TCSS 562:

Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Computing -
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

MATERIAL / PACE

[Fall 2021]

OBJECTIVES - 10/5

| = Questlons from 9/30 |

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2" edition)
= Data, thread-level, task-level parallelism &
Parallel architectures
= Class Activity 1 - Implicit vs Explicit Parallelism
= SIMD architectures, vector processing, multimedia extensions
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity
= Introduction to Cloud Computing - loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

TCSSS62:Software Engineering for Cloud Computing [Fall 2021) 22

Octoberzi2020 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 9/30

= Please classify your perspective on material covered in today’s

class (26 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.15 (5.94, Fall 2021)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.19 (5.5, Fall 2021)

TCSS562; Software Engineering for Cloud Computing (Fall 2021]

Octohers, 2021 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 10/5

= Questions from 9/30

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2" edition)

= Data, thread-level, task-level parallelism &
Parallel architectures

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems

= Modularity

= [ntroduction to Cloud Computing - loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

TCSS562: Software Engineering for Cloud Computing (Fall 2021] 24

October5,2021 School of Engineering and Technology, University of Washington - Tacoma

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

e e School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

CLOUD COMPUTING:

HOW DID WE GET HERE?

= General interest in parallel computing
= Moore’s Law - # of transistors doubles every 18 months
= Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed
= Overclocking to 7GHz takes =1
more than just liquid nitrogen: g

https://tinyurl.com/y93s2yz2
=Solutions:
=Vary CPU clock speed
= Add CPU cores
= Multl-core technology

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
e School of Engineering and Technology, University of Washington - Tacoma

L2.1

https://tinyurl.com/y93s2yz2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

Each Year We Get>< More Processors

vs Historically:
Boost single-stream
performance via more
complex chips.

0,

Intel CPU Trends
isources: Inted, Wikipedsa, K. Olukotun)

Now:
Deliver more cores per
chip (+ GPU, NIC, SoC).

The free lunch is over
for today's sequential
apps and many
concurrent apps. We
need killer apps with
lots of latent parallelism.

1970 1875 183 1965 1580 I8SE 2000 105 20ie

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 27

‘ October5, 2021

HYPER-THREADING

= Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core...

= Two hyper-threads
are not equivalent 4770 with HTT Vs, 4670 without HTT - 25% improvement w/f HTT
to (2) CPU cores CPU Mark Relative to Top 10
af 7th of Feoruary 2014 - Higher resuts re

= {7-4770 and i5-4760
same CPU, with and
without HTT

= Example: >
hyperthreads add
+32.9%

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 5, 2021

CAT /PROC/CPUINFO

If a CPU has hyper-threading
enabled, the “ht” flag is listed

11

Slides by Wes J. Lloyd

[Fall 2021]

AMD’S 64-CORE 7NM CPUS

= Epyc Rome CPUs

= Announced August 2019

= EPYC 7H12 requires liquid cooling
AMD EPYC 7002 Proc

Frequency (GHz)

EPYC 7H12 641128 260 330 256 MB 280 W 2

EPYC 7742 641128 225 340 256 MB 25w 56950
EPYC 7702 641128 200 335 256 MB 200 W $6450
EPYC 7642 48 /96 230 320 256 MB 25w 84775
EPYC 7552 48196 220 330 192 MB 2000 54025

TCSS562: Software Engineering for Cloud Computing (Fall 2021]

Octoberzi2020 School of Engineering and Technology, University of Washington - Tacoma

HYPER-THREADING - 2

= How do [use hyper-threadlng?

= Hyper-threading is automatic
= Modern CPUs expose each physical CPU core as two CPU cores
= cat /proc/cpuinfo command lists individual cores

= Operating system schedules processes & threads to run on a
hyper-thread

= On CPUs with hyper-threading, each CPU core has two hyper-
threads

= To the operating system they are seen as full-featured
independent CPU cores

TCsS562: Software Engineering for Cloud Computing [Fall 2021]
October5, 2021 School of Engineering and Technology, University of Washington - Tacoma 1210

10

Hyper-Threading (HT)
Technology

* Provides more satisfactory solution

Figure 2: Processors without Hyper-Threading Tech

Single physical processor is shared as
two logical processors

Processor Execution | | Processor Execution

Each logical processor has its own
architecture state

Resources Resources

Single set of execution units are shared
between logical processors

N-logical PUs are supported
Have the same gain % with only 5% die-

Processor Execution | Processor Execution

size penalty. Resouces Resaurces

* HT allows single processor to fetch and
execute two separate code streams —_—
simultaneously. s

with Hy per-The eading

12

L2.2

TCSS 562: Software Engineering for Cloud Computing

[Fall 2021]
School of Engineering and Technology, UW-Tacoma
Execution Pipeline
HYPER-THREADING - 3
Fetch Uop Register Register | Retire = When should we use hyper-threading, and when
|I-Fetch Qe Rename Pl Sched Read Execute {D-Cache Wite | Queve should not?
= For personal computing, hyper-threading helps improve system
Store performance when many programs use only short bursts of
> Bl CPU time
. N _'D—’ = Databases, HPC (science) applications, and others may benefit
Register W‘ from disabling hyper-threading. Testing will help quantify
Romame ~ performance.
> R '_,D o ™ = Disabling hyper-threading (HW setting), cuts the number of CPU
W—' cores available to operating system in half
Trace Registers || Registers Can be disabled in the System BIOS or UEFI (uniform extensible
Cache N ROB firmware interface) software
L1 DCachel BIOS / UEFI is a small resident program that can be accessed by
pressing a function-key when rebooting the computer
Each processor core consists of multiple stages Ak /WA 16 Weee (0 GRS TG LA epibns
Making changes requires rebooting the computer
Hyper-threading is the idea to share the physical stages P)
Of a CPU core to execute two instructions at once School of Engineering and Technology, University of Washington - Tacoma

13 14

CLOUD COMPUTING: CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

HOW DID WE GET HERE? - 2

=" To make computing faster, we must go “parallel”

= Cloud computing provides access to “infinite”
= Difficult to expose parallelism in scientific

scalable compute infrastructure on demand

applications = Infrastructure availability is key to exploiting
= Not every problem solution has a parallel algorithm parallelism

= Chicken and egg problem...

= Cloud applications

= Many commercial efforts promoting pure parallel =Based on cllent-server paradigm

programming efforts have failed Thin cli I h d he cloud

.

= Enterprise computing world has been skeptical and ShinfclontsPeyerae eleompUicio=stedionitsicion

less involved in parallel programming =Applications run many web service instances

=Employ load balancing

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ Octohers, 2021 School of Engineering and Technology, University of Washington - Tacoma 1215

TCsS562: Software Engineering for Cloud Computing [Fall 2021
October5,2021 School of Engineering and Technology, University of Washington - Tacoma 1216

15 16

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

= Big Data requires massive amounts of compute
resources

= Applies dynamic programming to find best local
alignment of two protein sequences

= Embarrassingly parallel, each task can run in isolation
= MIAP - REDUCE = Use case for GPU acceleration
= AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human
protein sequences (20,336)
= Python client as scheduler
= C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-

Waterman C/C++ library for use in genomic applications.

