
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.1

Cloud Computing –
How did we get here?

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 10/5

 Please classify your perspective on material covered in today’s

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.15 (5.94, Fall 2021)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.19 (5.5, Fall 2021)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

MATERIAL / PACE

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

FEEDBACK FROM 9/30

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

OBJECTIVES – 10/5

 General interest in parallel computing

▪Moore’s Law - # of transistors doubles every 18 months

▪ Post 2004: heat dissipation challenges:

can no longer easily increase cloud speed

▪ Overclocking to 7GHz takes

more than just liquid nitrogen:

▪ https://tinyurl.com/y93s2yz2

Solutions:

▪ Vary CPU clock speed

▪ Add CPU cores

▪Multi-core technology

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

CLOUD COMPUTING:

HOW DID WE GET HERE?

1 2

3 4

5 6

https://tinyurl.com/y93s2yz2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.2

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

AMD’S 64-CORE 7NM CPUS

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9%

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

HYPER-THREADING

 How do I use hyper-threading?

 Hyper-threading is automatic

 Modern CPUs expose each physical CPU core as two CPU cores

 cat /proc/cpuinfo command lists individual cores

 Operating system schedules processes & threads to run on a

hyper-thread

 On CPUs with hyper-threading, each CPU core has two hyper-

threads

 To the operating system they are seen as full -featured

independent CPU cores

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

HYPER-THREADING - 2

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

CAT /PROC/CPUINFO

If a CPU has hyper-threading
enabled, the “ht” flag is listed

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.12

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.3

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.13

Each processor core consists of multiple stages

Hyper-threading is the idea to share the physical stages

of a CPU core to execute two instructions at once

 When should we use hyper-threading, and when
should not?
▪ For personal computing, hyper-threading helps improve system

performance when many programs use only short bursts of
CPU time

▪ Databases, HPC (science) applications, and others may benefit
from disabling hyper-threading. Testing will help quantify
performance.

▪ Disabling hyper-threading (HW setting), cuts the number of CPU
cores available to operating system in half
▪ Can be disabled in the System BIOS or UEFI (uniform extensible

firmware interface) software

▪ BIOS / UEFI is a small resident program that can be accessed by
pressing a function-key when rebooting the computer

▪ BIOS / UEFI is used to configure hardware options

▪ Making changes requires rebooting the computer

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

HYPER-THREADING - 3

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific

applications

 Not every problem solution has a parallel algorithm

▪ Chicken and egg problem…

 Many commercial efforts promoting pure parallel

programming efforts have failed

 Enterprise computing world has been skeptical and

less involved in parallel programming

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

CLOUD COMPUTING:

HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”

scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting

parallelism

Cloud applications

▪Based on client-server paradigm

▪Thin clients leverage compute hosted on the cloud

▪Applications run many web service instances

▪Employ load balancing

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

Big Data requires massive amounts of compute

resources

MAP – REDUCE

▪Single instruction, multiple data (SIMD)

▪Exploit data level parallelism

Bioinformatics example

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4
SMITH WATERMAN USE CASE

Applies dynamic programming to find best local

alignment of two protein sequences

▪ Embarrassingly parallel, each task can run in isolation

▪ Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human

protein sequences (20,336)

▪ Python client as scheduler

▪ C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-

Waterman C/C++ library for use in genomic applications.

PLoS One 2013, 8:e82138

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.4

SMITH WATERMAN RUNTIME

 Laptop server and client (2 -core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes

▪ Partitions 20,336 sequences into 41 sets

▪ Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes

▪ Execution cost: ~ 87¢ (~408x speed-up)

 Hardware

▪ Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU

▪ Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs

▪ Cloud server: Lambda ~1000 x Intel E5-2666v3 2.9GHz CPUs

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

 Compute clouds are large-scale distributed systems

▪Heterogeneous systems

▪Many services/platforms w/ diverse hw + capabilities

▪Homogeneous systems

▪Within a platform – illusion of identical hardware

▪Autonomous

▪ Automatic management and maintenance- largely with

little human intervention

▪Self organizing

▪ User requested resources organize themselves to satisfy

requests on-demand

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

Compute clouds are large-scale distributed
systems

 Infrastructure-as-a-Service (IaaS) Cloud

▪Provide VMs on demand to users

▪ec2instances.info (AWS EC2)

Clouds can consist of

▪Homogeneous hardware (servers, etc.)

▪Heterogeneous hardware (servers, etc.)

