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 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

TCSS 562 – Fall 2021

Online is green…

 100% reduction of carbon footprint 
from transit

 Saves commuting time
▪ Less fuel expenses

 Easier to achieve perfect attendance –
Lecture recording sessions are 
streamed LIVE for 24/7 availability
▪ UW deletes content after ~90 days

 19 class meetings
▪ 2 Holidays: No Class on Nov 11 & Nov 25

 This course will not have exams

 This course helps with preparation for 
TCSS 558 – Applied Distributed Computing

TCSS 562

FALL 2021

L1.6
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 [1] Cloud Computing: Concepts, Technology and Architecture*

 Thomas Erl, Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, First Edition 2013 *,  Second Edition 2018

 [3] Cloud Computing: 

A Hands-On Approach

 Arshdeep Bahga

2013
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REFERENCES

*
- available online via UW library

 [4] Systems Performance: Enterprise and the Cloud *

 Brendan Gregg, First Edition 2013

 [5] AWS Administration – The Definitive Guide *

 Yohan Wadia, First Edition 2016

 Research papers
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REFERENCES - 2

*
- available online via UW library

 Project Proposal

 Project Status Reports / Activities

▪ ~ 2-4 total items  (??)

▪ Variety of formats: in class, online, reading, activity

 Quizzes

▪ Open book, note, etc.  

 Class Presentation

 Term Project / Paper / Presentation
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TCS562 COURSE WORK

 Each student will make one presentation in a team of ~3

 Technology sharing presentation

▪ PPT Slides, demonstration

▪ Provide technology overview of one cloud service offering 

▪ Present overview of features, performance, etc.

 Cloud Research Paper Presentation

▪ PPT slides, identify research contributions, strengths and 

weaknesses of paper, possible areas for future work
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CLASS PRESENTATION

 Project description to be posted 

 Teams of ~3, self formed, one project leader

 Scope can vary based on team size and personal 
background w/ instructor approval

 Proposal due: Monday October 18, 11:59pm (tentative) 

 Approach: 

▪ Build a “cloud native” serverless application

▪ Compose multiple FaaS functions (services)

▪ Compare implementations with alternate:

▪ Service compositions 

▪ External services (e.g. database, key-value store)

▪ Application flow control - AWS Step Functions, laptop client, etc.

▪ How does application design impact cost and performance?
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TCS562 TERM PROJECT

 Deliverables

▪ Demo in class at end of quarter (TBD)

▪ Project report paper (4-6 pgs IEEE format, template 

provided)

▪ GitHub (project source)

▪ How-To document (via GitHub markdown)

 A standard project will be offered or propose your own

▪ (Previous) Groups built an Extract-Transform-Load style 

serverless data processing pipeline combing AWS Lambda, 

S3, and Amazon Aurora Serverless DB
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TCSS562 TERM PROJECT - 2
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 Creative case studies are encouraged !!!

 Compare and contrast alternative application designs 

considering various cloud services, languages, platforms, etc.

 Examples:

 Application case study on cloud storage service trade -offs: 

Object/blob storage services

▪ Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted 

 App case study on cloud relational database service trade -offs:

▪ Amazon Relational Database Service (RDS), Aurora, Self -Hosted DB

 App case study on Platform-as-a-Service (PaaS) alternatives

▪ Amazon Elastic Beanstalk, Heroku, others

 App Case study on open source FaaS platforms

▪ Apache OpenWhisk, OpenFaaS, Fn, others…
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CASE STUDY ALTERNATIVES

 App case study on serverless storage alternatives

▪ From AWS Lambda: Amazon EFS, S3, Containers, others

 App case study based on container platform hosting

▪ Amazon ECS/Fargate, AKS, Azure Kubernetes, Self-hosted 

Kubernetes cluster on cloud VMs

 App case study contrasting queueing service alternatives

▪ Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, 0mq, 

others

 App case study on NoSQL database services comparison

▪ DynamoDB, Google BigTable, MongoDB, Cassandra
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CASE STUDY ALTERNATIVES - 2

1. BUILD A MULTI-FUNCTION SERVERLESS APPLICATION

▪ Typically consisting of AWS Lambda Functions or Google Cloud

Functions, etc. (e.g. FaaS platfrom)

2. CONTAST THE USE OF ALTERNATIVE CLOUD SERVICES TO 

INSTRUMENT SOME OR MULTIPLE ASPECTS OF THE 

APPLICATION

3. CONDUCT A PERFORMANCE EVALUATION, REPORT ON YOUR 

FINDINGS IN A LIGHTNING TALK (5 -minutes) AND TERM 

PAPER
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TERM PROJECT: KEY IDEA

 Application should involve multiple processing steps

 Implementation does not have to be FaaS

 Implementation involves use of external services (e.g.

databases, object stores, queues)  

 Case studies contrast alternate designs

 Which designs offer the fastest performance?

