TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Enabling Technology &
Docker Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TR 5:00-7:00 PM

[Fall 2021]

OBJECTIVES - 11/18

| = Questlons from 11/16 |
= Term Project Proposals - update by 11/19
= Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases
= Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentatlon Overview:

Cloud Technology or Research Paper for 11/30 - 12/9
= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up - wrap up
= Containerization
= Team planning

TCss562:Software Engineering for Cloud Computing [Fall 2021]
‘ (I 2kl School of Engineering and Technology, University of Washington - Tacoma us2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
= Extra Credit
for completing

* Upcoming Assignments

o

y 1 - Implicit va. Explicit Pacsllelism

5 Tl d ol

* Past Assigaments

|

4 TCS5 562 - Online Dalty Feedback Survey - 9/30

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ Novemberdoii2028 School of Engineering and Technology, University of Washington - Tacoma us3

TCSS 562 - Online Daily Feedback Survey - 10/5

Startect Ot 7 at 1-13sm

Quiz Instructions

Question 1 05 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2z 3 4 5 8 7 8 8 18
mestiy equu1 mastly
Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

ceenbeyioizezt School of Engineering and Technology, University of Washington - Tacoma L134

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (25 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.08 (1 - previous 6.32)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.20 ({ - previous 5.60)

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ (TR School of Engineering and Technology, University of Washington -Tacoma s

Slides by Wes J. Lloyd

FEEDBACK FROM 11/9

= | noticed that the content of the class (lecture) doesn't
rre n H rlals. This makes It har mpl

tutorlals.

= We did complete most of Tutorial 4 in class.

= |[n addition, the AWS review discussed various aspects relating
to EC2 and EBS (Tutorial 3)

= Also, sometimes tutorial doesn't explain steps well, leading to
numerous questions and doubts.

= Please do ask questions by: email, canvas message, Zoom
chat, Slack channel, or verbally during lecture/office hours

= Tutorials are living documents - there is always potential for
improvement with your feedback !

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ e e School of Engineering and Technology, University of Washington - Tacoma e

L13.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

= Questions from 11/16
| = Term Project Proposals - update by 11/19 |
= Tutorial 5 - Intro to Faa$S Il - Files in S3, CloudWatch
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases
= Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentatlon Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up

= Containerization

= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021)
‘ LA) kAL School of Engineering and Technology, University of Washington - Tacoma us7

[Fall 2021]

OBJECTIVES - 11/18

= Questions from 11/16
= Term Project Proposals - update by 11/19
| = Tutorlal 5 - Intro to Faa$S Il - Flles In S3, CloudWatch|
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases
= Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up

= Containerization

= Team planning

TCss562:Software Engineering for Cloud Computing [Fall 2021]
‘ (I 2kl School of Engineering and Technology, University of Washington - Tacoma Lss

OBJECTIVES - 11/18

= Questions from 11/16

= Term Project Proposals - update by 11/19

= Tutorial 5 - Intro to Faa$S Il - Files in S3, CloudWatch
| = Tutorial 6 - Intro to FaaS Ill - Serverless Databases |

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentatlon Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up
= Containerization

= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021)
‘ November 16,2021 School of Engineering and Technology, University of Washington - Tacoma. uss

OBJECTIVES - 11/18

= Questions from 11/16

= Term Project Proposals - update by 11/19

= Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch

= Tutorial 6 - Intro to FaaS Ill - Serverless Databases
Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up

= Containerization

= Team planning

TCsS562:Software Engineering for Cloud Computing [Fall 2021)
‘ November 16,2021 School of Engineering and Technology, University of Washington - Tacoma U310

OBJECTIVES - 11/18

= Questions from 11/16

= Term Project Proposals - update by 11/19

= Tutorial 5 - Intro to Faa$S Il - Files in S3, CloudWatch
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases

= Quiz 1 /|Tutorlal 7 - Docker Contalnerlzation |

= Group Presentatlon Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up
= Containerization

= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
‘ (TR School of Engineering and Technology, University of Washington - Tacoma uen

10

OBJECTIVES - 11/18

= Questions from 11/16

= Term Project Proposals - update by 11/19

= Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases

® Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up
= Containerization

= Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2021]
‘ (U GRER R School of Engineering and Technology, University of Washington - Tacoma s