Which is preferable?

September 25, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

 If providing IaaS, what are advantages/
disadvantages of using homogeneous hardware?

▪ Easier to provide same quality of service to end users

▪ Less performance variance

▪ Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

▪ Homogeneous hardware (servers): components are
interchangeable

▪ As components fail, identical backups are
immediately available

▪ Example: blade servers

▪ As clouds grow, why is HW homogeneity difficult to maintain?

 What are some advantages of using heterogeneous HW?

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

HARDWARE HETEROGENEITY

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

OBJECTIVES – 10/5

 Discovering parallelism and development of parallel

algorithms requires considerable effor t

 Example: numerical analysis problems, such as solving large

systems of linear equations or solving systems of Partial

Dif ferential Equations (PDEs), require algorithms based on

domain decomposition methods.

 How can problems be split into independent chunks?

 Fine-grained parallelism

▪ Only small bits of code can run in parallel without coordination

▪ Communication is required to synchronize state across nodes

 Coarse-grained parallelism

▪ Large blocks of code can run without coordination

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

PARALLELISM

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.5

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier
than parallel shared memory code

 Message passing : all of the interactions are clear

▪ Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

PARALLELISM - 2

Parallelism:

▪Goal: Perform multiple operations at the same time
to achieve a speed-up

 Types of parallelism:

 Thread-level parallelism (TLP)

▪Control flow architecture

Data-level parallelism

▪Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

TYPES OF PARALLELISM

 Number of threads an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
f ixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper -threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

THREAD LEVEL PARALLELISM (TLP)

 Typical architecture used today – w/ multiple threads

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines

next instruction to load into

instruction register

 Program execution

is sequential

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption

▪ Efficiently broadcasting data tokens in a massively
parallel system

▪ Efficiently dispatching instruction tokens in a massively
parallel system

▪ Building content addressable memory large enough to
hold all of the dependencies of a real program

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

DATA FLOW ARCHITECTURE

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.6

 Architecture not as popular as control -f low

 Modern CPUs emulate data flow architecture for dynamic

instruction scheduling since the 1990s

▪ Out-of-order execution – reduces CPU idle time by not blocking

for instructions requiring data by defining execution windows

▪ Execution windows: identify instructions that can be run by

data dependency

▪ Instructions are completed in data dependency order within

execution window

▪ Execution window size typically 32 to 200 instructions

Utility of data f low architectures has been

much less than envisioned

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are

performed as a single instruction

 Fewer instructions are required on 64 -bit CPUs to process

larger operands (A+B) providing dramatic performance

improvements

 Processors have evolved: 4 -bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two

64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi -stage processing pipelines

 Pipelining: split instructions into sequence of steps that

can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

INSTRUCTION-LEVEL PARALLELISM (ILP)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are

loaded

 Starting with 6 th clock cycle, one full instruction

completes each cycle

 The CPU performs 5 tasks per clock cycle!

Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

INSTRUCTION LEVEL PARALLELISM - 2

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

OBJECTIVES – 10/5

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.7

 We will form groups of ~3 using Zoom breakout rooms

 Each group will complete a Google Doc worksheet

 Add names to Google Doc as they appear in Canvas

 The activity can be completed in class or after class

 The activity can also be completed indivually

 When completed, one person should submit a PDF of the
Google Doc to Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get started:

▪ Log into your UW Google Account (https://drive.google.com)
using you UW NET ID

▪ Follow the link:

https://tinyurl.com/kp2jm9pj
October 5, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

ACTIVITY 1

 Solutions to be discussed..

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

ACTIVITY 1

 Applies to:

 Advantages:

 Disadvantages:

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

IMPLICIT PARALLELISM

 Applies to:

 Advantages:

 Disadvantages:

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be

concerned with the available number of virtual CPU

processing cores when choosing a cloud -based virtual

machine if wanting to obtain the best possible speed -up?

(Yes / No)

 8. For instruction-level parallelism, should a developer be

concerned with the physical CPU’s architecture used to

host a cloud-based virtual machine if wanting to obtain

the best possible speed-up? (Yes / No)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

PARALLELISM QUESTIONS

 9. For thread level parallelism (TLP) where a programmer

has spent considerable effort to parallelize their code and

algorithms, what consequences result when this code is

deployed on a virtual machine with too few virtual CPU

processing cores?

 What happens when this code is deployed on a virtual

machine with too many virtual CPU processing cores?

