TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,

Docker Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TR 5:00-7:00 PM

OBJECTIVES - 11/18

| = Questions from 11/16 |
® Term Project Proposals - update by 11/19
® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to FaaS Ill - Serverless Databases
® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Thur 12/2 @ 11:59p

® Ch. 5: Cloud Enabling Technology - wrap up - wrap up
= Containerization

= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

RCIEmEERCRU2E School of Engineering and Technology, University of Washington - Tacoma

L13.2

Slides by Wes J. Lloyd

[Fall 2021]

L13.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
= Extra Credit

Announcements

for completing

* Upcoming Assignments

Discussions [Class Activity 1 - Implicit vs. Explicit Parallelism
Zoom Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts
Grades) Tutorial 1 - Linux

- Available until Oct 19 at 11:59pm | Due Oct 15 at 11:5%9pm | -/20 pts
People
Pages
Files v Past Assignments
Quizzes

€ TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations " Available until Dec 18 at 11:59pm | Due Oct & at &:5%m | /1 pts
UW Libraries

TCSS 562 - Online Daily Feedback Survey - 9/30
Available until Dec 18 at 11:59pm | Due Oct 4 3t 8:59pm | -/1 pts

-

UW Resources

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November:16;2021 School of Engineering and Technology, University of Washington - Tacoma | 33 |
3
TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am
Quiz Instructions
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 1e
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
1 2 3 4 5 6 7 8 9 10
Slow Just Right Fast
November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] i

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2021]

L13.2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (25 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.08 ({ - previous 6.32)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.20 ({ - previous 5.60)

November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] | 1185 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 11/9

= | noticed that the content of the class (lecture) doesn't
correspond to HW tutorials. This makes it hard to complete
tutorials.

= We did complete most of Tutorial 4 in class.

= |n addition, the AWS review discussed various aspects relating
to EC2 and EBS (Tutorial 3)

= Also, sometimes tutorial doesn't explain steps well, leading to
numerous questions and doubts.

m Please do ask questions by: email, canvas message, Zoom
chat, Slack channel, or verbally during lecture/office hours

= Tutorials are living documents - there is always potential for
improvement with your feedback !

November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] | 136 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2021]

L13.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/16
| = Term Project Proposals - update by 11/19 |
® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to Faa$S Ill - Serverless Databases
® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

® Containerization

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

November:16;2021 School of Engineering and Technology, University of Washington - Tacoma

L13.7

OBJECTIVES - 11/18

® Questions from 11/16
® Term Project Proposals - update by 11/19
| = Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch|
® Tutorial 6 - Intro to FaaS Ill - Serverless Databases
® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

® Containerization
= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2021

L13.8

Slides by Wes J. Lloyd

[Fall 2021]

L13.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/16

= Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
| = Tutorial 6 - Intro to FaaS Ill - Serverless Databases |

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

® Containerization

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

November:16;2021 School of Engineering and Technology, University of Washington - Tacoma

L13.9

OBJECTIVES - 11/18

® Questions from 11/16

® Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to FaaS Ill - Serverless Databases

Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

® Containerization
= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2021

L13.10

10

Slides by Wes J. Lloyd

[Fall 2021]

L13.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/16

= Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to Faa$S Ill - Serverless Databases

= Quiz 1 /|Tutorial 7 - Docker Containerization |

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

® Containerization

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

November:16;2021 School of Engineering and Technology, University of Washington - Tacoma

L13.11

11

OBJECTIVES - 11/18

® Questions from 11/16

® Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to FaaS Ill - Serverless Databases

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

= Containerization

= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2021

L13.12

12

Slides by Wes J. Lloyd

[Fall 2021]

L13.6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/16

= Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to Faa$S Ill - Serverless Databases

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

| = Term Project Check-in - due Thur 12/2 @ 11:59p |
® Ch. 5: Cloud Enabling Technology - wrap up
® Containerization
® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]

November:16;2021 School of Engineering and Technology, University of Washington - Tacoma

113.13

13

OBJECTIVES - 11/18

® Questions from 11/16

® Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to FaaS Ill - Serverless Databases

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Thur 12/2 @ 11:59p

| = Ch. 5: Cloud Enabling Technology - wrap up |
= Containerization
= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

| November 16, 2021

113.14

14

Slides by Wes J. Lloyd

[Fall 2021]