11

Slides by Wes J. Lloyd

12

L13.2

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18 OBJECTIVES - 11/18
= Questions from 11/16 = Questions from 11/16
= Term Project Proposals - update by 11/19 = Term Project Proposals - update by 11/19
= Tutorial 5 - Intro to Faa$S Il - Files in S3, CloudWatch = Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases = Tutorial 6 - Intro to FaaS Ill - Serverless Databases
= Quiz 1 / Tutorial 7 - Docker Containerization = Quiz 1 / Tutorial 7 - Docker Containerization
= Group Presentatlon Overview: = Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9 Cloud Technology or Research Paper for 11/30 - 12/9
|I Term Project Chec - due Thur 12/2 @ 11:59p | = Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up | = Ch. 5: Cloud Enabling Technology - wrap up |
= Containerization = Containerization
= Team planning = Team planning
[ovemberss,zom [Ioiez s e o ot o pl2 [] [ovemberss,zons [ISz e o GosiConming P2 e N

13 14

CLOUD ENABLING TECHNOLOGY

= Adapted from Ch. 5 from Cloud Computing
Concepts, Technology & Architecture

= Broadband networks and internet architecture

C OUD ENABLING g8 = Data center technology
TECHNOLOGY B - =Virtualization technology

= Multitenant technology

|lWeb/web services technology |
Software Engineering for Cloud Computing [Fall 2021] TCSS562: Software Engineering for Cloud Computing [Fall 2021]
November 16, 2021 cf Engineering and Technology, University of Washington - Tacoma [Novemberd6)12024 School of Engineering and Technology, University of Washington - Tacoma 136

15 16

5. WEB SERVICES/WEB HYPERTEXT TRANSPORT PROTOCOL (HTTP)
= Web services technology is a key foundation of cloud = An ASCll-based request/reply protocol for transferring
computing’s “as-a-service” cloud delivery model information on the web

= HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)

= SOAP - “Simple” object access protocol
= First generation web services
= WSDL - web services description language

= UDDI - universal description discovery and integration PGP preoeest v.ersmn und(::rstood 2 o it
= SOAP services have their own unique interfaces aaaioaextioliniokeeandineitanticioguest
= HTTP response from server HTTP status codes:

= REST - instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

= HTTP GET, PUT, POST, DELETE

= Protocol version & status code > s —all is well

3xx — resource moved
= Response headers) e move
4o aovess problem
S.‘S.‘ yerver ervor

TCSS562: Software Engineering for Cloud Computing [Fall 2021] TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ (TR School of Engineering and Technology, University of Washington - Tacoma sy e e School of Engineering and Technology, University of Washington - Tacoma e

= Response body

17 18

Slides by Wes J. Lloyd L13.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST: REPRESENTATIONAL STATE TRANSFER

= Web services protocol
= Supersedes SOAP - Simple Object Access Protocol

= Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

= Requests are made to a URI

= Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

= HTTP verbs: GET, POST, PUT, DELETE, ...

School of Engineering and Technology, University of Washington - Tacoma

‘ November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] L1319

19

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

LET A) School of Engineering and Technology, University of Washington - Tacoma L1321

21

REST CLIMATE SERVICES EXAMPLE

= USDA // REST/JISON
Lat/Long // Request climate data for Washington
Climate {
Service "parameter": [
Demo

. "name": "longitude",
= Just provide "value":-122.4443

a Lat/Long])

‘ November 16, 2021

TCSS562: Software Engineering for Cloud Computing [Fall 2021] 23
School of Engineering and Technology, University of Washington - Tacoma

[Fall 2021]

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m: >The F1 ket</m: >
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L0

20

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"7>
<definitions name ="DayOfWesk"
tp:, au

p://1
ttp: //schemas . xmlsoap. org/wsd1/soap/"
w3 0rg/2001/XMLSchema”
hemas _xnlsosp. org/wsd1/">
ayOfWeekInput >
te" type="xsd:date"/>

ayOfHieekResponse”>
yOfWeek" type="xsd:string"/>

pace="http: //;
1 ">
</input>
<output>
<soap:body use="encoded"
p: P
"http://sch 1 />
</operation>
</binding>
<service name="DayOfWeckservice” >
<documentation>

Returns the day-of-week name for a given date
</documentation>
<port name= o=

="heep:// 7>

</port>
</serv
</detinitions>
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
LERL AL School of Engineering and Technology, University of Washington - Tacoma L1322

22

REST - 2

= App manipulates one or more types of resources.