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

PARALLELISM QUESTIONS - 2

37 38

39 40

41 42

https://tinyurl.com/kp2jm9pj

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.8

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

OBJECTIVES – 10/5

Michael Flynn’s proposed taxonomy of computer

architectures based on concurrent instructions and

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different

operations on the same data

 For fault tolerance, may want to execute same instructions

redundantly to detect and mask errors – for task replication

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

MICHAEL FLYNN’S COMPUTER

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector

operations on traditional CPUs

 Vector operations reduce total number of instructions for

large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about

parallelism

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with

several processors and/or cores that function asynchronously

and independently

 At any time, dif ferent processors/cores may execute dif ferent

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

FLYNN’S TAXONOMY - 2

 Arithmetic intensity : Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

ARITHMETIC INTENSITY

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.9

 When program reaches a given arithmetic intensity

performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:

memory bandwidth (lef t) → floating point performance (right)

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
→ performance is limited by??

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

OBJECTIVES – 10/5

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model:

single instruction, multiple thread

 Programmed using CUDA- C like programming

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each

data element (e.g. vector or matrix)

 Thousands of threads run concurrently

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

GRAPHICAL PROCESSING UNITS (GPUS)

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

OBJECTIVES – 10/5

Parallel hardware and software systems allow:

▪ Solve problems demanding resources not available on
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel
computations in parallel

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

SPEED-UP EXAMPLE

49 50

51 52

53 54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.10

 Amdahl’s law is used to estimate the speed -up of a job
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will
determine (i.e. limit) the overall speedup

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the
work, and a perfectly even work distribution

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel (ex. 25% or 0.25)

 N= proposed speed up of the parallel part (ex. 5 t imes speedup)

 % improvement

of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is the maximum possible speed -up?

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

AMDAHL’S LAW

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f) + f/S)

 S=1 / ((.75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of

program

 Where α = / (+)

 Where = sequential time, =parallel time

 Our Amdahl’s example: = 3s, =1s, α =.75

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel,

but 75% cannot be parallelized. α=.75

QUESTION: I f deploying the job on a 2 -core CPU, what

scaled speedup is possible assuming the use of two

processes that run in parallel?

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

GUSTAFSON'S LAW

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.11

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.75

S(N) = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N) = N + (1 - N) α

N=16, α=.75

S(N) = 16 + (1 - 16) .75

S(N) = ?

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the

same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores

have more resources and speed

 Dynamic core processor – processing resources and speed can

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

MOORE’S LAW

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

OBJECTIVES – 10/5

 Collection of autonomous computers, connected through a

network with distribution software called “middleware” that

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing

facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented

by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

DISTRIBUTED SYSTEMS - 2

61 62

63 64

65 66

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.12

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting
operations performed on them

 Performance transparency: system can be reconfigured based
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o
change in system structure and w/o affecting applications

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

TRANSPARENCY PROPERTIES OF

DISTRIBUTED SYSTEMS

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

OBJECTIVES – 10/5

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only

through message passing

 The ubiquitous client -server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level

Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single

Instruction Multiple Data, Vector processing & GPUs

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU)

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model:

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3

67 68

69 70

71 72

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.13

INTRODUCTION TO

CLOUD COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.73

 Questions f rom 9/30

 Cloud Computing – How did we get here?

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &

Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:

Cloud Computing Concepts, Technology & Architecture

October 5, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.74

OBJECTIVES – 10/5

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.75

OBJECTIVES – 10/5

 LINKEDIN - TOP IT Skills f rom job app data

▪ #1 Cloud and Distributed Computing

▪ https://learning.linkedin.com/week-of-learning/top-skills

▪ #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

▪ #1 Data Science

▪ #2 Cloud and Distributed Computing

▪ http://www.forbes.com/sites/laurencebradford/2016/12/

19/6-tech-skills-thatll-help-you-earn-more-in-2017/

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.76

WHY STUDY CLOUD COMPUTING?