 Lowest cost?

 Best maintainability?

In other words, have the least code? 

(Lines of Code metric)
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KEY IDEA - 2

 Alternative I : conduct a cloud-related research project on any 
topic focused on specific research goals / questions

▪ Can be used to help spur MS Capstone/Thesis work

▪ If you’re interested in this option, please talk with the instructor

▪ First step is to identify 1 – 2 research questions 

 Alternative I I :  conduct a gap-analysis literature survey of cloud 
computing research papers, produce a report which identifies 
open problems for future research in cloud computing that 
have tractable next steps

 Instructor will help guide projects throughout the quarter

 Project proposal approval based on team vision and 
preparedness for the project 
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TERM PROJECT: RESEARCH

 Project cloud infrastructure support:

 Standard AWS Account (RECOMMENDED)

▪ Create standard AWS account with UW email

▪ Credit card required

▪ Instructor provides students with $50 credit vouchers

▪ When voucher is used up, request another voucher from instructor

▪ Credits provided throughout Fall quarter (within reason)

 AWS Educate

▪ Includes up to $100 in AWS credits via a restricted starter account

▪ Credits direct from Amazon, no instructor intervention necessary

▪ No Credit Card required

▪ Spot instances not available (low-cost VMs)
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PROJECT SUPPORT
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 Other Options:

 Github S tudent Developer Pack:
▪ https://education.github.com/pack

▪ Formerly offered AWS credits, but Microsoft bought GitHub 

▪ Includes up to $100 in Digital Ocean Credits

▪ Includes up to $100 in Microsoft Azure Credits

▪ Unlimited private git repositories 

▪ Several other benefits

 Mi crosoft Azure for S tudents
▪ $100 free credit per account valid for 1 year – no credit card (?)

▪ https://azure.microsoft.com/en -us/free/students/

 Google C loud
▪ $300 free credit for 1 year

▪ https://cloud.google.com/free/

 Chameleon /  C loudLab
▪ Bare metal NSF cloud - free
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PROJECT SUPPORT - 2

 Projects can lead to papers or posters presented at 
ACM/IEEE/USENIX conferences, workshops

▪ Networking and research opportunity 

▪ … travel ???

▪ Conference participation (posters, papers) 
helps differentiate your resume/CV from others

 Project can support preliminary work for:
UWT - MS capstone/thesis project proposals

 Research projects provide valuable practicum experience 
with cloud systems analysis, prototyping

 Publications are key for building your resume/CV,
Also very important for applying to PhD programs
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TCSS562 TERM PROJECT OPPORTUNITIES

 Project status report / term project check -ins

▪Written status report 

▪ ~2 reports during the quarter 

▪ Part of: “Project Status Reports / Activities / Quizzes”

category

▪ 10% of grade

 Project meetings with instructor

▪ After class, end half of class, office hours
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TCSS562 TERM PROJECT - 3

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Course webpage is embedded into Canvas

▪ In CANVAS to access links:

RIGHT-CLICK – Open in new window

 Syllabus online at:

http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments

September 30, 2021
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TCSS562 – SOFTWARE ENGINEERING 

FOR CLOUD COMPUTING

RECORDING BREAK

WILL RETURN AT 6:10PM

L1.24
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 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/3REof5nhaEhKrnkQ9

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html
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DEMOGRAPHICS SURVEY

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/uumXX9YGhQ34fm8x7

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/

announcements.html
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AWS CLOUD CREDITS SURVEY

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?

