
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.1

Containerization,
Kubernetes

Wes J. Lloyd
School of Engineering and Technology

University of Washington – Tacoma

MW 5:50-7:50 PM

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OBJECTIVES – 11/23

1

2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.2

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

ONLINE DAILY FEEDBACK SURVEY

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.4

3

4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.3

 Please classify your perspective on material covered in today’s

class (27 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.48 (- previous 6.30)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.37 (- previous 5.35)

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

MATERIAL / PACE

 Is there a major dif ference between the performance of
containerization tools (e.g. Docker vs Podman)? Has there
been any recent benchmarks that compares performance of
dif ferent container tools and/or security?
▪ I’m aware of and have newer publications from 2015 and beyond.

Some papers have recently focused more on MicroVMs

▪ Am happy to share these for a cloud paper presentation

▪ An updated study that investigates Docker/Podman, gVisor, Kata
Containers, Nabla, and others is needed

▪ Possible capstone / thesis topic

 To gain a sense regarding how diverse the various tools have
become see this blog:
“Welcome to the Container Jungle: Docker vs. containerd vs.
Nabla vs. Kata vs. Firecracker and more!”

 https://www.inovex.de/de/blog/containers -docker-containerd-
nabla-kata-firecracker/

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK FROM 11/18

5

6

https://www.inovex.de/de/blog/containers-docker-containerd-nabla-kata-firecracker/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.4

 Tutorial 7– [POSTED] Introduction to Docker Containerization

 Extra credit tutorials – submit by Dec 17 @ 11:59p

 Tutorial 8 – Introduction to FaaS IV: Step Functions and SQS

 Tutorial 9 – Asynchronous Function Profiling with SAAF

 Ungraded tutorials:

 Tutorial 10 – Automating Experiments with SAAF & FaaS

Runner

 There may be 1 other optional tutorial posted…

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

UPCOMING TUTORIALS

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

OBJECTIVES – 11/23

7

8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.5

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

OBJECTIVES – 11/23

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

OBJECTIVES – 11/23

9

10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.6

 Tutorial Concepts:

 Docker installation

 Working with docker files

 Publishing images to Docker Hub

 Docker CLI:

▪ Docker run – create a container

▪ Docker ps – list containers

▪ Docker exec –it – run a process in an existing container

▪ Docker stop –stop container

▪ Docker image

 Using cgroups to inspect container resource utilization metrics

 Container resources quotas: memory, CPU

 Testing CPU and memory isolation of co -located containers

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

TUTORIAL COVERAGE

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.12

Docker CLI

11

12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.7

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Designed to generate a load on various parts of a system

 Sysbench

 Common system benchmark included with Linux

 Used in tutorial 7 for memory stress test

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

TUTORIAL 7

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

OBJECTIVES – 11/23

13

14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.8

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)

with desired dates of presentation via Canvas by:

TODAY: Tuesday November 23 rd @ 11:59pm

 Presentation dates:

▪ Tuesday November 30, Thursday December 2

▪ Tuesday December 7, Thursday December 9

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

GROUP PRESENTATION

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

OBJECTIVES – 11/23

15

16

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.9

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

OBJECTIVES – 11/23

CONTAINERIZATION

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.18

17

18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.10

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

OTHER DOCKER TOOLS

Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

CONTAINER ORCHESTRATION

FRAMEWORKS

19

20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.11

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪ Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverless containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

21

22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.12

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Tutorial 7 – Intro to Docker/Containerization

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Introduction to Containerization cont’d

 Introduction to Kubernetes

 2nd hour:

 Introduction to Kubernetes cont’d

 Tutorial questions / Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

OBJECTIVES – 11/23

 Questions from 11/18

 Quiz 2– to be posted ~ Dec 6

 No Office Hours 11/25

 Class on 11/25:

Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

OBJECTIVES – 11/23

23

24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.13

KUBERNETES

L15.25

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

 Name is from the Greek word meaning Helmsman

▪ The person who steers a seafaring ship

▪ The logo reinforces this theme

 Kubernetes is also sometimes called K8s

 Kubernetes is an application orchestrator

 Most common use case is to containerize

cloud-native microservices applications

 What is an orchestrator?