 Computerworld

Magazine

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.77

WHY STUDY CLOUD COMPUTING? - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.78

OBJECTIVES – 10/5

73 74

75 76

77 78

https://learning.linkedin.com/week-of-learning/top-skills
http://www.forbes.com/sites/laurencebradford/2016/12/19/6-tech-skills-thatll-help-you-earn-more-in-2017/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.14

 John McCarthy, 1961

▪ Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the

computers of the future, then computing may someday be

organized as a public utility just as the telephone system is a

public utility… The computer utility could become the basis of

a new and important industry…”

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.79

A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.80

CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)

▪ Salesforce: Remotely provisioned services for the enterprise

 2002 -

▪ Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business

functionality

 2006 – Infrastructure-as-a-Service (IaaS)

▪ Amazon launches Elastic Compute Cloud (EC2) service

▪ Organization can “lease” computing capacity and processing power

to host enterprise applications

▪ Infrastructure

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.81

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

▪ Google: Offers Google DOCS, “MS Office” like fully -web

based application for online documentation creation and

collaboration

 2009 – Platform-as-a-Service (PaaS)

▪ Google: Offers Google App Engine, publicly hosted

platform for hosting scalable web applications on google-

hosted datacenters

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.82

CLOUD HISTORY: SERVICES - 2

CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources

(networks, servers, storage, applications and

services) that can be rapidly provisioned and

reused with minimal management effort or service

provider interaction”…

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.83

“Cloud computing is a specialized form of

distributed computing that introduces utilization

models for remotely provisioning scalable and

measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Putt ini , Prent ice Hall , 5 th print ing, 2015

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.84

MORE CONCISE DEFINITION

79 80

81 82

83 84

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.15

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.85

OBJECTIVES – 10/5

Capacity planning

Cost reduction

Operational overhead

Organizational agility

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.86

BUSINESS DRIVERS

FOR CLOUD COMPUTING

 Capacity planning

▪ Process of determining and fulfilling future demand for IT
resources

▪ Capacity vs. demand

▪ Discrepancy between capacity of IT resources and actual
demand

▪ Over-provisioning: resource capacity exceeds demand

▪ Under-provisioning: demand exceeds resource capacity

▪ Capacity planning aims to minimize the discrepancy of
available resources vs. demand

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.87

BUSINESS DRIVERS

FOR CLOUD COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.88

Dwight, The Office TV sitcom

 Capacity planning

▪ Over-provisioning: is costly due to too much infrastructure

▪ Under-provisioning: is costly due to potential for business loss from

poor quality of service

 Capacity planning strategies

▪ Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

▪ Lag strategy: add capacity when capacity is fully leveraged

▪ Match strategy: add capacity in small increments as demand

increases

 Load prediction

▪ Capacity planning helps anticipate demand flucations

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.89

BUSINESS DRIVERS FOR CLOUD - 2

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.90

CAPACITY PLANNING

85 86

87 88

89 90

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.16

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.91

CAPACITY PLANNING - 2

 Capacity planning Cost reduction

▪ IT Infrastructure acquisition

▪ IT Infrastructure maintenance

 Operational overhead

▪ Technical personnel to maintain physical IT infrastructure

▪ System upgrades, patches that add testing to deployment
cycles

▪ Utility bills, capital investments for power and cooling

▪ Security and access control measures for server rooms

▪ Admin and accounting staff to track licenses, support
agreements, purchases

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.92

BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

▪ Ability to adapt and evolve infrastructure to face change

from internal and external business factors

▪ Funding constraints can lead to insufficient on premise IT

▪ Cloud computing enables IT resources to scale with a

lower financial commitment

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.93

BUSINESS DRIVERS FOR CLOUD - 4

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.94

OBJECTIVES – 10/5

Cluster computing

Grid computing

Virtualization

Others

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.95

TECHNOLOGY INNOVATIONS

LEADING TO CLOUD

 Cluster computing (clustering)

▪ Cluster is a group of independent IT resources

interconnected as a single system

▪ Servers configured with homogeneous hardware and software

▪ Identical or similar RAM, CPU, HDDs

▪ Design emphasizes redundancy as server components are easily

interchanged to keep overall system running

▪ Example: if a RAID card fails on a key server, the card can be

swapped from another redundant server

▪ Enables warm replica servers

▪ Duplication of key infrastructure servers to provide

HW failover to ensure high availability (HA)

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.96

CLUSTER COMPUTING

91 92

93 94

95 96

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.17

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.97

GRID COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.98

GRID COMPUTING - 2

VIRTUALIZATION

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.99

VIRTUALIZATION

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.100

 Simulate physical hardware resources via software

▪ The virtual machine (virtual computer)

▪ Virtual local area network (VLAN)