PLoS One 2013, 8:e82138
‘ et oy TCS5562: Software Engineering for Cloud Computing [Fall 2021] ‘

=Single instruction, multiple data (SIMD)
=Exploit data level parallelism

= Bioinformatics example

L3y
School of Engineering and Technology, University of Washington - Tacoma

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
e School of Engineering and Technology, University of Washington - Tacoma 18

17 18

Slides by Wes J. Lloyd L2.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SMITH WATERMAN RUNTIME

= | aptop server and client (2-core, 4-HT): 8.7 hours

= AWS Lambda FaaS, laptop as client: 2.2 minutes
= Partitions 20,336 sequences into 41 sets
= Execution cost: ~ 82¢ (~237x speed-up)

= AWS Lambda server, EC2 instance as client: 1.28
minutes
= Execution cost: ~ 87¢ (~408x speed-up)

= Hardware
= Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
= Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
= Cloud server: Lambda ~1000 x Intel E5-2666v3 2.9GHz CPUs

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ Octobers/2020 School of Engineering and Technology, University of Washington - Tacoma 1219

19

CLOUD COMPUTING:

HOW DID WE GET HERE? - 6

= Compute clouds are large-scale distributed
systems

= [nfrastructure-as-a-Service (laaS) Cloud
= Provide VMs on demand to users
= ec2instances.info (AWS EC2)

= Clouds can consist of
=Homogeneous hardware (servers, etc.)
= Heterogeneous hardware (servers, etc.)

=Which is preferable?

[Fall 2021]

CLOUD COMPUTING:

HOW DID WE GET HERE? - 5

= Compute clouds are large-scale distributed systems
= Heterogeneous systems

Many services/platforms w/ diverse hw + capabilities
O Homogeneous systems
Within a platform - illusion of identical hardware
= Autonomous
Automatic management and maintenance- largely with
little human intervention
= Self organizing

User requested resources organize themselves to satisfy
requests on-demand

TCss562: Software Engineering for Cloud Computing [Fall 2021]
Octoberzi2020 ‘ School of Engineering and Technology, University of Washington - Tacoma 1220

‘ September 25, 2019

21

OBJECTIVES - 10/5

= Questions from 9/30
= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2" edition)

= Data, thread-level, task-level parallelism &
Parallel architectures

= Class Activity 1 - Implicit vs Explicit Parallelism

= SIMD architectures, vector processing, multimedia extensions

= Graphics processing units

= Speed-up, Amdahl's Law, Scaled Speedup

= Properties of distributed systems

= Modularity

= [ntroduction to Cloud Computing - loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

TCSS562: Software Engineering for Cloud Computing [Fall 2021] o
School of Engineering and Technology, University of Washington - Tacoma

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 2

23

Slides by Wes J. Lloyd

20

HARDWARE HETEROGENEITY

= |If providing laaS, what are advantages/
disadvantages of using homogeneous hardware?
= Easier to provide same quality of service to end users
Less performance variance
Components with variable performance: CPUs, memory
(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)
= Homogeneous hardware (servers): components are
interchangeable
As components fail, identical backups are
immediately available
Example: blade servers
= As clouds grow, why is HW homogeneity difficult to maintain?
= What are some advantages of using heterogeneous HW?

TCsS562: Software Engineering for Cloud Computing [Fall 2021]
‘ September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 1222

22

PARALLELISM

= Discovering parallelism and development of parallel
algorithms requires considerable effort

= Example: numerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

= How can problems be split into independent chunks?
= Fine-gralned parallelism

= Only small bits of code can run in parallel without coordination
= Communication is required to synchronize state across nodes
= Coarse-grained parallelism

= Large blocks of code can run without coordination

‘ October5, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] e

School of Engineering and Technology, University of Washington - Tacoma

24

L2.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PARALLELISM - 2

= Coordination of nodes
= Requires message passing or shared memory

= Debugging parallel message passing code is easier
than parallel shared memory code

= Message passing: all of the interactions are clear
= Coordination via specific programming API (MPI)

= Shared memory: interactions can be implicit - must
read the code!!

= Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

= Avoiding coordination achieves the best speed-up

TCSS562: Software Engineering for Cloud Computing [Fall 2021
‘ Octobers/2020 School of Engineering and Technology, University of Washington - Tacoma 1225

25

THREAD LEVEL PARALLELISM (TLP)

= Number of threads an application runs at any one time
= Varies throughout program execution

= As a metric:

= Minlmum: 1 thread

= Can measure average, maximum (peak)

= QUESTION: What are the consequences of average (TLP)

for schedullng an application to run on a computer with a
flxed number of CPU cores and hyperthreads?

= Let’s say there are 4 cores, or 8 hyper-threads...

= Key to avoiding waste of computing resources
is knowing your application’s TLP...

TCSS562: Software Engineering for Cloud Computing [Fall 2021] 2
School of Engineering and Technology, University of Washington - Tacoma

‘ October 5, 2021

27

DATA-LEVEL PARALLELISM

= Partition data into big chunks, run separate copies
of the program on them with little or no
communication

= Problems are considered to be
embarrassingly parallel

= Also perfectly parallel or pleasingly parallel...

= Little or no effort needed to separate problem
into a number of parallel tasks

= MapReduce programming model is an example

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

‘ e School of Engineering and Technology, University of Washington -Tacoma

29

Slides by Wes J. Lloyd

[Fall 2021]

TYPES OF PARALLELISM

= Parallelism:

= Goal: Perform multiple operations at the same time
to achieve a speed-up

= Types of parallelism:

= Thread-level parallelism (TLP)
=Control flow architecture

= Data-level parallelism
=Data flow architecture

= Bit-level parallelism

= |nstruction-level parallelism (ILP)

TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ Octoberzi2020 School of Engineering and Technology, University of Washington - Tacoma 1226

26

CONTROL-FLOW ARCHITECTURE

= Typical architecture used today - w/ multiple threads

= By John von Neumann (1945)

= Also called the Von Neumann architecture

= Dominant computer system architecture

= Program counter (PC) determines
next instruction to load into
instruction register

= Program execution
is sequential

Central Processing Unit

Memory Unit

TCsS562: Software Engineering for Cloud Computing [Fall 2021
‘ October5, 2021 School of Engineering and Technology, University of Washington - Tacoma 1228

28

DATA FLOW ARCHITECTURE

= Alternate architecture used by network routers, digital
signal processors, special purpose systems

= Operations performed when input (data) becomes
available

= Envisioned to provide much higher parallelism

= Multiple problems has prevented wide-scale adoption
= Efficiently broadcasting data tokens in a massively
parallel system
= Efficiently dispatching instruction tokens in a massively
parallel system
= Building content addressable memory large enough to
hold all of the dependencies of a real program

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ CE A School of Engineering and Technology, University of Washington - Tacoma 10

30

L2.5

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

DATA FLOW ARCHITECTURE - 2 BIT-LEVEL PARALLELISM

= Architecture not as popular as control-flow = Computations on large words (e.g. 64-bit integer) are
= Modern CPUs emulate data flow architecture for dynamic performed as a single instruction
instruction scheduling since the 1990s = Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance

