction”…

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

“Cloud computing is a specialized form of

distributed computing that introduces utilization

models for remotely provisioning scalable and

measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5 th printing, 2015

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

MORE CONCISE DEFINITION

59

60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.31

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

OBJECTIVES – 10/5

Capacity planning

Cost reduction

Operational overhead

Organizational agility

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

BUSINESS DRIVERS

FOR CLOUD COMPUTING

61

62

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.32

 Capacity planning

▪ Process of determining and fulfilling future demand for IT
resources

▪ Capacity vs. demand

▪ Discrepancy between capacity of IT resources and actual
demand

▪ Over-provisioning: resource capacity exceeds demand

▪ Under-provisioning: demand exceeds resource capacity

▪ Capacity planning aims to minimize the discrepancy of
available resources vs. demand

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

BUSINESS DRIVERS

FOR CLOUD COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.64

Dwight, The Office TV sitcom

63

64

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.33

 Capacity planning

▪ Over-provisioning: is costly due to too much infrastructure

▪ Under-provisioning: is costly due to potential for business loss from

poor quality of service

 Capacity planning strategies

▪ Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

▪ Lag strategy: add capacity when capacity is fully leveraged

▪ Match strategy: add capacity in small increments as demand

increases

 Load prediction

▪ Capacity planning helps anticipate demand flucations

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

BUSINESS DRIVERS FOR CLOUD - 2

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

CAPACITY PLANNING

65

66

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.34

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

CAPACITY PLANNING - 2

 Capacity planning

 Cost reduction

▪ IT Infrastructure acquisition

▪ IT Infrastructure maintenance

 Operational overhead

▪ Technical personnel to maintain physical IT infrastructure

▪ System upgrades, patches that add testing to deployment
cycles

▪ Utility bills, capital investments for power and cooling

▪ Security and access control measures for server rooms

▪ Admin and accounting staff to track licenses, support
agreements, purchases

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

BUSINESS DRIVERS FOR CLOUD - 3

67

68

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.35

 Organizational agility

▪ Ability to adapt and evolve infrastructure to face change

from internal and external business factors

▪ Funding constraints can lead to insufficient on premise IT

▪ Cloud computing enables IT resources to scale with a

lower financial commitment

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

BUSINESS DRIVERS FOR CLOUD - 4

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

OBJECTIVES – 10/5

69

70

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.36

Cluster computing

Grid computing

Virtualization

Others

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

TECHNOLOGY INNOVATIONS

LEADING TO CLOUD

 Cluster computing (clustering)

▪ Cluster is a group of independent IT resources

interconnected as a single system

▪ Servers configured with homogeneous hardware and software

▪ Identical or similar RAM, CPU, HDDs

▪ Design emphasizes redundancy as server components are easily

interchanged to keep overall system running

▪ Example: if a RAID card fails on a key server, the card can be

swapped from another redundant server

▪ Enables warm replica servers

▪ Duplication of key infrastructure servers to provide

HW failover to ensure high availability (HA)

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.72

CLUSTER COMPUTING

71

72

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.37

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.73

GRID COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

GRID COMPUTING - 2

73

74

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.38

VIRTUALIZATION

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.75

VIRTUALIZATION

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.76

75

76

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.39

 Simulate physical hardware resources via software

▪ The virtual machine (virtual computer)

▪ Virtual local area network (VLAN)

▪ Virtual hard disk

▪ Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,

reliability, and scalability challenges

 CPU and other HW enhancements have minimized

performance GAPs

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.77

VIRTUALIZATION

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.78

OBJECTIVES – 10/5

77

78

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.40

 On-Premise Infrastructure

▪ Local server infrastructure not configured as a cloud

 Cloud Provider

▪ Corporation or private organization responsible for maintaining cloud

 Cloud Consumer

▪ User of cloud services

 Scaling

▪ Vertical scaling

▪ Scale up: increase resources of a single virtual server

▪ Scale down: decrease resources of a single virtual server

▪ Horizontal scaling

▪ Scale out: increase number of virtual servers

▪ Scale in: decrease number of virtual servers

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.79

KEY TERMINOLOGY

 Reconfigure virtual machine to have different resources:

▪ CPU cores

▪ RAM

▪ HDD/SDD capacity

 May require VM migration if

physical host machine

resources are exceeded

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.80

VERTICAL SCALING

79

80

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.41

 Increase (scale-out) or decrease (scale-in) number of virtual

servers based on demand

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.81

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.82

HORIZONTAL VS VERTICAL SCALING

81

82

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.42

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.83

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

and automated scaling
Additional setup is normally needed

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.84

HORIZONTAL VS VERTICAL SCALING

83

84

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.43

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.85

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.86

HORIZONTAL VS VERTICAL SCALING

85

86

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.44

 Cloud services

▪ Broad array of resources accessible “as -a-service”

▪ Categorized as Infrastructure (IaaS), Platform (PaaS),

Software (SaaS)

 Service-level-agreements (SLAs):

▪ Establish expectations for: uptime, security, availability,

reliability, and performance

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.87

KEY TERMINOLOGY - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.88

OBJECTIVES – 10/5

87

88

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.45

 Cloud providers

▪ Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

▪ Locate datacenters to optimize costs where electricity is low

 Cloud consumers

▪ Key business/accounting difference:

▪ Cloud computing enables anticipated capital expenditures to be

replaced with operational expenditures

▪ Operational expenditures always scale with the business

▪ Eliminates need to invest in server infrastructure based on

anticipated business needs

▪ Businesses become more agile and lower their financial risks by

eliminating large capital investments in physical infrastructure

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.89

GOALS AND BENEFITS

 On demand access to pay -as-you-go resources on a short -term

basis (less commitment)

 Ability to acquire “unlimited” computing

resources on demand when required for

business needs

 Ability to add/remove IT resources at

a fine-grained level

 Abstraction of server infrastructure so

applications deployments are not dependent

on specific locations, hardware, etc.

▪ The cloud has made our software deployments

more agile…

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.90

CLOUD BENEFITS - 2

89

90

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.46

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.91

CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

91

92

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.47

 Increased scalability

▪ Example demand over a

24-hour day →

 Increased availability

 Increased reliability

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.93

CLOUD BENEFITS

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.94

OBJECTIVES – 10/5

93

94

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.48

 Increased security vulnerabilities

▪ Expansion of trust boundaries now include the external
cloud

▪ Security responsibility shared with cloud provider

 Reduced operational governance / control

▪ Users have less control of physical hardware

▪ Cloud user does not directly control resources to ensure
quality-of-service

▪ Infrastructure management is abstracted

▪ Quality and stability of resources can vary

▪ Network latency costs and variability

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.95

CLOUD ADOPTION RISKS

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.96

NETWORK LATENCY COSTS

95

96

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.49

 Performance monitoring of cloud applications

▪ Cloud metrics (AWS cloudwatch) support monitoring cloud
infrastructure (network load, CPU utilization, I/O)

▪ Performance of cloud applications depends on the health of
aggregated cloud resources working together

▪ User must monitor this aggregate performance

 Limited portability among clouds

▪ Early cloud systems have significant “vendor” lock -in

▪ Common APIs and deployment models are slow to evolve

▪ Operating system containers help make applications more
portable, but containers still must be deployed

 Geographical issues

▪ Abstraction of cloud location leads to legal challenges with respect
to laws for data privacy and storage

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.97

CLOUD RISKS - 2

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.98

CLOUD: VENDOR LOCK-IN

97

98

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L3.50

QUESTIONS

October 7, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.99

99