▪ System that deploys and manages applications

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

KUBERNETES

25

26

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.14

 Initially developed by Google

 Goal: make it easier for potential customers to use Google Cloud

 Kubernetes leverages knowledge gained from two internal

container management systems developed at Google

▪ Borg and Omega

 Google donated Kubernetes to the Cloud Native Computing

Foundation in 2014 as an open-source project

 Kubernetes is written in Go (Golang)

 Kubernetes is available under the Apache 2.0 license

 Releases were previously maintained for only 8 months!

 Starting w/ v 1.19 (released Aug 2020) support is 1 year

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

KUBERNETES – 2

Why does Google want
to give Kubernetes away

for free?

1. Deploy your application

2. Scale it up and down dynamically according to demand

3. Self-heal it when things break

4. Perform zero-downtime rolling updates and rollbacks

 These features represent automatic infrastructure

management

 Containerized applications run in container(s)

 Compared to VMs, containers are thought of as being:

▪ Faster

▪ More light-weight

▪ More suited to rapidly evolving software requirements

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

GOALS OF KUBERNETES

27

28

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.15

 Applications designed to meet modern software

requirements including:

▪ Auto-scaling: resources to meet demand

▪ Self-healing: required for high availability (HA) and fault

tolerance

▪ Rolling software updates: with no application downtime

for DevOPS

▪ Portability: can run anywhere there’s a Kubernetes cluster

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

CLOUD NATIVE APPLICATIONS

 Application consisting of many specialized parts that

communicate and form a meaningful application

 Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store

 KEY IDEAS:

 Each microservice can be coded/maintained by dif ferent team

 Each has its own release cadence

 Each is deployed/scaled separately

 Can patch & scale the log service w/o impacting others

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

WHAT IS A MICROSERVICES APP?

29

30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.16

 Provides “an operating system for the cloud”

 Offers the de-facto standard platform for deploying and

managing cloud-native applications

 OS: abstracts physical server, schedules processes

 Kubernetes: abstracts the cloud , schedules microservices

 Kubernetes abstracts dif ferences between private and public

clouds

 Enable cloud-native applications to be cloud agnostic

▪ i.e. they don’t care WHAT cloud they run on

▪ Enables fluid application migration between clouds

 Kubernetes provides rich set of tools/APIs to introspect

(observe and examine) your apps

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

KUBERNETES - 3

 Features:

 A “control plane” – brain of the cluster

▪ Implements autoscaling, rolling updates w/o downtime, self -healing

 A “bunch of nodes” – workers (muscle) of the cluster

 Provides orchestration

 The process of organizing everything into a useful application

 And also keeping it running smoothly

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

KUBERNETES - 4

31

32

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.17

 Master node(s) manage the cluster by:

▪ Making scheduling decisions

▪ Performing monitoring

▪ Implementing changes

▪ Responding to events

 Masters implement the control plane of a Kubernetes cluster

 Recipe for deploying to Kubernetes:

 Write app as independent microservices in preferred language

 Package each microservice in a container

 Create a manifest to encapsulate the definition of a Pod

 Deploy Pods to the cluster w/ a higher -level controller such as

“Deployments” or “DaemonSets”

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

KUBERNETES - CLUSTER MANAGEMENT

 Imperative definition: sets of commands and operations

▪ Example: BASH script, Dockerfile

 Declarative definition : specification of a service’s properties

▪ What level of service it should sustain, etc.

▪ Example: Kubernetes YAML files

 Kubernetes manages resources declaratively

 How apps are deployed and run are defined with YAML files

 YAML files are POSTed to Kubernetes endpoints

 Kubernetes deploys and manages applications based on

declarative service requirements

 If something isn’t as it should be: Kubernetes automatically

tries to fix it

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

DECLARATIVE SERVICE APPROACH

33

34

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.18

 Provide system services to host the control plane

 Simplest clusters use only 1 master – no replication

▪ Suitable for lab and dev/test environments

 Production environments: masters are replicated ~3 -5x

▪ Provides fault tolerance and high availability (HA)