= Out-of-order execution - reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows

= Execution windows: identify instructions that can be run by
data dependency

improvements
= Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many Instructlons are requlired to add two

= Instructions are completed in data dependency order within 64-bit numbers on a 16-bit CPU? (Intel 8088)
execution window
Execution window size typically 32 to 200 instructions " 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

= 16-bit MAX int = 32,767 (signed)
= Intel 8088 - limited to 16-bit registers

Utility of data flow architectures has been
much less than envisioned

October5, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] Octobers, 2021 SR, S B T o G G 2 2 o
0l of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

31 32

= CPU pipelining architectures enable ILP Clock Cycle
4 5 & 7 8 8
= CPUs have multi-stage processing pipelines
= Pipelining: split instructions into sequence of steps that et
can execute concurrently on different CPU circuitry Instructions
= Basic RISC CPU - Each instruction has 5 pipeline stages:
. . w
= |F - instruction fetch =
. . w
= |D- instruction decode 2
= EX - instruction execution
- -
MEM - memory access completed
= WB - write back Instructions
TCSS562: Software Er for Cloud Cor i Fall 2021] TCSS562: Softy Engir ing for Cloud Cor Fall 2021]
\ Orabers, 202 | B i Todoloy, srweran of Wothnguon -Tacoma \ Octobers, 2021 e e e 2t

33 34

INSTRUCTION LEVEL PARALLELISM - 2 OBJECTIVES - 10/5
= RISC CPU: = Questions from 9/30
q 5 = Cloud Computing - How did we get here?
[;:f:;reg clock cycles, all 5 stages of an instruction are (Marinescu Ch. 2 - 1 edition, Ch. 4 - 21 edition)

= Data, thread-level, task-level parallelism &
Parallel architectures

|l Class Activity 1 - Implicit vs Explicit Parallelism |
= SIMD architectures, vector processing, multimedia extensions
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity
® Introduction to Cloud Computing - loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture
‘ October, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington -Tacoma 123 ‘ CE A 1

= Starting with 6t" clock cycle, one full instruction
completes each cycle

= The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

= Pentium 4 (CISC CPU) - processing pipeline w/ 35 stages!

School of Engineering and Technology, University of Washington - Tacoma

35 36

Slides by Wes J. Lloyd L2.6

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

ACTIVITY 1 ACTIVITY 1

= We will form groups of ~3 using Zoom breakout rooms
= Each group will complete a Google Doc worksheet

= Add names to Google Doc as they appear in Canvas

= The activity can be completed in class or after class

= The activity can also be completed indivually

= When completed, one person should submit a PDF of the
Google Doc to Canvas

= [nstructor will score all group members based on the uploaded
PDF file

= To get started:

= Log into your UW Google Account (https://drive.google.com)
using you UW NET ID

= Follow the link:
https://tinyurl.com/kp2jm9pj

TCSS562: Software Engineering for Cloud Computing [Fall 2021] 23 G TCSS562: Software Engineering for Cloud Computing [Fall 2021] s
School of Engineering and Technology, University of Washington - Tacoma 5 School of Engineering and Technology, University of Washington - Tacoma

= Solutions to be discussed..

‘ October5, 2021

37 38

IMPLICIT PARALLELISM EXPLICIT PARALLELISM
= Applies to: = Applies to:
= Advantages: = Advantages:
= Disadvantages: = Disadvantages:
\ Otobers, 021 | B e Tctnacay, Unereay o Washingion - Tacoms \ Otobers, 021 | B e Tty Uneraay o Wohingion - Tacoma a0

39 40

PARALLELISM QUESTIONS PARALLELISM QUESTIONS - 2

= 7. For bit-level parallelism, should a developer be = 9. For thread level parallelism (TLP) where a programmer
concerned with the available number of virtual CPU has spent considerable effort to parallelize their code and
processing cores when choosing a cloud-based virtual algorithms, what consequences result when this code is
machine if wanting to obtain the best possible speed-up? deployed on a virtual machine with too few virtual CPU
(Yes / No) processing cores?

= 8. For instruction-level parallelism, should a developer be = What happens when this code is deployed on a virtual
concerned with the physical CPU’s architecture used to machine with too many virtual CPU processing cores?

host a cloud-based virtual machine if wanting to obtain
the best possible speed-up? (Yes / No)

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

‘ October 5, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021) 241 ‘ October 5, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] a2

41 42

Slides by Wes J. Lloyd L2.7

https://tinyurl.com/kp2jm9pj

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

MICHAEL FLYNN’S COMPUTER

OBJECTIVES - 10/5 ARCHITECTURE TAXONOMY

= Questlons from 9/30
= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)

= Data, thread-level, task-level parallelism &

= Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

Parallel architectures = SISD (SiIngle Instructlon Single Data)
= Class Activity 1 - Implicit vs Explicit Parallelism = S|MD (SIngle Instruction, Multiple Data)
|I SIMD architectures, vector processing, multimedia extensions| = MIMD (Multiple Instructlons, Multiple Data)
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup = |ESS COMMON: MISD (Multiple Instructions, Single Data)
= Properties of distributed systems = Pipeline architectures: functional units perform different
= Modularity operations on the same data
= Introduction to Cloud Computing - loosely based on book #1: = For fault tolerance, may want to execute same instructions
Cloud Computing Concepts, Technology & Architecture redundantly to detect and mask errors - for task replication
[odobersam I e o dociComuis [0 [omobmsam [T st g o Gont ompui)
43 44

FLYNN’S TAXONOMY (SIMD): VECTOR PROCESSING

ADVANTAGES

= SISD (SIngle Instruction Single Data) = Exploit data-parallelism: vector operations enable speedups
Scalar architecture with one processor/core.

= Individual cores of modern multicore processors are
“SISD”

= Vectors architecture provide vector registers that can store
entire matrices into a CPU register

= SIMD CPU extension (e.g. MMX) add support for vector
= SIMD (Single Instruction, Multiple Data) operations on traditional CPUs
Supports vector processing
= When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

= Vector operations reduce total number of instructions for
large vector operations

= Two 64-element vectors can be added in parallel = Provides higher potential speedup vs. MIMD architecture
= Vector processing instructions added to modern CPUs = Developers can think sequentially; not worry about
= Example: Intel MMX (multimedia) instructions parallelism
TCSS562: Software Er for Cloud Cor ing [Fall 2021] TCSS562: Softy Engir ing for Cloud Cor [Fall 2021]
[odobersams [Tk wiersimnerns o on Comura (200 e [odobersam I sisimnens o Gon o 200 e v

45 46

FLYNN’S TAXONOMY - 2 ARITHMETIC INTENSITY
= MIMD (Multiple Instructlons, Multiple Data) - system with = Arlthmetlc Intensity: Ratio of work (W) to I— w
several processors and/or cores that function asynchronously memory traffic r/w (Q) Q
and independently Example: # of floating point ops per byte of data read
= At any time, different processors/cores may execute different = Characterizes application scalability with SIMD support
instructions on different data = SIMD can perform many fast matrix operations in parallel

= Multi-core CPUs are MIMD
= Processors share memory via interconnection networks

= Hypercube, 2D torus, 3D torus, omega network, other topologies
= MIMD systems have different methods of sharing memory

= High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

Uniform Memory Access (UMA) = Low arithmetic intensity:
Cache Only Memory Access (COMA) Programs with sparse matrix operations do not scale well

with problem size

Non-Unif M A NUMA
on-Uniform Memory Access () (memory RW becomes bottleneck, not enough ops!)