L13.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD ENABLING
TECHNOLOGY

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November 16, 2021 School of Engineering and Technology, University of Washington - Tacoma

CLOUD ENABLING TECHNOLOGY

m Adapted from Ch. 5 from Cloud Computing
Concepts, Technology & Architecture

® Broadband networks and internet architecture
= Data center technology
®Virtualization technology

® Multitenant technology

= Web/web services technology

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

| November 16, 2021

L13.16

16

Slides by Wes J. Lloyd

[Fall 2021]

L13.8

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

5. WEB SERVICES/WEB

= Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

= SOAP - “Simple” object access protocol
= First generation web services
= WSDL - web services description language
= UDDI - universal description discovery and integration
= SOAP services have their own unique interfaces

® REST - instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

= HTTP GET, PUT, POST, DELETE

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
November:16;2021 School of Engineering and Technology, University of Washington - Tacoma

113.17

17

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

® An ASCIll-based request/reply protocol for transferring
information on the web

® HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource ldentifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request
® HTTP response from server HTTP status codes:

= Protocol version & status code > 2xx — all is well
3)@(— resource anved

HES P NEEEES dxx — access problem

= Response body SXX — server error

November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 318

18

Slides by Wes J. Lloyd L13.9

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST: REPRESENTATIONAL STATE TRANSFER

= Web services protocol
® Supersedes SOAP - Simple Object Access Protocol

®m Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

® Requests are made to a URI

® Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

= HTTP verbs: GET, POST, PUT, DELETE, ...

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2021 113.19 |

19

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

Noxembeigiog2024 School of Engineering and Technology, University of Washington - Tacoma

L13.20

20

Slides by Wes J. Lloyd

[Fall 2021]

L13.10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November 16,2021 School of Engineering and Technology, University of Washington - Tacoma

L13.21

21

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http: //www.roguewave .com/soapworx/examples/DayOfWeek . wsdl"
xmlns:tns="http: //www.roguewave.com/soapworx/examples/DayOfWeek .wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput'">
<part name="date" type='"xsd:date"/>
</message>
name="DayO >
<part name="dayOfWeek" type="xsd:string"/>
</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output tns:DayO: />
</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http: //www. roguewave . com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="http: //www. roguewave . com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date
</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek" />
</port>
</service>

definiti i i i
Yz 1“;1;:;'511” 16, 2021 TCS$562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

22

Slides by Wes J. Lloyd

[Fall 2021]

L13.11

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

a Lat/Long ;

REST CLIMATE SERVICES EXAMPLE

RUSDA // REST/JSON
Lat/Long // Request climate data for Washington
Climate {
Service "parameter": [
{
D "name": "latitude",
"wvalue":47.2529
},
{
i "name": "longitude",
" Just provide "value":-122.4443

| November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

113.23

23

kind of operation on one or more resources.
= Frequently services are CRUD operations

(create/read/update/delete)

= Create a new resource

= Read resource(s) matching criterion

= Update data associated with some resource

= Destroy a particular a resource

languages

= App manipulates one or more types of resources.

® Everything the app does can be characterized as some

= Resources are often implemented as objects in 00

November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

113.24

24

Slides by Wes J. Lloyd

[Fall 2021]

L13.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST ARCHITECTURAL ADVANTAGES

= Performance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

= Scalability: to support large numbers of services and
interactions among them

= Simplicity: of the Uniform Interface

= Modifiability: of services to meet changing needs (even while the
application is running)

= Visibility: of communication between services
= Portability: of services by redeployment

= Reliability: resists failure at the system level as redundancy of
infrastructure is easy to ensure

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November:16;2021 School of Engineering and Technology, University of Washington - Tacoma

L13.25

25

OBJECTIVES - 11/18

® Questions from 11/16

® Term Project Proposals - update by 11/19

® Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
® Tutorial 6 - Intro to FaaS Ill - Serverless Databases

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Thur 12/2 @ 11:59p
® Ch. 5: Cloud Enabling Technology - wrap up

| = Containerization |
® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

| November 16, 2021 L13.26

26

Slides by Wes J. Lloyd

[Fall 2021]