= Everything the app does can be characterized as some
kind of operation on one or more resources.

= Frequently services are CRUD operations
(create/read/update/delete)
= Create a new resource
= Read resource(s) matching criterion
= Update data associated with some resource
= Destroy a particular a resource

= Resources are often implemented as objects in 00
languages

School of Engineering and Technology, University of Washington - Tacoma

23

Slides by Wes J. Lloyd

‘ November 16, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] 324

24

L13.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

REST ARCHITECTURAL ADVANTAGES

= Performance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

= Scalabllity: to support large numbers of services and
interactions among them

= Simpliclty: of the Uniform Interface

= Modifiability: of services to meet changing needs (even while the
application is running)

= Visibility: of communication between services
= Portabllity: of services by redeployment

= Rellablllty: resists failure at the system level as redundancy of
infrastructure is easy to ensure

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ LA) kAL School of Engineering and Technology, University of Washington - Tacoma L3z

OBJECTIVES - 11/18

= Questions from 11/16

= Term Project Proposals - update by 11/19

= Tutorial 5 - Intro to FaaS Il - Files in S3, CloudWatch
= Tutorial 6 - Intro to FaaS Ill - Serverless Databases

= Quiz 1 / Tutorial 7 - Docker Containerization

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Thur 12/2 @ 11:59p
= Ch. 5: Cloud Enabling Technology - wrap up

| = Contalnerization]
= Team planning
TCs5562:Software Engineering for Cloud Computing [Fall 2021]
‘ M) School of Engineering and Technology, University of Washington - Tacoma 126

25

26

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2021]

Dol 2 AT School of Engineering and Technology, University of Washington -

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= |nstead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

Lt
[Fiom OS's binsibs |

[Comimrsengine
ferst (S . Type
— Containers Lt

[Efeeeferere| Container)

alofofofofala .

L‘"‘: \LE nln {%‘ v |[vm] v (Appiicaion) wa [Vt
L pemteonier -

[Hwdwan | Hypervisor/VM Type2
TCsS562: Software Engineering for Cloud Computing [Fall 2021]
‘ [Novemberd8)2024 School of Engineering and Technology, University of Washington - Tacoma 11428

27

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:
= Solve linear equations - matrix algebra lype vs. Lig|
APer C

am

MFleps thizher is brster)

KM BOCKER LXC NATIVE o8V

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000,

TCSS562: Software Engineering for Cloud Computing [Fall 2021] La29
School of Engineering and Technology, University of Washington - Tacoma

‘ November 18, 2021

29

Slides by Wes J. Lloyd

28

CONTAINER PERFORMANCE
- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:

aKVM ‘ A Performance Comparison
17501 lanocker
1700 BLXC

ENATIVE

1650

1610

conds (smaller is better)
&
2

1500
F 1450
1400
1350
1300
Total Time
[omemmerts 2 B e e it s

30

L13.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervi: vs. Li i Vir i
250000 | A Per C i

[Fall 2021]

@KVM EDOCKER HLXC BNATIVE

]
= 150000

00000

0000

0

Block Output Block Input

Fig 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB)
Results for sequential writes and sequential read are shown.

TCSS562: Software Engineering for Cloud Computing [Fall 2021] Lt
School of Engineering and Technology, University of Washington - Tacoma

‘ November 18, 2021

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Applicatlon Virtuallzation (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ (I kAl School of Engineering and Technology, University of Washington - Tacoma 1432

31

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

= Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

Identical OS containers Different flavoured OS containers
+ Crodit: https://blog.risingstack
TCSS562: Software Engineering for Cloud Computing [Fall 2021
‘ Novermberdsi2028 School of Engineering and Technology, University of Washington - Tacoma 143

32

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app

= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

TCsS562: Software Engineering for Cloud Computing [Fall 2021]
‘ [Novemberd8)2024 School of Engineering and Technology, University of Washington - Tacoma 136

33

34

APPLICATION CONTAINERS - 2

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
:)Sr::err:jzznents, services l’gf;ﬁ{"es

= Layering promotes reuse image

= Reduces duplication of
data across images

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ (eriEa TR School of Engineering and Technology, University of Washington -Tacoma ues

