
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.1

Cloud Enabling Technology

Wes J. Lloyd
School of Engineering and Technology

University of Washington – Tacoma

TR 5:00-7:00 PM

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING  In TCSS 598

 Bioinformatics - Kayee Yeung

 Wednesday November 17 – 3:00pm

https://washington.zoom.us/j/93994539232

 Cloud Computing – Wes Lloyd

 Wednesday November 17 – 4:10 pm

https://washington.zoom.us/j/93994539232

 Please join to learn more about potential

MSCSS Capstone / Thesis projects

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

RESEARCH SEMINAR TALKS

Don’t Forget to Terminate (Shutdown)

all EC2 instances for Tutorial 3

Spot instances:
c5d.large instance @ ~2 cents / hour

$0.48 / day
$3.36 / week

$14.60 / month
$175.20 / year

AWS CREDITS →→→→→→→→

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

OBJECTIVES – 11/16

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

ONLINE DAILY FEEDBACK SURVEY

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.6

1 2

3 4

5 6

https://washington.zoom.us/j/93994539232
https://washington.zoom.us/j/93994539232

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.2

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.32 ( - previous 6.18)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.60 ( - previous 5.54)

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

MATERIAL / PACE

 I noticed that the content of the class (lecture) doesn't

correspond to HW tutorials. This makes it hard to complete

tutorials.

 We did complete most of Tutorial 4 in class.

 In addition, the AWS review discussed various aspects relating

to EC2 and EBS (Tutorial 3)

 Also, sometimes tutorial doesn't explain steps well, leading to

numerous questions and doubts.

 Please do ask questions by: email, canvas message, Zoom

chat, Slack channel, or verbally during lecture/office hours

 Tutorials are living documents - there is always potential for

improvement with your feedback !

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

FEEDBACK FROM 11/9

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

OBJECTIVES – 11/16

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

OBJECTIVES – 11/16

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

OBJECTIVES – 11/16

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

OBJECTIVES – 11/16

7 8

9 10

11 12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.3

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

OBJECTIVES – 11/16

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

OBJECTIVES – 11/16

 Questions from 11/9

 Term Project Proposals – update by 11/19

 Tutorial 5 – Intro to FaaS II – Files in S3, CloudWatch

 Tutorial 6 - Intro to FaaS III - Serverless Databases

 Quiz 1

 Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Wed 12/1 @ 11:59p

 Ch. 5: Cloud Enabling Technology

 Team planning

November 16, 2021
TCSS562:Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

OBJECTIVES – 11/16

CLOUD ENABLING

TECHNOLOGY

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.16

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

CLOUD ENABLING TECHNOLOGY

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

TYPES OF ABSTRACTION IN THE CLOUD

13 14

15 16

17 18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.4

 Hypervisor also called Vir tual Machine Monitor (VMM)

 Type 1 hypervisor

 Typically involves special vir tualization kernel that runs

directly on the system to share the underlying machine with

many guest VMs

 Paravirtualization introduced to directly share system

resources with guests bypassing full emulation

 VM becomes equal participant in sharing the network card for

example

 Type 2 hypervisor

 Typically involves the Full Vir tualization of the guest, where

everything is simulated/emulated

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

TYPE 1 VS TYPE 2 HYPERVISOR

 Native vir tual machine monitor (VMM)

▪ Type 1 Hypervisor

▪ Example: XEN - small OS with its own kernel

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of CPU,

device I/O among many guests

▪ Has its own resource scheduler(s)

▪ Guest OSes require special kernel to interface with VMM

▪ Supports both:

▪ Paravirtualization

▪ Full Virtualization

October 19, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.20

TYPE 1 HYPERVISOR

 Hosted vir tual machine monitor (VMM)

▪ Type 2 hypervisor

▪ Example: Virtualbox

▪ Runs atop of host operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Focus on full virtualization

▪ Paravirtual device drivers may be supported

October 19, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.21

TYPE 2 HYPERVISOR

 Hardware level support (i.e. features introduced on CPUs,
network cards, SSD/HDD controllers) have made vir tualization
faster in all respects reducing vir tualization overhead

 MAIN IDEA: full vs. paravirtualization

 GOAL: run all user mode instructions directly on the CPU
(this will be fastest !)

 x86 instruction set has ~17 problematic user mode instructions

 These must be trapped and not run by the VM

 Full v ir tualization: scan the program EXE, insert code around
privileged instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

IMPORTANCE OF HARDWARE SUPPORT

 See:
https://cyberciti .biz/faq/linux -xen-vmware-kvm-intel-vt-amd-v -

support

 # check for Intel VT CPU vir tualization extensions on Linux
grep –color vmx /proc/cpuinfo

 # check for AMD V CPU vir tualization extensions on Linux
grep –color svm /proc/cpuinfo

 Also see ‘lscpu ’ → “Vir tualization:”

 Other Intel CPU features that help vir tualization:
ept vpid tpr_shadow flexpriority vnmi

