Faster and Cheaper Serverless Computing on Harvested Resources

Authors: Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini

Presenters: Bob Schmitz, Danielle Lambion, and Viktoriya Grishkina

December 2, 2021

BE BOUNDLESS

Outline

- > Introduction
- > Background/Related Work
- > Summary of Technology
- > Key Research Contributions
- > Experimental Evaluation
- > Conclusions
- > Paper's Strengths / Weaknesses
- > Evaluation of Paper
- > Identifying Gaps
- > Questions?

Introduction

What's the problem?

- > Serverless providers are required to manage the underlying VMs used for hosting serverless requests
- > The driving factor of costs for providers is tied to resources that need to be allocated for serverless functions
 - Serverless providers must must maintain high reliability and performance while keeping cost low

UNIVERSITY of WASHINGTON

Introduction

What can be done to keep cost down for serverless applications?

> Use Harvest VMs [1]

- A proposed VM class in a published research paper by Microsoft (not currently available to the public)
- Available for much cheaper due to relaxed guarantees of availability, similar to Spot requests
- Can provide better performance than Spot Request and regular VMs because resources will grow or shrink based off availability on the host server
- 30 second warning prior to eviction

Introduction

What are the challenges of using Harvest VMs for FaaS?

- > Harvested resources are evictable
 - A mixture of "regular" VMs and Harvest VMs may be required for high reliability
- > Managing Harvest VMs variability (i.e. hardware, heterogeneity) depends on designing an effective load balancer
 - OpenWhisk an open-source FaaS platform was used for both managing load balancing and monitoring resources

UNIVERSITY of WASHINGTON

Background/Related Work

Serverless computing and FaaS

- > Serverless provides the ability to upload code for applications without having to manage underlying resources
- > Serverless providers must have resources at the ready whenever a function is executed
- > Users only pay for resources utilized while running FaaS
- > A published paper has shown that 50% of FaaS functions run for less than 1 second and 90% run less than 10 seconds on average <u>https://www.microsoft.com/en-us/research/uploads/prod/2020/05/serverless-ATC20.pdf</u>

Background/Related Work

Harvest VMs

- New proposed class of virtual machine resource >
- vCPU and memory will grow or shrink based off availability on the host > server

https://www.microsoft.com/en-us/research/uploads/prod/2020/09/HarvestVMs-SLOs-OSDI20.pdf

Apache OpenWhisk

- OpenWhisk is an open-source FaaS platform which allows users to > monitor resources and manage load balancing
- Several works have been published on scheduling, however they > assumed constant resources (unlike Harvest VMs) UNIVERSITY of WASHINGTON

Summary Harvest VMs Setup

- A 14-day period was selected as a trial period for collection metrics > (traces) from Harvest VMs and serverless workflows
- **37 harvest VM instances** >
- To match the minimum memory of 16GB, vCPU count was limited to 32 >
- The average vCPU change was 12 >
- The maximum vCPU size was 30 >
- More than 90% of the Harvest VMs run longer than a day (w/o eviction) >
- The majority of invocations of FaaS executions (86%) are shorter than 1 > sec., the longest one is a little less than 10 minutes

Summary

Methodology for Handling Harvest VMs Variability

- > Strategy 1: No Failures
- > Strategy 2: Bounded failures
- > Strategy 3: Live and Let Die

UNIVERSITY of WASHINGTON

Summary

Developing/Implementing an Effective Load Balancer

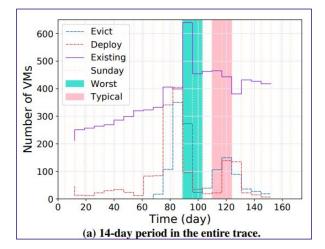
- > "Vanilla" OpenWhisk load balancer
- > Join-the-Shortest-Queue (JSQ)
 - Monitors the compute load of each backend VM
 - Authors approximated pending compute work with
 - where w_c > w_m

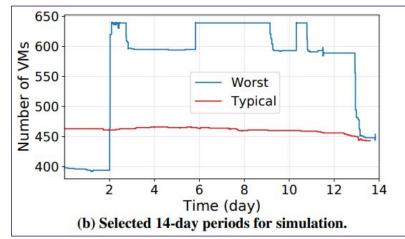
- $w_c \frac{cpu_{used}}{cpu_{avail}} + w_m \frac{mem_{used}}{mem_{avail}}$
- Distributes the work to the least utilized VM
- > Min-Worker-Set (MWS)
 - Distributes to a smaller set of VMs

Summary

OpenWhisk Implementation

- > Modifications to this FaaS platform are represented with a dotted line
- > Invokers are deployed one per VM to manage containers
- > Harvest Monitor modules are deployed to gather
 - CPUs allocated
 - cumulative CPU time
 - scheduled deallocation event
- > A Resource Monitor module is used to track the resource variation in our system
- > The Invoker and Controller implement the resource variation-aware MWS algorithm


UNIVERSITY of WASHINGTON

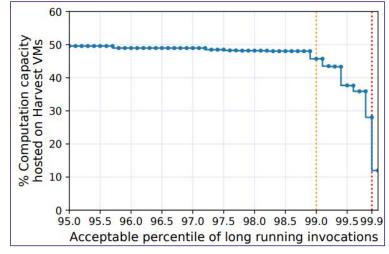

Key Contributions

- 1. FaaS are much cheaper cost on Harvest VMs compared to regular VMs
 - harvested resources achieve 48% to 89% cost savings compared to regular VMs
- 2. Performance of FaaS is better on Harvest VMs versus regular VMs
 - harvested resources achieves 2.2× to 9.0× higher throughput compared to regular VMs due to the ability to consume more vCPU and memory when available
- 3. Min-Worker-Set (MWS) load balancer algorithm is shown to be effective at managing Harvest VMs variability (i.e. vCPU/memory)
 - 22.6× higher throughput compared to "vanilla" OpenWhisk load balancer due to addressing resource variability