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

‘ October 5, 2021 School of Engineering and Technology, University of Washington - Tacoma

247 ‘ October 5, 2021

47 48

Slides by Wes J. Lloyd L2.8

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

ROOFLINE MODEL OBJECTIVES - 10/5
= When program reaches a given arithmetic intensity = Questions from 9/30
performance of code running on CPU hits a “roof” = Cloud Computing - How did we get here?
= CPU performance bottleneck changes from: (Marinescu Ch. 2 - 15t edition, Ch. 4 - 2" edition)
memory bandwidth (left) > floating point performance (right) = Data, thread-level, task-level parallelism &
Parallel architectures
enmbatnee K€Y take-aways: = Class Activity 1 - Implicit vs Explicit Parallelism

When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

= SIMD architectures, vector processing, multimedia extensions
|- Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup

Alg2

Performance

With high Arithmetic intensity, = Properties of distributed systems
the system has peak parallel = Modularity
performance... = Introduction to Cloud Computing - loosely based on book #1:

Arithmetic intensity = performance is limited by?? Cloud Computing Concepts, Technology & Architecture

TCSS562: Software Engineering for Cloud Computing [Fall 2021 TCss562:Software Engineering for Cloud Computing [Fall 2021]
‘ Octobers/2020 School of Engineering and Technology, University of Washington - Tacoma 1249 Octoberzi2020 School of Engineering and Technology, University of Washington - Tacoma 1250

49 50

GRAPHICAL PROCESSING UNITS (GPUs) OBJECTIVES - 10/5

= GPU provides multiple SIMD processors = Questions from 9/30
= Cloud Computing - How did we get here?

= Typically 7 to 15 SIMD processors each (Marinescu Ch. 2 - 1%t edition, Ch. 4 - 2" edition)
= 32,768 total registers, divided into 16 lanes = Data, thread-level, task-level parallelism &

(2048 registers each) Parallel architectures
= GPU programming model: = Class Activity 1 - Implicit vs Explicit Parallelism

single instruction, multiple thread = SIMD architectures, vector processing, multimedia extensions
= Programmed using CUDA- C like programming X Graphics processing units

language by NVIDIA for GPUs |I Speed-up, Amdahl's Law, Scaled Speedup |

M M q ® Properties of distributed systems
= CUDA threads - single thread associated with each D X)
0 = Modularity
data element (e.g. vector or matrix) i i
= Introduction to Cloud Computing - loosely based on book #1:
= Thousands of threads run concurrently Cloud Computing Concepts, Technology & Architecture
[omobersaom [T s s o ot onmt U Oobers, 2L | B Thnetoy, vy ofWashingion - Tacoma as

51 52

PARALLEL COMPUTING SPEED-UP EXAMPLE
= Parallel hardware and software systems allow: = Consider embarrassingly parallel image processing
= Solve problems demanding resources not available on = Eight images (multiple data)
single system. = Apply image transformation (greyscale) in parallel
= Reduce time required to obtain solution = 8-core CPU, 16 hyperthreads

= Sequential processing: perform transformations one at a time
using a single program thread

= The speed-up (S) measures effectiveness of - B (Ees, & CEeTED Caeli T(E) = 20 secemek

parallelization: .
= Parallel processing

S(N) = T(l) / T(N) = 8 images, 3 seconds each: T(N) = 3 seconds
= Speedup: S(N) = 24 / 3 = 8x speedup

T(1) > execution time of total sequential computation = Called “perfect scallng”
perfect scallng

T(N) = execution time for performing N parallel

computations in parallel = Must consider data transfer and computation setup time
TCSS562: Software Engineering for Cloud Computing [Fall 2021] TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ AT School of Engineering and Technology, University of Washington - Tacoma 1253 ‘ CE A School of Engineering and Technology, University of Washington - Tacoma 2

53 54

Slides by Wes J. Lloyd L2.9

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

AMDAHL'S LAW AMDAHL'S LAW

= Amdahl’s law is used to estimate the speed-up of a job 1
using parallel computing B —
(1-f)+%

1. Divide job into two parts
2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing 08 © WSEREEE SEEEl CfF Hio TElo HE s

= f= fraction of work that is parallel (ex. 25% or 0.25)
= Portion of computation which cannot be parallelized will = N= proposed speed up of the parallel part (ex.5 times speedup)
determine (i.e. limit) the overall speedup
= Amdahl’s law assumes jobs are of a fixed size = % improvement
= Also, Amdahl’s assumes no overhead for distributing the of task execution =100*(1-(1/9S))

work, and a perfectly even work distribution
= Using Amdahl’s law, what Is the maximum possible speed-up?

TCss562: Software Engineering for Cloud Computing [Fall 2021]
Octoberzi2020 School of Engineering and Technology, University of Washington - Tacoma 1256

TCSS562: Software Engineering for Cloud Computing [Fall 2021
Octobers/2020 School of Engineering and Technology, University of Washington - Tacoma 1235

55 56

GUSTAFSON'S LAW

AMDAHL'S LAW EXAMPLE

Twa Independent parts A 8

= Program with two independent parts: = Calculates the scaled speed-up using “N” processors
= Part A is 75% of the execution time IOARERCEY S(N) =N+(1-N)«
= Part B is 25% of the execution time uake B Sufastar |

= Part B is made 5 times faster with
parallel computing

= Estimate the percent improvement of task execution

= Original Part A is 3 seconds, Part B is 1 second

N: Number of processors
o: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

uake A Zxlaster I

= N=5 (speedup of part B) = Can be used to estimate runtime of parallel portion of

r ram
= f=.25 (only 25% of the whole job (A+B) will be sped-up) DICETS
S=1/ ((1-f) + f/S)
= S=1/ ((.75) + .25/5)
=5=1.25
= % improvement = 100 * (1 - 1/1.25) = 20%
oxtobers 2021 [et aoey Ubiveniy 5 WhingienmTacoma as? ‘ Oetabers, 2021 | e e o o o woshnsion - Tacoma s
57 58

GUSTAFSON'S LAW GUSTAFSON'S LAW
= Calculates the scaled speed-up using “N” processors = Calculates the scaled speed-up using “N” processors
S(N) =N+ (1-N)«x S(N) =N+ (1-N)«
N: Number of processors N: Number of processors
o: fraction of program run time which can’t be parallelized a: fraction of program run time which can’t be parallelized
(e.g. must run sequentially) (e.g. must run sequentially)
= Can be used to estimate runtime of parallel portion of = Example:
program Consider a program that is embarrassingly parallel,
=" Where a =c / (n + o) but 75% cannot be parallelized. a=.75

QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run In parallel?

