
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.1

Cloud Enabling Technology &
Docker Containerization

Wes J. Lloyd
School of Engineering and Technology

University of Washington – Tacoma

TR 5:00-7:00 PM

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up – wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 11/18

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

ONLINE DAILY FEEDBACK SURVEY

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.4

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.08 (- previous 6.32)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.20 (- previous 5.60)

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

MATERIAL / PACE

 I noticed that the content of the c lass (lecture) doesn't

correspond to HW tutorials. This makes it hard to complete

tutorials.

 We did complete most of Tutorial 4 in class.

 In addition, the AWS review discussed various aspects relating

to EC2 and EBS (Tutorial 3)

 Also, sometimes tutorial doesn't explain steps well, leading to

numerous questions and doubts.

 Please do ask questions by: email, canvas message, Zoom

chat, Slack channel, or verbally during lecture/office hours

 Tutorials are living documents - there is always potential for

improvement with your feedback !

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

FEEDBACK FROM 11/9

1 2

3 4

5 6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.2

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

OBJECTIVES – 11/18

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.3

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

OBJECTIVES – 11/18

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

OBJECTIVES – 11/18

CLOUD ENABLING

TECHNOLOGY

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.15

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.4

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

REST: REPRESENTATIONAL STATE TRANSFER

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.20

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>

</soap:Body>

</soap:Envelope>

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.21

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.22

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>

</message>

<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>

</message>

<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">

<input message="tns:DayOfWeekInput"/>

<output message="tns:DayOfWeekResponse"/>

</operation>

</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">

<soap:operation soapAction="getdayofweek"/>

<input>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="DayOfWeekService" >

<documentation>

Returns the day-of-week name for a given date

</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>

</service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪ Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

REST - 2

19 20

21 22

23 24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.5

 Performance: component interactions can be the dominant

factor in user -perceived per formance and network ef ficiency

 Scalabi lity : to suppor t large numbers of services and

interactions among them

 Simplicity : of the Uniform Inter face

 Modifiabil ity: of services to meet changing needs (even while the

appl ication is running)

 Visibil ity: of communication between services

 Por tabil ity: of services by redeployment

 Reliabil ity: resists fai lure at the system level as redundancy of

infrastructure is easy to ensure

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

REST ARCHITECTURAL ADVANTAGES

 Questions from 11/16

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1 / Tutorial 7 - Docker Containerization

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Thur 12/2 @ 11:59p

 Ch. 5: Cloud Enabling Technology - wrap up

 Containerization

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

OBJECTIVES – 11/18

CONTAINERIZATION

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.27

 Containers provide “light -weight” alternative to full OS

virtualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand

boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.6

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Vir tual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l og . r i s i n g s t a c k . c o m / o p e r a t i ng - s ys t e m - c o nt a i ne r s - v s - a p pl i c a t i o n - c on t a i n e r s /

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

OPERATING SYSTEM CONTAINERS

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

APPLICATION CONTAINERS - 2

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.7

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Star t ing in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

DOCKER

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc inter faces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

 Docker CLI: inter faces with dockerd daemon

 Docker engine: dockerd daemon, inter faces with containerd

 Containerd: simple daemon, inter faces with runc to manage
containers; CRUD inter face for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) inter face;

 runc: lightweight command-line tool for running containers;
Inter faces with Linux cgroups, namespaces; Runs an OCI
container

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

CREATING A CONTAINER - 2

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.8

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvir t-lxc,

libvir t-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing) : provides separate host and domain

names
November 18, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

NAMESPACES - 2

 Collect ion of Linux processes

 Group-level resource allocat ion: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Pr ioritization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

CONTROL GROUPS (CGROUPS)

WE WILL RETURN AT

~6:16 PM

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup f ilesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

CGROUPS - 2

43 44

45 46

47 48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.9

 Docker leverages overlay f i lesystems

 1st: AUFS - Advanced mult i - layered unification f i lesystem

 Now: overlay2

 Union mount f i le s ystem: combine mult iple di rectories into one that
appears to contain combined contents

 Idea: Docker uses layered f i le systems

 Only the top layer is wri teable

 Other layers are read-only

 Layers are merged to present the notion of a real f i le system

 Copy -on-write- impl ici t sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc-talk-1/

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

OVERLAY FILE SYSTEMS

 Dockerfile:

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

CONTAINER ISOLATION

Host kernel

Container

runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

LXC (LINUX CONTAINERS)

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

OTHER DOCKER TOOLS

49 50

51 52

53 54

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.10

 Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

WE WILL RETURN AT

~7:05PM

TUTORIAL #7

DOCKER, CGROUPS,

RESOURCE ISOLATION

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington -
Tacoma

L14.59

 Docker CLI → Docker Enginer (dockerd) → containerd → runc

 Concepts:

 Docker installation

 Working with docker files

 Docker run – create a container

 Docker ps – list containers

 Docker exec – it – run a process in an existing container

 Docker stop –stop container

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

TUTORIAL COVERAGE

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.11

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.61

Docker CLI

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 18, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

TUTORIAL 7

QUESTIONS-

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.63

61 62

63