▪ Cloud-based managed Kubernetes services offer HA

deployments

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

KUBERNETES MASTERS

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

MASTER SERVICES

35

36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.19

 Can run on 1-node for lab, test/dev environments

 Default port is 443

 Exposes a RESTful API where YAML configuration files are

POST(ed) to

 YAML files (manifests) describe desired state of an

application

▪ Which container image(s) to use

▪ Which ports to expose

▪ How many POD replicas to run

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

API SERVER

WE WILL RETURN AT

~6:10PM

37

38

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.20

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

MASTER SERVICES

 Used to persist Kubernetes cluster state

 Persistently stores entire configuration and state of the

cluster

 Currently implemented with etcd

▪ Popular distributed key/value store (db) supporting replication

▪ HA deployments may use ~3-5 replicas

▪ Is the authority on true state of the cluster

 etcd prefers consistency over availability

 etcd failure: apps continue to run, nothing can be reconfigured

 Consistency of writes is vital

 Employs RAFT consensus protocol to negotiate which replica

has correct view of the system in the event of replica failure

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

CLUSTER STORE

39

40

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.21

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

MASTER SERVICES

 Provides a “controller” of the controllers

▪ Implements background control loops to monitor cluster

and respond to events

▪ Control loops include: node controller, endpoints controller,

replicaset controller, etc…

 GOAL: ensure cluster current state matches desired state

 Control Loop Logic:

1. Obtain desired state (defined in manifest YAMLs)

2. Observe the current state

3. Determine dif ferences

4. Reconcile dif ferences

 Controllers are specialized to manage a specific resource type

▪ They are not aware/concerned with of other parts of the system

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

CONTROLLER MANAGER

41

42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.22

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

MASTER SERVICES

 Scheduler’s job is to identify the best node to run a task

▪ Scheduler does not actually run tasks itself

 Assigns work tasks to appropriate healthy nodes

 Implements complex logic to filter out nodes incapable of

running specified task(s)

 Capable nodes are ranked

 Node with highest ranking is selected to run the task

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

TASK SCHEDULER

43

44

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.23

 Scheduler performs predicate (property) checks to verify

how/where to run tasks

▪ Is a node tainted?

▪ Does task have affinity (deploy together), anti-affinity

(separation) requirements?

▪ Is a required network port available on the node?

▪ Does node have sufficient free resources?

 Nodes incapable of running the task are eliminated as

candidate hosts

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

ENFORCING SCHEDULING PREDICATES

 Remaining nodes are ranked based on for example:

1. Does the node have the required images?

▪ Cached images will lead to faster deployment time

2. How much free capacity (CPU, memory) does the node have?

3. How many tasks is the node already running?

 Each criterion is worth points

 Node with most points is selected

 If there is no suitable node, task is not scheduled, but marked

as pending

 PROBLEM: There is no one-sized fits all solution to selecting

the best node. How weights are assigned to conditions may

not reflect what is best for the task

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

RANKING NODES

45

46

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.24

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

MASTER SERVICES

 Abstracts and manages integration with specific cloud(s)

 Manages vendor specific cloud infrastructure to provide

instances (VMs), load balancing, storage, etc.

 Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

CLOUD CONTROLLER MANAGER

47

48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.25

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

MASTER SERVICES

 Nodes perform tasks (i.e. host containers & services)

 Three primary functions:

1. Wait for the scheduler to assign work

2. Execute work (host containers, etc.)

3. Report back state information, etc.

 Nodes are considerably simpler than masters

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

WORKER NODES

49

50

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.26

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

WORKER NODES

 Main Kubernetes agent

 Runs on every node

 Adding a new node installs the kubelet onto the node

 Kubelet registers the node with the cluster

 Monitors API server for new work assignments

 Maintains reporting back to control plane

 When a node can’t run a task, kubelet is NOT responsible

for finding an alternate node

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

KUBELET

51

52

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.27

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

WORKER NODES

 Each node requires a container runtime to run containers

 Early versions had custom support for a limited number of

container types, e.g. Docker

 Kubernetes now provides a standard Container Runtime

Interface (CRI)