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

wani application
portailly acrazs
enviranments

plan 10 u3s
migrate workioads to cloud

& dockar

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma Lase

35

Slides by Wes J. Lloyd

36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER

Docker daemon “dockerd”

= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

Starting in 2017 version

numbering switches from Q,
1.x to YR.x
= 2017 releases: 17.03 - 17.12 P

2018 releases: 18.01 - 18.09
2019 releases: 19.03.0 - 19.03.13 g

‘ November 18, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] Vs

School of Engineering and Technology, University of Washington - Tacoma

37

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: llbcontalner introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

| libcontainer |

Capabilities

Host Kernel

ez

‘ November 18, 2021 TCSS562: Software Engineering for Cloud Computing [Fall 2021] a3

School of Engineering and Technology, University of Washington - Tacoma

39

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo

= Daemon calls containerd
= Containerd passes of request to runc

dockerd
= Contalnerd converts docker image into

0CI compliant bundle containerd
= This step would allow any OCI compliant container

to be plugged into the back-end
= Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container
= Shim: once a container is created, runc exits
= Shim remains as a daemonless stub to
implement the container Namespaces
= Allows Docker to be upgraded w/o
stopping the containefgi!! 4 Host Kernel

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ (eriEa TR School of Engineering and Technology, University of Washington - Tacoma uea

41

Slides by Wes J. Lloyd

[Fall 2021]

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

= (1) Original Docker engine relied on LXC

= LXC itself is a containerization tool predating Docker
= Original Docker API just called it
. $Docker client
to Linux kernel features:
namespaces and cgroups
issues if wanting to be multi-platform
= Docker implemented their own

= LXC originally provided access
= LXC was Linux specific - caused
replacement for LXC

[Nomespaces NN copaois |
cgroups
Host Kernel

TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ (I kAl School of Engineering and Technology, University of Washington - Tacoma 11438

38

OPEN CONTAINER INITIATIVE (OCI)

= OCl created container standards for:
= Image specification
= Container runtime specification
= Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards
= Essentially this introduced abstraction layers (i.e. generic interfaces

that map to the implementation) so that Docker's design conformed
to the OCI standard

= Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer
= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.
The Docker APl is much more user friendly
= Support for OCl compliant images was added to Containerd

TCsS562: Software Engineering for Cloud Computing [Fall 2021]
‘ November18,2021 School of Engineering and Technology, University of Washington - Tacoma Laso

40

CREATING A CONTAINER - 2

Docker CLIUI

Runc and olher OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with contalnerd

= Contalnerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl - Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI|
container

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ (U EREIRE R School of Engineering and Technology, University of Washington - Tacoma Las

42

L13.7

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES LINUX KERNEL NAMESPACES

= Modularity of Docker implementation supports = Partitions kernel resources

TEEEIHE CNEDS ERnEE = Processes see only their set of resources
= Enables docker to support many _& = Provides isolation

alternate container backends Docker = Namespaces are hierarchical

= Parent processes can see down the hierarchy

= OpenVZ, system-nspawn, libvirt-Ixc, i a s
libvirt-sandbox, gemu/kvm, S L s = 7 namespaces in Linux (cgroups not shown)
BSD Jails, Solaris Zones, and chroot i | | = Each process can only see resources associated
Linux with the namespace, and descendent namespaces

cgroups mamespaces netlink

selinun netfiter
capabilities —

TCSS562: Software Engineering for Cloud Computing [Fall 2021 TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ (LA AL School of Engineering and Technology, University of Washington - Tacoma e (I kAl School of Engineering and Technology, University of Washington - Tacoma Lsas

43 44

NAMESPACES - 2 CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk I/0, network I/0
= Resource limiting
= Memory, disk cache
= Prioritizati
= CPU share
= Disk 1/0 throughput

= Provides Isolation of 0S
entities for containers
= mnt: separate filesystems
= pld: independent PIDs; first process in container is PID 1
= |pc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers .
to reuse the same identifiers without conflict. Agfo-"':-tmg tisati
... provides expected VM like isolation... * Track resource utilization -
= user: user identification and privilege isolation . For rTsoume management and/or billing purposes
among separate containers enicd

. B B . = Pause/resume processes
= net: network stack virtualization. Multiple loopbacks (lo) CEES = e/ EEe [(s (CE)

