
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.1

Cloud Enabling Technology &
Docker Containerization

Wes J. Lloyd
School of Engineering and Technology

University of Washington – Tacoma

TR 5:00-7:00 PM

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING  Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up – wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 11/18

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

ONLINE DAILY FEEDBACK SURVEY

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.4

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.08 ( - previous 6.32)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.20 ( - previous 5.60)

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

MATERIAL / PACE

 I noticed that the content of the c lass (lecture) doesn't

correspond to HW tutorials. This makes it hard to complete

tutorials.

 We did complete most of Tutorial 4 in class.

 In addition, the AWS review discussed various aspects relating

to EC2 and EBS (Tutorial 3)

 Also, sometimes tutorial doesn't explain steps well, leading to

numerous questions and doubts.

 Please do ask questions by: email, canvas message, Zoom

chat, Slack channel, or verbally during lecture/office hours

 Tutorials are living documents - there is always potential for

improvement with your feedback !

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

FEEDBACK FROM 11/9

1 2

3 4

5 6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.2

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

OBJECTIVES – 11/18

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.3

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

OBJECTIVES – 11/18

CLOUD ENABLING

TECHNOLOGY

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.15

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.4

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

REST: REPRESENTATIONAL STATE TRANSFER

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.20

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>

</soap:Body>

</soap:Envelope>

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.21

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.22

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>

</message>

<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>

</message>

<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">

<input message="tns:DayOfWeekInput"/>

<output message="tns:DayOfWeekResponse"/>

</operation>

</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">

<soap:operation soapAction="getdayofweek"/>

<input>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="DayOfWeekService" >

<documentation>

Returns the day-of-week name for a given date

</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>

</service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪ Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

REST - 2

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.5

 Performance: component interactions can be the dominant

factor in user -perceived per formance and network ef ficiency

 Scalabi lity : to suppor t large numbers of services and

interactions among them

 Simplicity : of the Uniform Inter face

 Modifiabil ity: of services to meet changing needs (even while the

appl ication is running)

 Visibil ity: of communication between services

 Por tabil ity: of services by redeployment

 Reliabil ity: resists fai lure at the system level as redundancy of

infrastructure is easy to ensure

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

REST ARCHITECTURAL ADVANTAGES

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

OBJECTIVES – 11/18

CONTAINERIZATION

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.27

 Containers provide “light -weight” alternative to full OS

virtualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand

boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.6

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Vir tual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l og . r i s i n g s t a c k . c o m / o p e r a t i ng - s ys t e m - c o nt a i ne r s - v s - a p pl i c a t i o n - c on t a i n e r s /

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

OPERATING SYSTEM CONTAINERS

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

APPLICATION CONTAINERS - 2

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.7

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Star t ing in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

DOCKER

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc inter faces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

 Docker CLI: inter faces with dockerd daemon

 Docker engine: dockerd daemon, inter faces with containerd

 Containerd: simple daemon, inter faces with runc to manage
containers; CRUD inter face for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) inter face;

 runc: lightweight command-line tool for running containers;
Inter faces with Linux cgroups, namespaces; Runs an OCI
container

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

CREATING A CONTAINER - 2

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.8

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvir t-lxc,

libvir t-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing) : provides separate host and domain

names
November 18, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

NAMESPACES - 2

 Collect ion of Linux processes

 Group-level resource allocat ion: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Pr ioritization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

CONTROL GROUPS (CGROUPS)

WE WILL RETURN AT

~6:16 PM

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup f ilesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

CGROUPS - 2

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.9

 Docker leverages overlay f i lesystems

 1st: AUFS - Advanced mult i - layered unification f i lesystem

 Now: overlay2

 Union mount f i le s ystem: combine mult iple di rectories into one that
appears to contain combined contents

 Idea: Docker uses layered f i le systems

 Only the top layer is wri teable

 Other layers are read-only

 Layers are merged to present the notion of a real f i le system

 Copy -on-write- impl ici t sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc-talk-1/

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

OVERLAY FILE SYSTEMS

 Dockerfile:

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

CONTAINER ISOLATION

Host kernel

Container

runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

LXC (LINUX CONTAINERS)

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

OTHER DOCKER TOOLS

49 50

51 52

53 54

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.10

 Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

WE WILL RETURN AT

~7:05PM

TUTORIAL #7

DOCKER, CGROUPS,

RESOURCE ISOLATION

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington -
Tacoma

L14.59

 Docker CLI → Docker Enginer (dockerd) → containerd → runc

 Concepts:

 Docker installation

 Working with docker files

 Docker run – create a container

 Docker ps – list containers

 Docker exec – it – run a process in an existing container

 Docker stop –stop container

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

TUTORIAL COVERAGE

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.11

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.61

Docker CLI

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

TUTORIAL 7

QUESTIONS-

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.63

61 62

63