Chapter 4 Marinescu 2 nd edition:

Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30
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Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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OBJECTIVES

 General interest in parallel computing

▪Moore’s Law - # of transistors doubles every 18 months

▪ Post 2004: heat dissipation challenges:

can no longer easily increase cloud speed

▪ Overclocking to 7GHz takes 

more than just liquid nitrogen:

▪ https://tinyurl.com/y93s2yz2

Solutions:

▪ Vary CPU clock speed

▪ Add CPU cores

▪Multi-core technology

September 30, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.32

CLOUD COMPUTING: 

HOW DID WE GET HERE?
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 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling
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AMD’S 64-CORE 7NM CPUS

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9% 

September 30, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.35

HYPER THREADING

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific 

applications

 Not every problem solution has a parallel algorithm

▪ Chicken and egg problem…

 Many commercial efforts promoting pure parallel 

programming efforts have failed

 Enterprise computing world has been skeptical and 

less involved in parallel programming
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 2
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Cloud computing provides access to “infinite” 

scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting 

parallelism

Cloud applications

▪Based on client-server paradigm

▪Thin clients leverage compute hosted on the cloud

▪Applications run many web service instances

▪Employ load balancing
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

Big Data requires massive amounts of compute 

resources

MAP – REDUCE

▪Single instruction, multiple data (SIMD)

▪Exploit data level parallelism

Bioinformatics example

September 30, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.38

CLOUD COMPUTING:

HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local 

alignment of two protein sequences

▪ Embarrassingly parallel, each task can run in isolation

▪ Use case for GPU acceleration 

AWS Lambda Serverless Computing Use Case:

Goal: Pair-wise comparison of all unique human 

protein sequences (20,336)

▪ Python client as scheduler

▪ C Striped Smith-Waterman (SSW) execution engine

From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-

Waterman C/C++ library for use in genomic applications. 

PLoS One 2013, 8:e82138
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SMITH WATERMAN RUNTIME

 Laptop server and client (2 -core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes

▪ Partitions 20,336 sequences into 41 sets

▪ Execution cost: ~ 82¢  (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28 
minutes

▪ Execution cost: ~ 87¢  (~408x speed-up)

 Hardware

▪ Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU

▪ Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs

▪ Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs
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Compute clouds are large-scale distributed 

systems

▪Heterogeneous systems

▪Homogeneous systems

▪Autonomous

▪Self organizing 
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CLOUD COMPUTING:

HOW DID WE GET HERE? - 3

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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OBJECTIVES
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 Discovering parallelism and development of parallel 

algorithms requires considerable effor t

 Example: numerical analysis problems, such as solving large 

systems of linear equations or solving systems of Partial 

Dif ferential Equations (PDEs), require algorithms based on 

domain decomposition methods. 

 How can problems be split into independent chunks?

 Fine-grained parallelism

▪ Only small bits of code can run in parallel without coordination 

▪ Communication is required to synchronize state across nodes

 Coarse-grained parallelism

▪ Large blocks of code can run without coordination
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PARALLELISM

 Coordination of nodes

 Requires message passing or shared memory

 Debugging parallel message passing code is easier 
than parallel shared memory code

 Message passing : all of the interactions are clear

▪ Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must 
read the code!!

 Processing speed is orders of magnitude faster than 
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
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PARALLELISM - 2

Parallelism: 

▪Goal: Perform multiple operations at the same time 
to achieve a speed-up

 Thread-level parallelism (TLP)

▪Control flow architecture

Data-level parallelism

▪Data flow architecture

Bit-level parallelism

 Instruction-level parallelism (ILP)
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TYPES OF PARALLELISM

 Number of threads an application runs at any one time

 Varies throughout program execution

 As a metric:

 Minimum: 1 thread

 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP) 
for scheduling an application to run on a computer with a 
f ixed number of CPU cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper -threads…

Key to avoiding waste of computing resources 
is knowing your application’s TLP…
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THREAD LEVEL PARALLELISM (TLP)

 Typical architecture used today – w/ multiple threads

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines

next instruction to load into 

instruction register

 Program execution 

is sequential
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CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies 
of the program on them with little or no 
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem 
into a number of parallel tasks

MapReduce programming model is an example
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DATA-LEVEL PARALLELISM
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 Alternate architecture used by network routers, digital 
signal processors, special purpose systems

 Operations performed when input (data) becomes 
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption

▪ Efficiently broadcasting data tokens in a massively 
parallel system

▪ Efficiently dispatching instruction tokens in a massively 
parallel system

▪ Building content addressable memory large enough to 
hold all of the dependencies of a real program
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DATA FLOW ARCHITECTURE