= Where o= sequential time, = =parallel time
= OQur Amdahl’s example: o= 3s, 1 =1s, a =.75

TCSS562: Software Engineering for Cloud Computing [Fall 2021) 1259 October 5, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] 260
School of Engineering and Technology, University of Washington - Tacoma 2 School of Engineering and Technology, University of Washington - Tacoma

‘ October 5, 2021

59 60

Slides by Wes J. Lloyd L2.10

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

GUSTAFSON’S EXAMPLE GUSTAFSON’S EXAMPLE
= QUESTION: = QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ? What is the maximum theoretical speed-up on a 2-core CPU ?
S(N) =N+(1-N)« S(N) =N+ (1-N)«

N=2, a=.75 N=2, a=
S(N) =2+ (1-2).75 S(N) =

For 2 CPUs, speed up is 1.25x

S(N) =72 S(N) =2
For 16 CPUs, speed up is 4.75x
= What is the maximum theoretical speed-up on a 16-core CPU? = What is t a a 0 arspeearup Uil d Lo CPU?
S(N) =N+ (1-N)« S(N) =N+ (1-N)«
N=16, a=.75 N=16, a=.75
S(N) =16 + (1 - 16) .75 S(N) =16 + (1 - 16) .75
S(N) =72 S(N) =2
Octobers, 2021 | e koot Unvrany o Washngton Tacoma Otabers, 2021 | S Tknoloty Ureraty o Weshnton Tacoma i
61 62

MOORE’S LAW OBJECTIVES - 10/5

= Questions from 9/30

= Transistors on a chip doubles approximately every 1.5 years

= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2" edition)

= Data, thread-level, task-level parallelism &
Parallel architectures

= Class Activity 1 - Implicit vs Explicit Parallelism

® CPUs now have billions of transistors

= Power dissipation issues at faster clock rates leads to heat
removal challenges
= Transition from: increasing clock rates - to adding CPU cores

= Symmetric core processor -multi-core CPU, all cores have the
same computational resources and speed

= Asymmetric core processor - on a multi-core CPU, some cores
have more resources and speed

= SIMD architectures, vector processing, multimedia extensions
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup

= Dynamlc core processor - processing resources and speed can | = Properties of distributed systems]
be dynamically configured among cores = Modularity
A a £f high = Introduction to Cloud Computing - loosely based on book #1:
= Observation: asymmetric processors offer a higher speedup " :
Observation: asymmetric processors offer a higher speedu Cloud Computing Concepts, Technology & Architecture
: Softws ing for id i I :Softwe ineering for Cloud i 1
[owmesaon | e i o S [omnam | e oo s - mons

63 64

DISTRIBUTED SYSTEMS DISTRIBUTED SYSTEMS - 2

School of Engineering and Technology, University of Washington - Tacoma

= Collection of autonomous computers, connected through a = Key non-functional attributes
network with distribution software called “middleware” that = Known as “ilities” in software engineering
enables coordination of activities and sharing of resources
= Key characteristics: = Availability - 24/7 access?
= Users perceive system as a single, integrated computing = Reliability - Fault tolerance
facility. = Accessibility - reachable?
= Compute nodes are autonomous = Usability - user friendly
= Scheduling, resource management, and security implemented = Understandability - can under
by every node = Scalability - responds to variable demand
® Multiple points of control and failure = Extensibility - can be easily modified, extended
= Nodes may not be accessible at all times = Maintainability - can be easily fixed
® System can be scaled by adding additional nodes = Consistency - data is replicated correctly in timely manner
= Availability at low levels of HW/software/network reliability
‘ October, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] \265 ‘ October5, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] L265

School of Engineering and Technology, University of Washington - Tacoma

65 66

Slides by Wes J. Lloyd L2.11

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

OBJECTIVES - 10/5

= Access transparency: local and remote objects accessed using = Questlons from 9/30

identi.cal operations . = Cloud Computing - How did we get here?
= Location transparency: objects accessed w/o knowledge of (Marinescu Ch. 2 - 1% edition, Ch. 4 - 29 edition)
their location. . e

= Concurrency transparency: several processes run concurrently = Data, thread-level, task-level parallelism &
using shared objects w/o interference among them Parallel architectures
= Replication transparency: multiple instances of objects are = Class Activity 1 - Implicit vs Explicit Parallelism
used to increase reliability . . q q q
- users are unaware if and how the system is replicated = SIMD architectures, vector processing, multimedia extensions
= Failure transparency: concealment of faults = Graphics processing units
= Migration transparency: objects are moved w/o affecting = Speed-up, Amdahl's Law, Scaled Speedup

operations performed on them

= Performance transparency: system can be reconfigured based Slknopertissiofidisiibuiediystems

on load and quality of service requirements |l Modularity |
= Scallng transparency: system and applications can scale w/o = Introduction to Cloud Computing - loosely based on book #1:

change in system structure and w/o affecting applications Cloud Computing Concepts, Technology & Architecture

TCSS562: Software Engineering for Cloud Computing [Fall 2021 TCss562:Software Engineering for Cloud Computing [Fall 2021]
‘ Octobers/2020 School of Engineering and Technology, University of Washington - Tacoma 1267 Octoberzi2020 School of Engineering and Technology, University of Washington - Tacoma

67 68

CLOUD COMPUTING - HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

TYPES OF MODULARITY

= Soft modularity: TRADITIONAL ® Multi-core CPU technology and hyper-threading
= Divide a program into modules (classes) that call each other = What is a
and communicate with shared-memory = Heterogeneous system?
= A procedure calling convention is used (or method invocation) = Homogeneous system?
= Enforced modularity: CLOUD COMPUTING = Autonomous or self-organizing system?
= Program is divided into modules that communicate only = FIne gralned vs. coarse gralned parallellsm
through message passing = Parallel message passing code is easier to debug than
= The ubiquitous client-server paradigm shared memory (e.g. p-threads)
= Clients and servers are independent decoupled modules = Know your application’s max/avg Thread Level
= System is more robust if servers are stateless Parallellsm (TLP)
= May be scaled and deployed separately = Data-level parallellsm: Map-Reduce, (SIMD) Single
= May also FAIL separately! Instruction Multiple Data, Vector processing & GPUs
[odobersams [Tk wiersimnerns o on Comura (200 e X [omobersaom IS5 s rineein o o omputt) an

69 70

CLOUD COMPUTING - HOW DID WE GET HERE? CLOUD COMPUTING - HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2 SUMMARY OF KEY POINTS - 3
= Bilt-level parallelism = Speed-up (S)
= Instructlon-level parallelism (CPU pipelining) S(N) = T(1) / T(N)
= Flynn’s taxonomy: computer system architecture classification = Amdahl’s law:
= SISD - Single Instruction, Single Data (modern core of a CPU) S i 1/ a t of that tb tial
= SIMD - Single Instruction, Multiple Data (Data parallelism) . G IR pr\slg:la:] . el i ccduchtia

= MIMD - Multiple Instruction, Multiple Data
= MISD is RARE; application for fault tolerance...
= Arithmetic intensity: ratio of calculations vs memory RW

= Roofline model:
Memory bottleneck with low arithmetic intensity

= GPUs: ideal for programs with high arithmetic intensity
= SIMD and Vector processing supported by many large registers