 CRI exposes a clean interface for 3 rd party container

runtimes to plug-in to

 Popular container runtimes: Docker, containerd, Kata

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

CONTAINER RUNTIME(S)

53

54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.28

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

WORKER NODES

 Runs on every node in the cluster

 Responsible for managing the cluster’s networking

 Ensures each node obtains a unique IP address

 Implemented local IPTABLES and IPVS rules to route and load -

balance traffic

 IPTABLES (ipv4) – enables configuration of IP packet filtering

rules of the Linux kernel firewall

 IPVS – IP Virtual Server: provides transport -layer (layer 4) load

balancing as part of the Linux kernel; Configured using

ipvsadm tool in Linux

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

KUBE-PROXY

55

56

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.29

Kubernetes DNS

Pods

Services

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

CORE KUBERNETES COMPONENTS

 Every Kubernetes cluster has an internal DNS service

 Accessed with a static IP

 Hard-coded so that every container can find it

 Every service is registered with the DNS so that all

components can find every Service on the cluster by

NAME

 Is based on CoreDNS (https://coredns.io)

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

KUBERNETES DNS

57

58

https://coredns.io/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.30

Kubernetes DNS

Pods

Services

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

CORE KUBERNETES COMPONENTS

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a single

microservice for hosting purposes

 Pods can have a single container, or multiple

containers if the service requires more than one

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

PODS

59

60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.31

 Examples of multi -container Pods:

▪ Service meshes

▪ Web containers with a helper container that pulls latest content

▪ Containers with a tightly coupled log scraper or profiler

 YAML manifest files are used to provide a declarative

description for how to run and manage a Pod

 To run a pod, POST a YAML to the API Server:

“kubectl run <NAME>” where NAME is the service

 A Pod runs on a single node (host)

 Pods share:

▪ Interprocess communication (IPC) namespace

▪ Memory, Volumes, Network stack

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

PODS - 2

 Pods provide a “fenced” environment to run containers

 Provide a “sandbox”

 Only tightly coupled containers are deployed with a single pod

 Best practice: decouple individual containers to separate pods

▪ What is the best container composition into pods? (1:1, 1:many)

 Scaling

▪ Pods are the unit of scaling

▪ Add and remove pods to scale up/down

▪ Do not add containers to a pod, add pod instances

▪ Pod instances can be scheduled on the same or different host

 Atomic Operation

▪ Pods are either fully up and running their service (i.e. port
open/exposed), or pods are down / offline

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

PODS - 3

61

62

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.32

 Pod Lifecycle

▪ An application should not be tightly bound or dependent on a

specific Pod instance

▪ Pods are designed to fail and be replaced

▪ Use of service objects in Kubernetes help decouple pods to offer

resiliency upon failure

 Deployments

▪ Higher level controllers often used to deploy pods

▪ Controllers implement a controller and watch loop:

▪ “Deployments” – offer scalability & rolling updates

▪ “DaemonSets” – run instance of service on every cluster node

▪ “StatefulSets” – used for stateful components

▪ “CronJobs” – for short lived tasks that need to run at specified times

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

PODS - 4

Kubernetes DNS

Pods

Services

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

CORE KUBERNETES COMPONENTS

63

64

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.33

 Pods managed with “Deployments” or “DameonSets”

controllers are automatically replaced when they die

▪ This provides resiliency for the application

 KEY IDEA: Pods are unreliable

 Services provide reliability by acting as a “GATEWAY”

to pods that implement the services

▪ They underlying pods can change over time

▪ The services endpoints remain and are always available

 Service objects provide an abstraction layer w/ a reliable

name and load balancing of requests to a set of pods

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

KUBERNETES “SERVICES”

 Provide reliable front-end with:

▪ Stable DNS name

▪ IP Address

▪ Port

 Services do not posses application intelligence

 No support for application-layer host and path routing

 Services have a “label selector” which is a set of lables

 Requests/traffic is only sent to Pods with matching labels

 Services only send traffic to healthy Pods

 KEY IDEA: Services bring stable IP addresses and DNS

names to unstable Pods

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

SERVICES

65

66

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L15.34

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.67

QUESTIONS

November 23, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.68

67

68