 Architecture not as popular as control -f low

 Modern CPUs emulate data flow architecture for dynamic 

instruction scheduling since the 1990s

▪ Out-of-order execution – reduces CPU idle time by not blocking 

for instructions requiring data by defining execution windows

▪ Execution windows: identify instructions that can be run by 

data dependency  

▪ Instructions are completed in data dependency order within 

execution window

▪ Execution window size typically 32 to 200 instructions

Utility of data f low architectures has been

much less than envisioned

September 30, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.50

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are 

performed as a single instruction

 Fewer instructions are required on 64 -bit CPUs to process 

larger operands (A+B) providing dramatic performance 

improvements

 Processors have evolved: 4 -bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two 

64-bit numbers on a 16-bit CPU?  (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi -stage processing pipelines

 Pipelining: split instructions into sequence of steps that 

can execute concurrently on different CPU circuitry 

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back
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INSTRUCTION-LEVEL PARALLELISM (ILP)
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CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are 

loaded

 Starting with 6 th clock cycle, one full instruction 

completes each cycle

 The CPU performs 5 tasks per clock cycle!

Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!
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INSTRUCTION LEVEL PARALLELISM - 2
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Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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OBJECTIVES

Michael Flynn’s proposed taxonomy of computer 

architectures based on concurrent instructions and 

number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON : MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 

operations on the same data 

 For fault tolerance, may want to execute same instructions 

redundantly to detect and mask errors – for task replication
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MICHAEL FLYNN’S COMPUTER 

ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)

Scalar architecture with one processor/core.

▪ Individual cores of modern multicore processors are 

“SISD”

 SIMD (Single Instruction, Multiple Data)

Supports vector processing

▪When SIMD instructions are issued, operations on 

individual vector components are carried out concurrently

▪ Two 64-element vectors can be added in parallel

▪ Vector processing instructions added to modern CPUs

▪ Example: Intel MMX (multimedia) instructions
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FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 

entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 

operations on traditional CPUs

 Vector operations reduce total number of instructions for 

large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 

parallelism
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(SIMD): VECTOR PROCESSING

ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with 

several processors and/or cores that function asynchronously 

and independently

 At any time, dif ferent processors/cores may execute dif ferent 

instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks

▪ Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have dif ferent methods of sharing memory

▪ Uniform Memory Access (UMA)

▪ Cache Only Memory Access (COMA)

▪ Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity : Ratio of work (W) to 
memory traffic r/w (Q) 

Example: # of floating-point ops per byte of data read

 Characterizes application scalability with SIMD support

▪ SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY
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 When program reaches a given arithmetic intensity 

performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:

memory bandwidth ( lef t)  → floating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
→ performance is limited by??

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 

September 30, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1.62

OBJECTIVES

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes

(2048 registers each)

 GPU programming model: 

single instruction, multiple thread

 Programmed using CUDA- C like programming 

language by NVIDIA for GPUs

 CUDA threads – single thread associated with each 

data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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OBJECTIVES

Parallel hardware and software systems allow: 

▪ Solve problems demanding resources not available on 
single system.

▪ Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1) → execution time of total sequential computation

T(N) → execution time for performing N parallel 
computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing

 Eight images (multiple data)

 Apply image transformation (greyscale) in parallel

 8-core CPU, 16 hyper threads

 Sequential processing: perform transformations one at a time 
using a single program thread

▪ 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing

▪ 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup

 Called “perfect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

61 62

63 64

65 66



TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L1.12

 Amdahl’s law is used to estimate the speed -up of a job 
using parallel computing

1. Divide job into two parts

2. Part A that will still be sequential

3. Part B that will be sped-up with parallel computing

 Portion of computation which cannot be parallelized will 
determine ( i.e. limit) the overall speedup 

 Amdahl’s law assumes jobs are of a fixed size

 Also, Amdahl’s assumes no overhead for distributing the 
work, and a perfectly even work distribution
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AMDAHL’S LAW

 S = theoretical speedup of the whole task

 f= fraction of work that is parallel              (ex. 25% or 0.25)

 N= proposed speed up of the parallel part  ( ex. 5 t imes speedup )

 % improvement

of task execution = 100 * (1 – (1 / S))

 Using Amdahl’s law, what is  the maximum possible speed -up?