S(N) =N - a(N-1)
= Moore’s Law
= Symmetric core, Asymmetric core, Dynamic core CPU
= Distributed Systems Non-function quality attributes
= Distributed Systems - Types of Transparency
= Types of modularity- Soft, Enforced

TCSS562: Software Engineering for Cloud Computing [Fall 2021] TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 2 e School of Engineering and Technology, University of Washington - Tacoma 1

71 72

Slides by Wes J. Lloyd L2.12

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/5

= Questlons from 9/30
= Cloud Computing - How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2" edition)

= = Data, thread-level, task-level parallelism &
Parallel architectures
I NTRODUCTION TO = Class Activity 1 - Implicit vs Explicit Parallelism
CLOU D CO M PUTI NG = SIMD architectures, vector processing, multimedia extensions
= Graphics processing units
= Speed-up, Amdahl's Law, Scaled Speedup
= Properties of distributed systems
= Modularity
= |Introduction to Cloud Computing - Ioosely based on book #1:

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington -

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

September 30, 2019 School of Engineering and Technology, University of Washington - Tacoma

October 5, 2021

OBJECTIVES - 10/5

WHY STUDY CLOUD COMPUTING?

= Introduction to Cloud Computing = LINKEDIN - TOP IT Skills from job app data
=Why study cloud computing? -I = #1 Cloud and Distributed Computing

=History of cloud computing
=Business drivers

= #2 Statistical Analy5|s and Data Mining

*Cloud enabling technologies = FORBES Survey - 6 Tech Skills That’ll Help You Earn More
=Terminology = #1 Data Science

=Benefits of cloud adoption = #2 Cloud and Distributed Computing

=Risks of cloud adoption * http://www.forbes.com/sites/laurencebradford/2016/12

19/6-tech-skills-thatll-help-you-earn-more-in-2017

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCsS562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30,2019) School of Engineering and Technology, University of Washington - Tacoma 127 September30,2019 School of Engineering and Technology, University of Washington - Tacoma 1276

75 76

WHY STUDY CLOUD COMPUTING? - 2 OBJECTIVES - 10/5

TECH FORECAST 2017 | SPECIAL REPORT.
= Computerworld

= Introduction to Cloud Computing
Magazine

=Why study cloud computing?
=History of cloud computing I
=Business drivers

=Cloud enabling technologies
=Terminology

=Benefits of cloud adoption
=Risks of cloud adoption

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

‘ September30, 2019 | ;oo of Engineering and Technology, University of Washington - Tacoma

TCs5562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30,2019 | ;o) of Engineering and Technology, University of Washington -Tacoma 2

77 78

Slides by Wes J. Lloyd L2.13

https://learning.linkedin.com/week-of-learning/top-skills
http://www.forbes.com/sites/laurencebradford/2016/12/19/6-tech-skills-thatll-help-you-earn-more-in-2017/

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

A BRIEF HISTORY OF CLOUD COMPUTING CLOUD HISTORY - 2

= Internet based computer utilities

= Since the mid-1990s

= Search engines: Yahoo!, Google, Bing
= Email: Hotmail, Gmail

= John McCarthy, 1961
= Turing award winner for contributions to Al

= “If computers of the kind | have advocated become the
computers of the future, then computing may someday be
organized as a public utility just as the telephone system is a
public utility... The computer utility could become the basis of
a new and important industry...” = Social media: Twitter, YouTube

= 2000s
= Social networking platforms: MySpace, Facebook, LinkedIn

= Popularized core concepts
= Formed basis of cloud computing

TCSS562: Software Engineering for Cloud Computing [Fall 2019] e ‘ September30, 2019 TCSS562; Software Engineering for Cloud Computing [Fall 2019] 1250

‘ S e 200 School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

79 80

CLOUD HISTORY: SERVICES - 1 CLOUD HISTORY: SERVICES - 2
= Late 1990s - Early Software-as-a-Service (SaaS) = 2006 - Software-as-a-Service (SaaS)
= Salesforce: Remotely provisioned services for the enterprise = Google: Offers Google DOCS, “MS Office” like fully-web
based application for online documentation creation and
= 2002 - collaboration

= Amazon Web Services (AWS) platform: Enterprise oriented services
for remotely provisioned storage, computing resources, and business

functionality = 2009 - Platform-as-a-Service (PaaS)
= Google: Offers Google App Engine, publicly hosted
= 2006 - Infrastructure-as-a-Service (laaS) platform for hosting scalable web applications on google-
= Amazon launches Elastic Compute Cloud (EC2) service hosted datacenters

= Organization can “lease” computing capacity and processing power
to host enterprise applications
= Infrastructure

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCsS562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 1z September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 1282

81 82

STy el A hE MORE CONCISE DEFINITION

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and

reused with minimal management effort or service
provider interaction”... From Cloud Computing Concepts, Technology, and Architecture
Z. Mahmood, R. Puttini, Prentice Hall, 5" printing, 2015

“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

TCSS562: Software Engineering for Cloud Computing [Fall 2019] e

128 ‘ September30, 2019 | s o5 of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2019

83 84

Slides by Wes J. Lloyd L2.14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 10/5

[Fall 2021]

BUSINESS DRIVERS

FOR CLOUD COMPUTING

= |ntroduction to Cloud Computing
=Why study cloud computing?
= History of cloud computing
=Business drivers I
=Cloud enabling technologies
=Terminology
=Benefits of cloud adoption
=Risks of cloud adoption

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
‘ Septembar30ja0) School of Engineering and Technology, University of Washington - Tacoma 1285

85

BUSINESS DRIVERS

FOR CLOUD COMPUTING

= Capacity planning
= Process of determining and fulfilling future demand for IT
resources

= Capacity vs. demand
= Discrepancy between capacity of IT resources and actual
demand

= Over-provisioning: resource capacity exceeds demand
= Under-provisioning: demand exceeds resource capacity

= Capacity planning aims to minimize the discrepancy of
available resources vs. demand

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30,2019) School of Engineering and Technology, University of Washington - Tacoma 1287

87

BUSINESS DRIVERS FOR CLOUD - 2

= Capacity planning
= Over-provisioning: is costly due to too much infrastructure
= Under-provisioning: is costly due to potential for business loss from
poor quality of service

= Capacity planning strategies
= Lead strategy: add capacity in anticipation of demand (pre-
provisioning)
= Lag strategy: add capacity when capacity is fully leveraged

= Match strategy: add capacity in small increments as demand
increases

= Load prediction
= Capacity planning helps anticipate demand flucations

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

‘ September30, 2019 | ;oo of Engineering and Technology, University of Washington - Tacoma

89

Slides by Wes J. Lloyd

= Capacity planning

= Cost reduction

= Operational overhead
= Organizational agility

TCSS562; Software Engineering for Cloud Computing [Fall 2019] 1286

‘ SERtRmber30i201) School of Engineering and Technology, University of Washington - Tacoma

86

“
Dwight, The Office TV sitcom

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

ST D School of Engineering and Technology, University of Washington - Tacoma

88

CAPACITY PLANNING

Capacity vs. Usage
(Traditional Data Center)

Actusl Usage Pl

Planned Capacity

Compute Power

Time |
l amazon
et |
TCs5562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30,2019 | ;o) of Engineering and Technology, University of Washington -Tacoma 20