L13.13

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

N e 1 A School of Engineering and Technology, University of Washington -

MOTIVATION FOR CONTAINERIZATION

® Containers provide “light-weight” alternative to full 0OS
virtualization provided by a hypervisor
® Containers do not provide a full “machine”
® |[nstead use operating system constructs to provide “sand
boxes” for execution
= Linux cgroups, namespaces, etc.
® Containers can run on bare metal, or atop of VMs

ccycye|c)cyc (Cominey 3

ojofo|ofoljo|o /,' _\

elellll: I

Host OS 5 bins/libs = Hypervisor engine \\ -~ | Hypervisor engine
Containers

Hypervisor/VM Type2

November 18, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

28

Slides by Wes J. Lloyd

[Fall 2021]

L13.14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

530

MFlops (higher is better)
n wn n o
= i i

+] = &

2
3

I

KVM DOCKER LXC NATIVE 0sy

516

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2021

L14.29

29

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:

1800 -
GKVM A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

50 -
1750 ODOCKER

1700

5 1650

1600

1550

1500 1

Seconds (smaller is better)

1450 -

1400

1350
1300
Computation Time Total Time
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma 1430

30

Slides by Wes J. Lloyd

[Fall 2021]

L13.15

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:

Hypervisors vs. Lightweight Virtualization:

2500 A Performance Comparison

- BKVM BDOCKER BLXC ENATIVE

5

E 200000

T

=

el

= 150000

P

2

Z 100000

-=

El

z

= S0000

] %
[

Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown.

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2021 11431

31

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma ta32

November 18, 2021

32

Slides by Wes J. Lloyd

[Fall 2021]

L13.16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel
® Provide user space isolation
= Replacement for VMs: run multiple processes, services

® Mix different Linux distros on same host
Host OS Host OS

= Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 14,04 14.04 14.04 7 6.6
. Container Container Container Container Container Container
Linux Vserver,
BSD Jails,
Solaris zones

CentOS 6.6 image
RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.04 image

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack.com/operating-system-containers-vs-application-containers/

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 11433

November 18, 2021

33

APPLICATION CONTAINERS

= Desighed to package and run a single service

= All containers share host kernel

m Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

®m 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
® Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

®m Supports horizontal and vertical scaling

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

3.
School of Engineering and Technology, University of Washington - Tacoma L34

November 18, 2021

34

Slides by Wes J. Lloyd

[Fall 2021]

L13.17

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

APPLICATION CONTAINERS - 2

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
for components, services ferancos

as needed parent
image

= | ayering promotes reuse

= Reduces duplication of
data across images

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 11435

November 18, 2021

35

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% <~

say Docker is part
of cloud strategy

[+) o
60° 41% 35+%
° want application want to avoid
plan to use Docker to portability across cloud vendor

migrate workloads to cloud environments lock-in

* docker

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 11436

November 18, 2021

36

Slides by Wes J. Lloyd

[Fall 2021]

L13.18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER

Docker daemon “dockerd”

= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture S

Starting in 2017 version
numbering switches from g
1.x to YR.x

2017 releases: 17.03 - 17.12
2018 releases: 18.01 - 18.09
2019 releases: 19.03.0 - 19.03.13 g

Docker Clients Dacker Containers

Docker Client-Server Architecture
= Credit: https://hackernoon.com/docker-containerd-standalone-runtimes-

November 18, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1437

37

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

® (1) Original Docker engine relied on LXC
= LXC itself is a containerization tool predating Docker
= Original Docker API just called it

= LXC originally provided access $Docker client
to Linux kernel features: 1
namespaces and cgroups

= LXC was Linux specific - caused | doct:kerd |
issues if wanting to be multi-platform

LX
= Docker implemented their own | c |

replacement for LXC !
cgroups
Host Kernel

November 18, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1438

38

Slides by Wes J. Lloyd

[Fall 2021]

L13.19

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: libcontainer introduced (~2014) to replace LXC
as the default Docker daemon

!
| dockerd |
$
|

libcontainer |

Capabilities

Host Kernel

November 18, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 11439

39

OPEN CONTAINER INITIATIVE (OCI)

= OCI created container standards for:
= Image specification
= Container runtime specification

= Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

= Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer

= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.