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

CHECK FOR VIRTUALIZATION SUPPORT

 Extensions added to 64-bit Intel/AMD CPUs

 Provides hardware assisted virtualization

 Adds new “guest” operating mode to the CPU

▪ Acts like hardware state switch

 Intel/AMD implementations different

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

VIRTUALIZATION HARDWARE SUPPORT

19 20

21 22

23 24

https://cybercity.biz/faq/linux-xen-vmware-kvm-intel-vt-a-v-support

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.5

INTEL VT-X: GUEST OPERATING MODE
KERNEL BASED VIRTUAL

MACHINES (KVM)

 KVM integrates hypervisor functionality directly into the

Linux kernel (as of Linux kernel version 2.6.20 - 2007)

 Machine “boots” the hypervisor kernel, because the

Linux kernel itself is the hypervisor kernel

▪ KVM could be considered a “hybrid” (blend)

 KVM converts Linux into a type-1 (bare-metal) hypervisor

 KVM users Linux memory manager, process scheduler,

input/output (I/O) stack, device drivers, security

manager, network stack, and more

 VMs are implemented as regular Linux processes,

scheduled by the Linux scheduler

 KVM requires HW-level support to run

 KVM has been ported to ARM, PowerPC, IA -64, S/390November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

KVM – 2

KVM has /dev/kvm device file node

▪Linux character device, with operations:

▪ Create new VM

▪ Allocate memory to VM

▪ Read/write virtual CPU registers

▪ Inject interrupts into vCPUs

▪ Running vCPUs

VMs run as Linux processes

▪Scheduled by host Linux OS

▪Can be pinned to specific cores with “taskset”

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

KVM - 3

 KVM is successor to QEMU hypervisor

(type 2 - full virtualization)

 QEMU can interface with KVM to create type 1 VMs

by using KVM in the backend to implement the VM

 KVM consists of a set of Linux kernel modules:

$ ls -l /lib/modules/$(uname -r)/kernel/arch/x86/kvm

total 2136

-rw-r--r-- 1 root root 209665 Sep 28 08:37 kvm-amd.ko

-rw-r--r-- 1 root root 669793 Sep 28 08:37 kvm-intel.ko

-rw-r--r-- 1 root root 1298585 Sep 28 08:37 kvm.ko

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

KVM DIFFERENCES FROM XEN

 KVM requires CPU support (Intel VT-X, AMD-V)

▪ Virtualization management extensions

 KVM can virtualize any OS without special kernels

▪ Less invasive

 KVM was originally separate from the Linux kernel,
but then integrated

 KVM is type 1 hypervisor because the machine boots
Linux which has integrated support for virtualization

 Different than XEN because XEN kernel alone is not a
full-fledged OS

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

KVM ENHANCEMENTS

Paravirtualized device drivers

▪Virtio

Guest Symmetric Multiprocessor (SMP) support

▪Leverages multiple on-board CPUs

▪Supported as of Linux 2.6.23

VM Live Migration

 Linux scheduler integration

▪Optimize scheduler with knowledge that KVM
processes are virtual machines

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

25 26

27 28

29 30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.6

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

TYPES OF ABSTRACTION IN THE CLOUD

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

TYPES OF ABSTRACTION IN THE CLOUD

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

TYPES OF ABSTRACTION IN THE CLOUD

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

TYPES OF ABSTRACTION IN THE CLOUD

FIRECRACKER MICRO VM

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.35

From https://firecracker-microvm.github.io/

 Provides a vir tual machine monitor (VMM) (i.e. hypervisor)

using KVM to create and manage microVMs

 Has a minimalist design with goals to improve security,

decreases the startup time, and increases hardware utilization

 Excludes unnecessary devices and guest functionality to

reduce memory footprint and attack surface area of each

microVM

 Supports boot time of <125ms, <5 MiB memory footprint

 Can run 100s of microVMs on a host, launching up to 150/sec

 Is available on 64-bit Intel, AMD, and Arm CPUs

 Used to host AWS Lambda and AWS Fargate

 Has been open sourced under the Apache 2.0 license

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

FIRECRACKER MICRO VM

31 32

33 34

35 36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.7

 Minimalistic

 MicroVMs run as separate processes on the host

 Only 5 emulated devices are available: vir tio-net, vir tio-block,

vir tio-vsock, serial console, and a minimal keyboard controller

used only to stop the microVM

 Rate limiters can be created and configured to provision

resources to support bursts or specific bandwidth/operation

limitations

 Configuration

 A RESTful API enables common actions such as configuring

the number of vCPUs or launching microVMs

 A metadata service between the host and guest provides

configuration information

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

FIRECRACKER - 2

 Security

 Runs in user space (not the root user) on top of the Linux

Kernel-based Vir tual Machine (KVM) hypervisor to create

microVMs

 Lambda functions, Fargate containers, or container groups can

be encapsulated using Firecracker through KVM, enabling

workloads from dif ferent customers to run on the same

machine, without sacrificing security or ef ficiency

 MicroVMs are fur ther isolated with common Linux user -space

security barriers using a companion program called “jailer”

which provides a second line of defense if KVM is

compromised

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

FIRECRACKER - 2

WE WILL RETURN AT

~6:17 PM

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

TYPES OF ABSTRACTION IN THE CLOUD

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

TYPES OF ABSTRACTION IN THE CLOUD

 Vir tual Machines – original IaaS cloud abstraction

 OS/Application Containers - seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