90

L2.15

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

CAPACITY PLANNING - 2 BUSINESS DRIVERS FOR CLOUD - 3

= Ca = Cost reduction

PR SRt = IT Infrastructure acquisition
=IT Infrastructure maintenance
Capacity
—_— = Operational overhead
Storage = Technical personnel to maintain physical IT infrastructure
= System upgrades, patches that add testing to deployment
cycles
= Utility bills, capital investments for power and cooling
= Security and access control measures for server rooms
Source: Amazan Web Services Time) = Admin and accounting staff to track licenses, support
agreements, purchases
TCSS562: Softy Engi ring for Cloud Cor ing [Fall 2019] TCSS562: Softy Engir ing for Cloud Cor ing (Fall 2019]
‘ september30, 2018 | (G ehnology Universty of Washington - Tocoma 2 ‘ SERETEREND | e e e e A e o

BUSINESS DRIVERS FOR CLOUD - 4 OBJECTIVES - 10/5

= Organizational agility = Introduction to Cloud Computing
=Why study cloud computing?
=History of cloud computing
=Business drivers

= Ability to adapt and evolve infrastructure to face change
from internal and external business factors

= Funding constraints can lead to insufficient on premise IT =Cloud enabling technologies
=Terminology

=Benefits of cloud adoption
=Risks of cloud adoption

= Cloud computing enables IT resources to scale with a
lower financial commitment

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCsS562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 1293 September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 1294

93 94

TECHNOLOGY INNOVATIONS CLUSTER COMPUTING

LEADING TO CLOUD

= Cluster computing = Cluster computing (clustering)
= Cluster is a group of independent IT resources
interconnected as a single system

= Grid computing = Servers configured with homogeneous hardware and software

Identical or similar RAM, CPU, HDDs
= Virtualization = Design em i redundancy as server
interchanged to keep overall system running

Example: if a RAID card fails on a key server, the card can be
m QOthers swapped from another redundant server

p s are easily

= Enables warm replica servers

Duplication of key infrastructure servers to provide
HW failover to ensure high availability (HA)

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCs5562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 | ;oo of Engineering and Technology, University of Washington - Tacoma 2 September30,2019 | ;o) of Engineering and Technology, University of Washington -Tacoma 10

95 96

Slides by Wes J. Lloyd L2.16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GRID COMPUTING

i
= On going research area since early 1990s @@

= Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

= For example: heterogeneous servers connected by the internet
= Resources are heterogeneous and geographically dispersed

= Grids use middleware software layer to support workload
distribution and coordination functions

= Aspects: load balancing, failover control, autonomic
configuration management

= Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
‘ Septembar30ja0) School of Engineering and Technology, University of Washington - Tacoma 1297

97

VIRTUALIZATION

Virtual Machine

[Theads 1]
L Processes]
[Orvers

R
Py —

TCSS562: Software Engineering for Cloud Computing [Fall 2019] 1209
School of Engineering and Technology, University of Washington - Tacoma

‘ September 30, 2019

99

VIRTUALIZATION

= Simulate physical hardware resources via software
= The virtual machine (virtual computer)
= Virtual local area network (VLAN)
= Virtual hard disk
= Virtual network attached storage array (NAS)

Early incarnations featured significant performance,
reliability, and scalability challenges

= CPU and other HW enhancements have minimized
performance GAPs

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
September30, 2019 | ;oo of Engineering and Technology, University of Washington - Tacoma e

101

Slides by Wes J. Lloyd

GRID COMPUTING - 2

[How Grid computing works ? |

In general, a grid computing

system requires:

= At least one computer,
usually a server, which
handles all the
administrative duties for

. the System

= A network of computers

‘| running special grid

computing network

| software.

||* A collection of computer

software called

middleware

[Fall 2021]

TCSS562: Software Engineering for Cloud Computing [Fall 2019)

‘ SERtRmber30i201) School of Engineering and Technology, University of Washington - Tacoma

28

98

VIRTUALIZATION

Virtual Machine J Virtual Machine | Virtual Machine | Virtual Machine

oo —

TCSS562: Software Engineering for Cloud Computing (Fall 2019]

‘ September30,2019 School of Engineering and Technology, University of Washington - Tacoma

100

OBJECTIVES - 10/5

= Introduction to Cloud Computing
=Why study cloud computing?
=History of cloud computing
=Business drivers
=Cloud enabling technologies
=Terminology I
=Benefits of cloud adoption
=Risks of cloud adoption

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

September30,2019 | ;o) of Engineering and Technology, University of Washington -Tacoma

12102

102

L2.17

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

KEY TERMINOLOGY VERTICAL SCALING

® On-Premise Infrastructure = Reconfigure virtual machine to have different resources:
= Local server infrastructure not configured as a cloud = CPU cores -~
= Cloud Provider « RAM
) . B . R 8 z 4 CPUs
= Corporation or private organization responsible for maintaining cloud i

= HDD/SDD capacit
= Cloud Consumer / pacity

= User of cloud services
= Scaling
= Vertlcal scallng
Scale up: increase resources of a single virtual server
Scale down: decrease resources of a single virtual server
= Horlzontal scallng A v 2CPUs

Scale out: increase number of virtual servers

= May require VM migration if
physical host machine
resources are exceeded

vertical scaling

Scale in: decrease number of virtual servers

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCss562: Software Engineering for Cloud Computing [Fall 2019]
‘ Septembar30ja0) School of Engineering and Technology, University of Washington - Tacoma 12103 SERtRmber30i201) School of Engineering and Technology, University of Washington - Tacoma 12106

103 104

HORIZONTAL SCALING HORIZONTAL VS VERTICAL SCALING

= |Increase (scale-out) or decrease (scale-in) number of virtual
servers based on demand Horlzontal Scaling Vertical Scaling
Requires expensive

— Less expensive using commodity HW high capacity servers

paoled
physical =
oners N

N

/’

o

‘-\\

virtual demand demand
servers = g
A A B A B c
horizontal scaling
TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCsS562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 12105 September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 12106

105 106

HORIZONTAL VS VERTICAL SCALING HORIZONTAL VS VERTICAL SCALING

Horlzontal Scallng Vertlcal Scallng Horlzontal Scallng Vertlcal Scaling

Requires expensive Requires expensive
high capacity servers high capacity servers

[i i [ypically y avai I i y avai I typically instantly available

Less expensive using commodity HW Less expensive using commodity HW

and automated scaling SIS ested

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCs5562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 | ;oo of Engineering and Technology, University of Washington - Tacoma 21 September30, 2019 | s ool of Engineering and Technology, Universty of Washington -Tacoma .