▪ Virtual hard disk

▪ Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,

reliability, and scalability challenges

 CPU and other HW enhancements have minimized

performance GAPs

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.101

VIRTUALIZATION

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.102

OBJECTIVES – 10/5

97 98

99 100

101 102

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.18

 On-Premise Infrastructure

▪ Local server infrastructure not configured as a cloud

 Cloud Provider

▪ Corporation or private organization responsible for maintaining cloud

 Cloud Consumer

▪ User of cloud services

 Scaling

▪ Vertical scaling

▪ Scale up: increase resources of a single virtual server

▪ Scale down: decrease resources of a single virtual server

▪ Horizontal scaling

▪ Scale out: increase number of virtual servers

▪ Scale in: decrease number of virtual servers

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.103

KEY TERMINOLOGY

 Reconfigure virtual machine to have different resources:

▪ CPU cores

▪ RAM

▪ HDD/SDD capacity

 May require VM migration if

physical host machine

resources are exceeded

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.104

VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual

servers based on demand

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.105

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.106

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.107

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

and automated scaling
Additional setup is normally needed

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.108

HORIZONTAL VS VERTICAL SCALING

103 104

105 106

107 108

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.19

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.109

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication

and automated scaling
Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.110

HORIZONTAL VS VERTICAL SCALING

 Cloud services

▪ Broad array of resources accessible “as -a-service”

▪ Categorized as Infrastructure (IaaS), Platform (PaaS),

Software (SaaS)

 Service-level-agreements (SLAs):

▪ Establish expectations for: uptime, security, availability,

reliability, and performance

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.111

KEY TERMINOLOGY - 2

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.112

OBJECTIVES – 10/5

 Cloud providers

▪ Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

▪ Locate datacenters to optimize costs where electricity is low

 Cloud consumers

▪ Key business/accounting difference:

▪ Cloud computing enables anticipated capital expenditures to be

replaced with operational expenditures

▪ Operational expenditures always scale with the business

▪ Eliminates need to invest in server infrastructure based on

anticipated business needs

▪ Businesses become more agile and lower their financial risks by

eliminating large capital investments in physical infrastructure

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.113

GOALS AND BENEFITS

 On demand access to pay -as-you-go resources on a short -term

basis (less commitment)

 Ability to acquire “unlimited” computing

resources on demand when required for

business needs

 Ability to add/remove IT resources at

a fine-grained level

 Abstraction of server infrastructure so

applications deployments are not dependent

on specific locations, hardware, etc.

▪ The cloud has made our software deployments

more agile…

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.114

CLOUD BENEFITS - 2

109 110

111 112

113 114

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.20

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW -Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.115

CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability

▪ Example demand over a

24-hour day →

 Increased availability

 Increased reliability

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.117

CLOUD BENEFITS

 Introduction to Cloud Computing

▪Why study cloud computing?

▪History of cloud computing

▪Business drivers

▪Cloud enabling technologies

▪Terminology

▪Benefits of cloud adoption

▪Risks of cloud adoption

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.118

OBJECTIVES – 10/5

 Increased security vulnerabilities

▪ Expansion of trust boundaries now include the external
cloud

▪ Security responsibility shared with cloud provider

 Reduced operational governance / control

▪ Users have less control of physical hardware

▪ Cloud user does not directly control resources to ensure
quality-of-service

▪ Infrastructure management is abstracted

▪ Quality and stability of resources can vary

▪ Network latency costs and variability

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.119

CLOUD ADOPTION RISKS

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.120

NETWORK LATENCY COSTS

115 116

117 118

119 120

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.21

 Performance monitoring of cloud applications

▪ Cloud metrics (AWS cloudwatch) support monitoring cloud
infrastructure (network load, CPU utilization, I/O)

▪ Performance of cloud applications depends on the health of
aggregated cloud resources working together

▪ User must monitor this aggregate performance

 Limited portability among clouds

▪ Early cloud systems have significant “vendor” lock -in

▪ Common APIs and deployment models are slow to evolve

▪ Operating system containers help make applications more
portable, but containers still must be deployed

 Geographical issues

▪ Abstraction of cloud location leads to legal challenges with respect
to laws for data privacy and storage

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.121

CLOUD RISKS - 2

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.122

CLOUD: VENDOR LOCK-IN

QUESTIONS

October 5, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.123

WE WILL RETURN AT

7:03PM

TCSS 562

OFFICE HOURS

PLEASE SAY HELLO

L2.125 October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.12
6

121 122

123 124

125 126

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L2.22

October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.12
7

October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.12
8

127 128

