
Resource Management for Cloud Functions with
Memory Tracing, Profiling and Autotuning

Duy Tran, Pragati Chidanand Patil, and Ranjana Bongale Ganesh

Presented by Team 8

Agenda

▷ Problem Introduction
▷ Proposed Solution
▷ Summary of Technology Approach
▷ Experimental Evaluation
▷ Conclusion
▷ Critique (Strengths, Weaknesses, and Evaluation)
▷ GAPs
▷ Q&A

2

FaaS - Function as a Service

▷ Advantages
○ Developers are free from Infrastructural concerns

■ Instance activation
■ Auto-scaling

▷ Problems introduced
○ Expose users to low-level decision making

■ Amount of memory to allocate
■ Coarse-grained profiles
■ No tracing tools available
■ Memory-allocation waste
■ Do not systematically trace actual versus declared memory consumption

3

Problem Introduced in the Paper

Author contributes tools to :

▷ Measure memory consumption of containerised functions

execution over time to create trace profiles

○ FuncTracer
▷ Pricing forecast and adjust memory dynamically

○ AutoTuner
▷ Reuse Trace files to perform monetary analysis

○ Cost Calculator
Brief description on the tools are in the next slides.

4

 How the problem is solved?

▷ EMARS: Efficient Management and Allocation of Resources in
Serverless
Aakanksha Saha;Sonika Jindal 2018 IEEE 11th International Conference on Cloud Computing (CLOUD) Year: 2018 | Conference Paper | Publisher: IEEE

▷ Two models proposed for efficient memory allocation:
○ Workload based Modelling - Number of requests for each function are logged and details are

sent to the config generator thread which stores this value for every function and retrieved for use
in any new function calls.

○ Memory based Modelling - Capture Memory requirements using docker stats.
○ Config generator - Workload based model and the Memory based model feed their data to the

config generator thread which generates the optimal memory configurations per function and
recommends these configurations for the creation and execution of containers.

Missing From the author’s work:
▷ The authors have not performed any testing on the realistic workloads.
▷ The authors also mention that ‘Some intelligence can be added to the config generator to figure out the

optimal memory limits based upon the logged information’.
5

Related Work (in working process…)

Measure the memory usage
of a containerised function
to create trace profiles.

Apply the trace profiles to
record the runtime with
memory limits.

Display the traces and
calculate the potential
economic gains.

functracer autotuner costcalculator

6

Summary of new technology, approach, or
benchmark

▷ To reclaim the unused memory of invoking cloud functions, the author propose three
tools:

6

Tracing method

▷ Convex hull function (Gift Wrapping Algorithm)

▷ It apply a tight fitting convex boundary around

the points or shape.

functracer

7

Summary of new technology, approach, or
benchmark

▷ To reclaim the unused memory of invoking cloud functions, the author propose three
tools:

7

autotuner costcalculator

functracer

8

Summary of new technology, approach, or
benchmark

▷ To reclaim the unused memory of invoking cloud functions, the author
propose three tools:

8

Interface Metrics of interest

Docker usage_in_bytes, limit_in_bytes

OpenFaas & Kubernetes metrics-server

Google Cloud Functions & Google Run

function/user_memory_bytes
container/memory/utilizations

container/memory/allocation_time

autotuner costcalculator

autotuner

9

Summary of new technology, approach, or
benchmark

▷ To reclaim the unused memory of invoking cloud functions, the author propose three tools:

9

Autotuning method

▷ Attached to functracer.
▷ Dynamically adjust the memory

allocations for containers.
▷ Benefits FaaS providers to execute more

contains if know the peak memory.

functracer costcalculator

Cost calculation method

▷ Re-use the trace files to perform a

monetary analysis.

▷ The log output will display the

resource usage, wasted resource.

functracer autotuner costcalculator

10

Summary of new technology, approach, or
benchmark

▷ To reclaim the unused memory of invoking cloud functions, the
author propose three tools:

10

Experimental
Evaluation & Approach

11

Three practical tools

▷ functracer
▷ autotuner
▷ costcalculator

Coarse-grained vs Fine-grained Allocation

12

Functracer - Tracing method

13

The ability to trace depends on the interfaces

▷ OpenFaaS running on docker(FaaSd)

▷ Kubernetes(faasnetes)

▷ Google cloud functions(GCFs)

▷ Pure Docker container tracing

▷ Using recent versions of docker command line tools, tracing

can be done more accurately.

▷ This technique works for short lived as well as for long

duration function.

▷ Experiments shows fine grained dynamic allocation with auto

tuning helps to reduce memory and time wastage across

different functions.

Tracing for Docker

14

Experimental
Evaluation & Approach

15

Three practical tools

▷ Functracer

▷ Autotuner
▷ Cost Calculator

Autotuning
● Dynamically adjust memory

allocation for containers.

● It can be standalone or part

of functracer

● With autotuning we can

save 0-50% for fine grained

static allocation whereas we

can save up to 90% for

dynamic allocation.

Reduce costly memory over allocation in cloud functions.

▷ Current FaaS – Trace memory consumption and

configure the minimum possible allocation.
▷ Next gen FaaS - Dynamically adjust the memory

allocation through vertical container resource scaling.

The coarse-grained metrics by cloud providers limits the

approach, this can be overcome in future.

Conclusion

16

After applying the three tools

▷ First, his tool autotuner promotes parallelism to execute more containers (more

overlapped grey lines).

▷ He claims that his tools maintain the overhead of static allocation below 50%.

▷ Without his autotuner, the overhead could rise above 90%. This is expensive from a cost

perspective.

After applying the three tools

17

Strength of the Paper

Wasted memory

▷ Needs lot of domain knowledge
▷ The approach differs depending on the interfaces, so

it is complex.
▷ The approach is not domain agnostic as the approach

needs adaptation based on type of interface.
▷ The coarse-grained metrics by cloud providers limits

the approach.
▷ The approach does not work for most of the use cases

due to the above limitation.

Weakness of the Paper

18

Critique: Evaluation

▷ Authors’ paper requires more research and clearer
definition of the following
○ No environment setup details provided
○ Unclear use of terms (ex: Advanced FaaS, hull?)
○ Not enough information to repeat/reproduce tests
○ Use of acronyms in Abstract and elsewhere in the

paper
○ Assumptions not consistent with current knowledge
○ No credits provided to the co-developer of tools

19

▷ The author, Josef Spillner, did make an achievement by reclaiming the wasted memory.

▷ Since this is a workshop paper, his paper lacks the explanation on how he implemented the

three tools (functracer, autotuner, and costalculator).

▷ Many future works and limitations:

○ In his most important tools, the autotuner needs to be improved by reducing further

the memory gap between static coarse-grained memory allocation and actually used

memory.

○ autotuner needs to interface with more commercial FaaS management APIs.

Currently, there are only three available interfaces.

○ His costcalculator only uses both coarse-grained and fine-grained resource metrics

(time and memory allocation); it cannot make uses of any representative metrics from

Docker engine.

Paper’s Gaps

20

Thank you for listening!

Q&A session

Duy Tran, Pragati Chidanand Patil, and Ranjana Bongale Ganesh

Presented by

21