TYPES OF ABSTRACTION IN THE CLOUD

37 38

39 40

41 42

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.8

 48 x m5d instances on single cloud server (ec2 dedicated host)

 Ran sysbench benchmark to generate prime numbers

 Ran from running 48 to 1 program instances across VMs on a

shared host

 With 47 stopped VMs (not running benchmark) per formance

improved when running sysbench on one VM by 20.81% relat ive to

leaving VMs up and idle

 CONCLUSION: idle VMs in the cloud can have a negative

per formance impact even when they do nothing at all

 Idle Linux servers may have hundreds of processes and per form

context switches, creating possible memory cache stress

 From: Han, X. , Schooley, R. , Mackenzie, D. , David, O. , Lloyd, W.,

Characterizing Public Cloud Resource Contention to Suppor t Vir tual

Machine Co-residency Prediction, IC2E 2020, Apr 2020.

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

CASE FOR LIGHT-WEIGHT CLOUD

ABSTRACTIONS

 Lightweight alternative to containers and VMs

▪ Custom Cloud Operating System

▪ Single process, multiple threads, runs one program

▪ Launch separately atop of hypervisor (XEN/KVM)

▪ Reduce overhead, duplication of heavy weight OS

▪ OSv is most well known unikernel

▪ Several others exist has research projects

▪More information at: http://unikernel.org/

▪ Google Trends

OSv →

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

44

UNIKERNELS

 Vir tual infrastructure management (VIM) tools

 Tools that manage pools of vir tual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead

▪ Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be dif ficult to migrate

cross-clouds

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

VIRTUALIZATION MANAGEMENT
VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

Middleware to manage virtual machines and

infrastructure of IaaS “clouds”

Examples

▪OpenNebula

▪Nimbus

▪Eucalyptus

▪OpenStack

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

VIM FEATURES

Create/destroy VM Instances

 Image repository

▪Create/Destroy/Update images

▪Image persistence

Contextualization of VMs

▪Networking address assignment

▪DHCP / Static IPs

▪Manage SSH keys

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

VIM FEATURES - 2

Virtual network configuration/management

▪Public/Private IP address assignment

▪Virtual firewall management

 Configure/support isolated VLANs (private

clusters)

Support common virtual machine managers

(VMMs)

▪XEN, KVM, VMware

▪Support via libvirt library

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

43 44

45 46

47 48

http://unikernel.org/

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.9

VIM FEATURES - 3

Shared “Elastic” block storage

▪Facility to create/update/delete VM disk volumes

▪Amazon EBS

▪Eucalyptus SC

▪OpenStack Volume Controller

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

 Middleware to manage Docker application container

deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

CONTAINER ORCHESTRATION

FRAMEWORKS

 Public cloud container cluster services

 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service

 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add -on (alpha-July 2018)

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

CONTAINER SERVICES

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

CLOUD ENABLING TECHNOLOGY

 Each tenant (like in an apartment) has their own view of the

application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to

data and configuration that is not their own

 Customizable features

▪ UI, business process, data model, access control

 Application architecture

▪ User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

4. MULTITENANT APPLICATIONS

 Forms the basis for SaaS (applications)

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

MULTITENANT APPS - 2

49 50

51 52

53 54

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.10

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

REST: REPRESENTATIONAL STATE TRANSFER

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.59

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>

</soap:Body>

</soap:Envelope>

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.60

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

55 56

57 58

59 60

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2021]

Slides by Wes J. Lloyd L13.11

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.61

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>

</message>

<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>

</message>

<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">

<input message="tns:DayOfWeekInput"/>

<output message="tns:DayOfWeekResponse"/>

</operation>

</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">

<soap:operation soapAction="getdayofweek"/>

<input>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="DayOfWeekService" >

<documentation>

Returns the day-of-week name for a given date

</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>

</service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪ Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

REST - 2

 Performance: component interactions can be the dominant

factor in user -perceived per formance and network ef ficiency

 Scalabi lity : to suppor t large numbers of services and

interactions among them

 Simplicity : of the Uniform Inter face

 Modifiabil ity: of services to meet changing needs (even while the

appl ication is running)

 Visibil ity: of communication between services

 Por tabil ity: of services by redeployment

 Reliabil ity: resists fai lure at the system level as redundancy of

infrastructure is easy to ensure

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

REST ARCHITECTURAL ADVANTAGES

QUESTIONS-

November 16, 2021
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.65

61 62

63 64

65