. n AT . . !
TS (UNIX time sharing): provides separate host and domain = https://criu.org
TCSS562: Software Engineering for Cloud Computing [Fall 2021] TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ i, EFE School of Engineering and Technology, University of Washington - Tacoma Less ‘ (AR School of Engineering and Technology, University of Washington - Tacoma e

45 46

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts 2 Pl fane Iechy T Saloups jensped
for CPU usage pu
puacct
blkio
jmemory 8
= cgroup filesystem: jdevices
reozer
= /sys/fs/cgroup net_cls
. . f_event T
= Can browse resource utilization et pro
. uget!
of containers... ids EE 98
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
‘ November18, 2021 | o0/ of Engineering and Technology, University of Washington - Tacoma pass

47 48

Slides by Wes J. Lloyd L13.8

TCSS 562:

Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

[Fall 2021]

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Unlon mount flle system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

" h ; ium.com/@n
demystified-b6ed8112a04a

leldx-Ixc-talk-1,

" h [/ wWww.sli hare.net/j 2z

TCSS562: Software Engineering for Cloud Computing [Fall 2021
(LA AL School of Engineering and Technology, University of Washington - Tacoma Lsas

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04
= Dockerfile: copy . /app
RUN make /app
cMD python /app/app.py

Thin RAW layer Container layer

T

Ubuntu base image - [FE T 188.1 M8

Image lavers (R/0)

ubuntu:15.04
Container
TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ (I kAl ‘ School of Engineering and Technology, University of Washington - Tacoma 11450

49

THREE-TIER ARCHITECTURE

App containers

850 Jalls, Soleris Zones

TCSS562: Software Engineering for Cloud Computing [Fall 2021
Novermberdsi2028 School of Engineering and Technology, University of Washington - Tacoma 1est

51

LXC (LINUX CONTAINERS)

= Operating system level virtualization

= Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network I/0

= Linux namespaces
= Docker initially based on LXC

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
(eriEa TR School of Engineering and Technology, University of Washington -Tacoma uess

53

Slides by Wes J. Lloyd

50

CONTAINER ISOLATION

= |s the host isolated from application containers?

= Are application containers isolated from each
other?

Application
containers

Application
containers

runtime
runtime

TCSS562: Software Engineering for Cloud Computing [Fall 2021] a5
School of Engineering and Technology, University of Washington - Tacoma

‘ November 18, 2021

52

OTHER DOCKER TOOLS

Docker Engine
=

Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

= Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma Last

54

L13.9

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
=" Reduce vendor lock-in

TCSS562: Software Engineering for Cloud Computing [Fall 2021
‘ (LA AL School of Engineering and Technology, University of Washington - Tacoma 11455

55

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: Software Engineering for Cloud Computing [Fall 2021
‘ Novermberdsi2028 School of Engineering and Technology, University of Washington - Tacoma 157

57

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [FallP

November 18, 2021 School of Engineering and Technology, University of WasHillgton -

59

Slides by Wes J. Lloyd

[Fall 2021]

KEY ORCHESTRATION FEATURES

= Management of container hosts
= Launching set of containers
= Rescheduling failed containers
= Linking containers to support workflows
= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers
= Rolling upgrades of containers for application

TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ (I kAl School of Engineering and Technology, University of Washington - Tacoma 11456

56

TUTORIAL COVERAGE

= Docker CLI > Docker Enginer (dockerd) > containerd > runc

= Concepts:

= Docker installation

= Working with docker files

= Docker run - create a container

= Docker ps - list containers

= Docker exec -it - run a process in an existing container
= Docker stop -stop container

TCS5562: Software Engineering for Cloud Computing [Fall 2021]
‘ e School of Engineering and Technology, University of Washington -Tacoma s

60

L13.10

TCSS 562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, UW-Tacoma

TUTORIAL 7

= Linux performance benchmarks

ker objects

oy = stress-ng
Docker CLI
= 100s of CPU, memory, disk, network stress tests

= Syshench
= Used in tutorial for memory stress test

TCss562: Software Engineering for Cloud Computing [Fall 2021]
‘ (I kAl School of Engineering and Technology, University of Washington - Tacoma ez

print thet

61 62

QUESTIONS-

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington -

November 16, 2021

63

Slides by Wes J. Lloyd L13.11