The Docker APl is much more user friendly
= Support for OCl compliant images was added to Containerd

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma

L14.40

40

Slides by Wes J. Lloyd

[Fall 2021]

L13.20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo

!

= Daemon calls containerd |

= Containerd passes of request to runc dockerd |
= Containerd converts docker image into 1
OCI compliant bundle containerd |
= This step would allow any OCI compliant container t
to be plugged into the back-end
= Runc interfaces with the Linux kernel m

(namespaces, cgroups, etc.) to create container m
= Shim: once a container is created, runc exits

= Shim remains as a daemonless stub to
Capabilities

implement the container

Host Kernel

= Allows Docker to be upgraded w/o
TCSS562: Software Engineering for Cloud Computing [Fall 2021]

stopping the container !!!
X . M . 114.41
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2021

41

CREATING A CONTAINER - 2

e

H = Docker Engine Containerd

. —

Docker CLILI

Runc and other OCI runtimes

Containerd Integration Architecture

Docker CLI: interfaces with dockerd daemon

Docker engine: dockerd daemon, interfaces with containerd
Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;
runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma taa2

November 18, 2021

42

Slides by Wes J. Lloyd

[Fall 2021]

L13.21

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

= Enables docker to support many

alternate container backends Docker *

libcontainer

® OpenVZ, system-nspawn, libvirt-Ixc,

T temd-
libvirt-sandbox, gemu/kvm, sl e | opaum
BSD Jails, Solaris Zones, and chroot l [J

Linux

cgroups namespaces netlink

selinux netfilter 0
capabilities apparmor o

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L3

November 18, 2021

43

LINUX KERNEL NAMESPACES

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy
® 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1444

November 18, 2021

44

Slides by Wes J. Lloyd

[Fall 2021]

L13.22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

root@3sbrc3drace:

NAMESPACES - 2

= Provides isolation of OS
entities for containers

= mnt: separate filesystems

= pid: independent PIDs; first process in container is PID 1

= jpc: prevents processes in different IPC

namespaces from being able to establish shared

memory. Enables processes in different containers

to reuse the same identifiers without conflict.

... provides expected VM like isolation...

= user: user identification and privilege isolation
among separate containers

® net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

Novembenisiozl School of Engineering and Technology, University of Washington - Tacoma

L14.45 |

45

CONTROL GROUPS (CGROUPS)

® Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk 1/0, network 1/0
= Resource limiting
= Memory, disk cache
= Prioritization
= CPU share
= Disk 1/0 throughput
= Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma

L14.46

46

Slides by Wes J. Lloyd

[Fall 2021]

L13.23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups
® Linux has multiple cgroup controllers (subsystems)

® |s /proc/cgroups

= “memory” controller limits memory use

m “cpuacct” controller accounts
for CPU usage

= cgroup filesystem:

= /sys/fs/cgroup

= Can browse resource utilization
of containers...

#subsys name | hierarchy

num_cgroups

g

cpuset

cpu

cpuacct

blkio

memory

Jdevices

freezer

net_cls

pert_event

net_prio

hugetlb

pids

2=~ Blr| & | o) 0] cof inf | o

HHHHHHHHHHHHE

November 18, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

48

Slides by Wes J. Lloyd

[Fall 2021]

L13.24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

https://medium.com/@nagarwal/docker-containers-filesystem-

demystified-b6ed8112a04a

https://www.slideshare.net/jpetazzo/scaledlix-Ixc-talk-1/

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November:13,2021 School of Engineering and Technology, University of Washington - Tacoma

L14.49

49

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.084

® Dockerfile: copy . sapp

RUN make /app
CMD python /app/app.py

Thin R/W layer

| | ! ! !
Python /app/app.py = FEiEEREvE)

| e Container layer

~

Run make /app 2| FZEEEr 1.895 KB

| »— Image layers (R/O)
Copy . /app | | ZZUEE TP 194.5 KB

Ubuntu base image > R 188.1 MB

ubuntu:15.04

Container

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma

L14.50

50

Slides by Wes J. Lloyd

[Fall 2021]

L13.25

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

THREE-TIER ARCHITECTURE

Node.js
Postgres
Nginx

OS containers App containers

Meant to run for a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

Meant to used as an OS - run multiple
services

+ No layered filesystems by default

* Built on cgroups, namespaces, native
process resource isolation

+ Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

.o

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma 11451

November 18, 2021

51

CONTAINER ISOLATION

®|s the host isolated from application containers?