107 108

Slides by Wes J. Lloyd L2.18

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

HORIZONTAL VS VERTICAL SCALING HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling Horizontal Scaling Vertical Scaling

Requires expensive . . " Requires expensive
high capacity servers CES e Lol GOy 1Y high capacity servers

IT i i IT ypi y y ilabl IT i i IT typically instantly available

Less expensive using commodity HW

Resource replication P O S — Resource replication
and automated scaling P Y and automated scaling

Additional servers required No additional servers required Additional servers required No additional servers required
Not limited by individual server capacity Limited by individual server capacity

Additional setup is normally needed

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCss562: Software Engineering for Cloud Computing [Fall 2019]
‘ Septembar30ja0) School of Engineering and Technology, University of Washington - Tacoma 12109 SERtRmber30i201) School of Engineering and Technology, University of Washington - Tacoma 12110

109 110

KEY TERMINOLOGY - 2 OBJECTIVES - 10/5

= Cloud services = Introduction to Cloud Computing
= Broad array of resources accessible “as-a-service” *Why study cloud computing?
= Categorized as Infrastructure (laaS), Platform (PaaS),

Software (SaaS) =History of cloud computing

=Business drivers

= Service-level-agreements (SLAs): =Cloud enabling technologies

= Establish expectations for: uptime, security, availability, =Terminology
reliability, and performance

=Benefits of cloud adoption I
=Risks of cloud adoption

TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCsS562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 2 September30, 2019 School of Engineering and Technology, University of Washington - Tacoma 2

111 112

GOALS AND BENEFITS CLOUD BENEFITS - 2

= Cloud providers = On demand access to pay-as-you-go resources on a short-term

= Leverage economies of scale through mass-acquisition and basis (less commitment)

management of large-scale IT resources

o o Ability to acquire “unlimited” computing
= Locate datacenters to optimize costs where electricity is low resources on demand when required for

= Cloud consumers
* Key business/accounting difference: Ability to add/remove IT resources at
= Cl mputing enabl nticl Ital expenditur a fine-grained level
repl with ratlonal expenditur:
= Operational expenditures always scale with the business
= Eliminates need to invest in server infrastructure based on
anticipated business needs

business needs

Abstraction of server infrastructure so
applications deployments are not dependent
on specific locations, hardware, etc.

= Businesses become more agile and lower their financial risks by = The cloud has made our software deployments
eliminating large capital investments in physical infrastructure more agile... =2 /
TCSS562: Software Engineering for Cloud Computing [Fall 2019] TCs5562: Software Engineering for Cloud Computing [Fall 2019]
‘ September30, 2019 | ;oo of Engineering and Technology, University of Washington - Tacoma . ‘ September30, 2019 | s ool of Engineering and Technology, Universty of Washington -Tacoma -

113 114

Slides by Wes J. Lloyd L2.19

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD BENEFITS - 3

Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

Rosetta Protein Folding: Working with a UW-Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days...

What Is the cost to purchase 5,900 compute cores?

Recent Dell Server purchase example:
20 cores on 2 servers for $4,478...

Using this ratio 5,900 cores costs $1.3 million (purchase only)

Las

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

‘ Septembar30ja0) School of Engineering and Technology, University of Washington - Tacoma

115

CLOUD BENEFITS

= Increased scalability concurrent
= Example demand over a users
24-hour day > 10,000
9,000
8,000
7,000
6,000
= Increased reliability 5,000
4,000
3,000
2,000
1,000

= [ncreased availability

T T T T T T TTTTT
2 4 6 B1012141618202224 time (h)

[ERe)

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

‘ September30,2019) School of Engineering and Technology, University of Washington - Tacoma

117

CLOUD ADOPTION RISKS

= Increased securlty vulnerabllities

= Expansion of trust boundaries now include the external
cloud

= Security responsibility shared with cloud provider

= Reduced operational governance / control
= Users have less control of physical hardware
= Cloud user does not directly control resources to ensure
quality-of-service
= Infrastructure management is abstracted
= Quality and stability of resources can vary
= Network latency costs and variability

TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

2119

‘ September 30, 2019

119

Slides by Wes J. Lloyd

116

OHYOUNEEDIMORE
SERVERS?.

ESOMETHING 10
OW YOUZS) o<
f"t LY

~
»

Gene Wilder, Charlie and the Chocolate Factory

OBJECTIVES - 10/5

= Introduction to Cloud Computing

=Why study cloud computing?
=History of cloud computing
=Business drivers

=Cloud enabling technologies
=Terminology

=Benefits of cloud adoption

=Risks of cloud adoption

[Fall 2021]

TCSS562: Software Engineering for Cloud Computing (Fall 2019]

September30,2019 School of Engineering and Technology, University of Washington - Tacoma

[EXE)

118

NETWORK LATENCY COSTS

reliable reliable

network network
e R unreliable | ---------<------

Organization A networ Cloud A

connection e

cloud
(sarvice

5
w

organizational boundary
of cloud consumer

L TN
‘

organizational boundary
of cloud provider

TCSS562: Software Engineering for Cloud Computing [Fall 2019]

September30,2019 | ;o) of Engineering and Technology, University of Washington -Tacoma

120

L2.20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD RISKS - 2

[Fall 2021]

CLOUD: VENDOR LOCK-IN

= Performance monitoring of cloud applications

= Cloud metrics (AWS cloudwatch) support monitoring cloud
infrastructure (network load, CPU utilization, 1/0)

= Performance of cloud applications depends on the health of
aggregated cloud resources working together

= User must monitor this aggregate performance

= Limited portability among clouds
= Early cloud systems have significant “vendor” lock-in
= Ci APIs and deploy models are slow to evolve

= Operating system containers help make applications more
portable, but containers still must be deployed

= Geographical issues

= Abstraction of cloud location leads to legal challenges with respect
to laws for data privacy and storage

l e temoe 30120 TCs5562: Software Engineering for Cloud Computing [Fall 2019] o

School of Engineering and Technology, University of Washington - Tacoma

121

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
EE L 2 School of Engineering and Technology, University of Washington -

123

TCSS 562
OFFICE HOURS

PLEASE SAY HELLO

125

Slides by Wes J. Lloyd

ot o)
T N
P — ™
i ang (\
it
s = \
= @)
B /
- 1
s ;
p e A p
o Pt =
e L. Crant ot Pkt
‘\\ / Ve \
g 2
i \
~. B
A 3
~ : - 4
)
owgars i /
- y
s —
TCss562: Software Engineering for Cloud Computing [Fall 2019]
l SERtRmber30i201) School of Engineering and Technology, University of Washington - Tacoma 12122

122

WE WILL RETURN AT
7:03PM

124

"= o

1 When poll is active, respond at PollEv.com/wesleylloyd641
=2 Text WESLEYLLOYD641 to 22333 once to join

Please indicate preference for TCSS 562 Project
Teams

126

L2.21

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

L1 When poll is active, respond at PollEv.com/wesleylloyd641
=2 Text WESLEYLLOYD641 to 22333 once to join

Please indicate preference for TCSS 562 Project

Teams

Please indicate preference for TCSS 562 Project

Prefer self-formed groups organized Teams
using Canvas
Prefer instructor-assigned groups with Prefer self-formed groups organized
teams balanced by reported using Canvas

programming experience from surveys Prefer instructor-assigned groups with

teams balanced by reported
Prefer instructor-assigned groups programming experience from surveys
based on random assignment .
Prefer instructor-assigned groups
based on random assignment

No preference
o preference

- hel L | - hel |
™ o comtent, . 1 ™ o comtent, .

127 128

Slides by Wes J. Lloyd L2.22