October 14, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.68

AMDAHL’S LAW

 Program with two independent parts:

▪ Part A is 75% of the execution time

▪ Part B is 25% of the execution time

 Part B is made 5 times faster with
parallel computing

 Estimate the percent improvement of task execution

 Original Part A is 3 seconds, Part B is 1 second

 N=5 (speedup of part B)

 f=.25 (only 25% of the whole job (A+B) will be sped -up)

 S=1 / ((1-f)  + f/S)

 S=1 / (( .75) + .25/5)

 S=1.25

 % improvement = 100 * (1 – 1/1.25) = 20%
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AMDAHL’S LAW EXAMPLE

from Wikipedia

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program
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GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Can be used to estimate runtime of parallel portion of 

program

 Where α =  / ( + )

 Where = sequential time,  =parallel time

 Our Amdahl’s example: = 3s,  =1s, α =.75
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GUSTAFSON'S LAW

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 

(e.g. must run sequentially)

 Example:

Consider a program that is embarrassingly parallel, 

but 75% cannot be parallelized.  α=.75

QUESTION: I f  deploying the job on a 2 -core CPU, what 

scaled speedup is  possible assuming the use of two 

processes that run in parallel?
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GUSTAFSON'S LAW
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 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

S(N)  = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

S(N)  = 16 + (1 - 16) .75

S(N) = ?
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GUSTAFSON’S EXAMPLE

 QUESTION:

What is the maximum theoret ical speed -up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.75

S(N)  = 2 + (1 - 2) .75

S(N) = ?

 What is the maximum theoret ical speed -up on a 16-core CPU?

S(N)  = N + (1 - N) α

N=16, α=.75

S(N)  = 16 + (1 - 16) .75

S(N) = ?
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GUSTAFSON’S EXAMPLE

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

For 2 CPUs, speed up is 1.25x

For 16 CPUs, speed up is 4.75x

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 

removal challenges

▪ Transition from: increasing clock rates → to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the 

same computational resources and speed  

 Asymmetric core processor – on a multi -core CPU, some cores 

have more resources and speed  

 Dynamic core processor – processing resources and speed can 

be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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MOORE’S LAW

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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OBJECTIVES

 Collection of autonomous computers, connected through a 

network with distribution software called “middleware” that 

enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 

facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 

by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

▪ Known as “ ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user fr iendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2
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 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults

 Migration transparency: objects are moved w/o affecting 
operations performed on them

 Performance transparency: system can be reconfigured based 
on load and quality of service requirements

 Scaling transparency: system and applications can scale w/o 
change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 

DISTRIBUTED SYSTEMS

Cloud Computing: How did we get here?

▪Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

▪ Data, thread-level, task-level parallelism

▪ Parallel architectures

▪ SIMD architectures, vector processing, multimedia 

extensions

▪ Graphics processing units

▪ Speed-up, Amdahl's Law, Scaled Speedup

▪ Properties of distributed systems 

▪Modularity 
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OBJECTIVES

 Soft modularity: TRADITIONAL 

 Divide a program into modules (classes) that call each other 

and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 

through message passing 

 The ubiquitous client -server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if  servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY

 Multi-core CPU technology and hyper -threading

 What is a 

▪ Heterogeneous system?

▪ Homogeneous system?

▪ Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 

shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 

Parallelism (TLP )

 Data-level parallelism: Map-Reduce, (SIMD) Single 

Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy : computer system architecture classification

▪ SISD – Single Instruction, Single Data (modern core of a CPU) 

▪ SIMD – Single Instruction, Multiple Data (Data parallelism)

▪ MIMD – Multiple Instruction, Multiple Data

▪ MISD is RARE; application for fault tolerance…

 Arithmetic intensity : ratio of calculations vs memory RW

 Roofline model: 

Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity

▪ SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 2

 Speed-up (S)

S(N) = T(1) / T(N)

 Amdahl’s law:
S=1 / ((1-f)  + f/N),s=latency, f=parallel fraction, N=speed -up

 α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law

 Symmetric core, Asymmetric core, Dynamic core CPU

 Distributed Systems Non-function quality attributes 

 Distributed Systems – Types of Transparency

 Types of modularity - Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?

SUMMARY OF KEY POINTS - 3
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QUESTIONS
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PLEASE SAY HELLO.
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