®m Are application containers isolated from each

other?
Application
containers
Application
App | App containers
Bins/libs Bins/libs
App App
. Bins/libs Bins/libs
runtime
runtime
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma tas2

52

Slides by Wes J. Lloyd L13.26

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LXC (LINUX CONTAINERS)

®mQOperating system level virtualization

® Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
*|Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

®ELinux namespaces
= Docker initially based on LXC

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November:13,2021 School of Engineering and Technology, University of Washington - Tacoma

L14.53

53

OTHER DOCKER TOOLS

= Docker Machine: Docker Engine
automatically provision
and manage sets of contatnerd
docker hosts to

form a cluster containerd-shim

containerd-shim

= Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container

application; Describes how to deploy and configure multiple

containers

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma

L14.54

54

Slides by Wes J. Lloyd

[Fall 2021]

L13.27

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
= Similar to “private clusters”

® Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud

infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November:13,2021 School of Engineering and Technology, University of Washington - Tacoma

L14.55

55

KEY ORCHESTRATION FEATURES

Management of container hosts
Launching set of containers
Rescheduling failed containers

Linking containers to support workflows

Providing connectivity to clients outside the container cluster

Firewall: control network/port accessibility
Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers

Load balancing over groups of containers

Rolling upgrades of containers for application

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

RCIEmEEET2U2E School of Engineering and Technology, University of Washington - Tacoma

L14.56

56

Slides by Wes J. Lloyd

[Fall 2021]

L13.28

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm
® Apache mesos/marathon
® Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

® Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November:13,2021 School of Engineering and Technology, University of Washington - Tacoma

L14.57

57

WE WILL RETURN AT

~7:05PM

58

Slides by Wes J. Lloyd

[Fall 2021]

L13.29

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Faj021]
November 18, 2021 School of Engineering and Technology, University of Wastjlgton -
Tacoma

59

TUTORIAL COVERAGE

= Docker CLI > Docker Enginer (dockerd) = containerd = runc

= Concepts:

= Docker installation

= Working with docker files

= Docker run - create a container

= Docker ps - list containers

® Docker exec -it - run a process in an existing container
® Docker stop -stop container

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

.61
School of Engineering and Technology, University of Washington - Tacoma L1460

November 18, 2021

60

Slides by Wes J. Lloyd L13.30

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

Lommanas:
attach Attach local standard input, output, and error streams to a running container
build Build an image from a Dockerfile
Create a new image from a container's changes
Copy files/folders between a container and the local filesystem
Create a new container
Deploy a new stack or update an existing stack
Inspect changes to files or directories on a container's filesystem
Get real time events from the server
Run a command in a running container
Export a container's filesystem as a tar archive
Show the history of an image
List images
Import the contents from a tarball to create a filesystem image
Display system-wide information
Return low-level information on Docker objects
Kill one or more running containers

Load an image from a tar archive or STDIN D k CLI
Log in to a Docker registry oc er
Log out from a Docker registry
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
Restart one or more containers
Remove one or more containers
Remove one or more images
Run a command in a new container
Save one or more images to a tar archive (streamed to STDOUT by default)
search Search the Docker Hub for images
start Start one or more stopped containers
stats Display a live stream of contailner(s) resource usage statistics
stop Stop one or more running containers
tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
top Display the running processes of a container
unpause Unpause all processes within one or more containers
update Update configuration of one or more containers
version Show the Docker version information
wait Block until one or more containers stop, then print their exit codes

TUTORIAL 7

® Linux performance benchmarks

® stress-ng

100s of CPU, memory, disk, network stress tests

Sysbench
® Used in tutorial for memory stress test

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

November 18, 2021 School of Engineering and Technology, University of Washington - Tacoma

| L14.62

62

Slides by Wes J. Lloyd L13.31

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QUESTIONS-

November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington -

63

Slides by Wes J. Lloyd

[Fall 2021]

L13.32