Experimental Evaluation Handling Evictions

- > If an eviction occurs, a running function will fail
- > Eviction rate = # of evictions / # of existing VMs
- > The average eviction rate over 14 days is 13.1%

Experimental Evaluation Handling Evictions


Strategy 1: No eviction failures

- > Long applications (>=1 invocation >30 seconds) are on regular VMs, all else on Harvest VMs
- > Least efficient provisioning strategy and high operational cost
- > 94% of invocations on regular VMs are still short

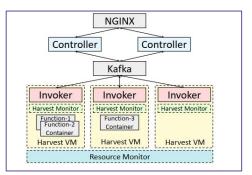
Experimental Evaluation Handling Evictions

Strategy 2: Bounded failures

- Provide an upper bound of acceptable evictions per application (e.g. 1%)
- Allocate regular VMs to applications that are in the xth (e.g. 99th) percentile duration
- > 94% of invocations on regular VMs are still short

UNIVERSITY of WASHINGTON

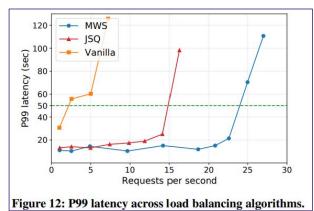
Experimental Evaluation Handling Evictions

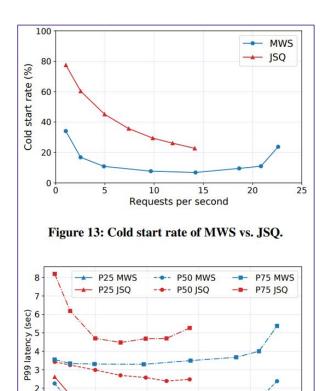

Strategy 3: Live and let die

- > Everything is on Harvest VMs
- > Average invocation failure rate is 0.0015%
- > The typical period has a failure rate of 3.68 X 10⁻⁸
 - 7 nines of reliability (99.99999% reliable)
- > Eviction is rare
 - Requires two low probability events to occur simultaneously
 - > A long invocation is running
 - > An eviction occurs

Experimental Setup

- OpenWhisk on Azure with Ansible
 On real Harvest VMs and traces
- > 1 Controller VM contains:
 - Core OpenWhisk components
 - NGINX
 - CouchDB
- > Variable number of invokers with their own VMs
- > Table 2 Python functions are used for benchmarking
- > Each experiment runs for 20 minutes, unless otherwise specified


Functions	Description
Floatop	Sine, cosine & square root
Matmult	Square matrix multiplication
Linpack	Linear equation solver
Chameleon	HTML table rendering
Pyaes	AES encryption & decryption
Image processing	Flip, rotate, resize, filter
	& grayscale images
Video processing	Grayscale video
Image classification	MobileNet inference
Text classification	Logistic regression



17

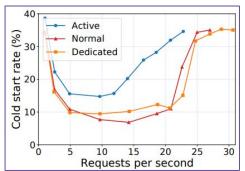
Evaluation Impact of Load Balancing

- > OpenWhisk with 10 invokers
- > Each hosted by Regular VM with:
 - 32 vCPUs
 - 128 GB memory
- > Each invoker varies between 5-28 CPUs

Requests per second

15

20


10

1

0

Evaluation Impact of Resource Variability

- > "Active" denotes a Harvest VM cluster with significant CPU changes
- > "Normal" denotes a Harvest VM cluster with normal variation
- > "Dedicated" denotes a dedicated cluster using regular VMs

120

20

Active MWS Normal MWS

Dedicated MWS

10

5

15

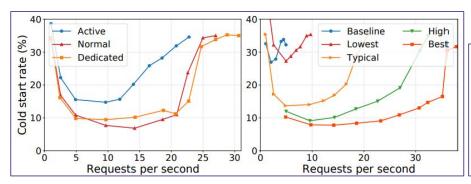
Requests per second

20

25

30

Active vanilla Dedicated vanilla


UNIVERSITY of WASHINGTON

19

Evaluation Cost vs. Performance

Budget is compared to cost of 2 Regular VMs with:

- > 16 CPUs
- > 64 GB

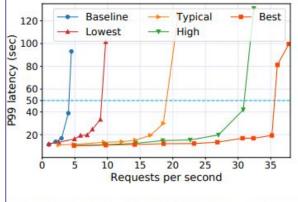


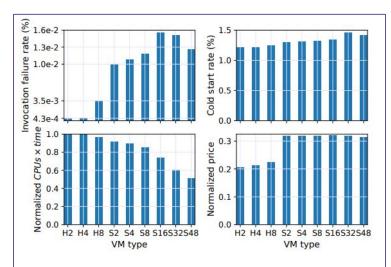
Figure 17: Regular vs Harvest VMs with same budget.

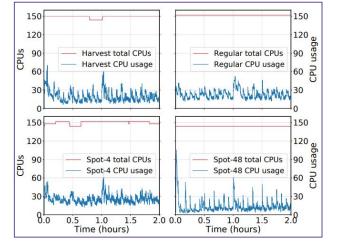
Discount	$d_{evict}(\%)$	dharv (%)	#VMs
Baseline (dedicated)	0	0	2
Lowest	48	48	6
Typical	70	80	12
High	80	90	18
Best	88	90	21

Table 3: Number of Harvest VMs with the same budget, based on the discount level.

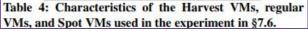
Evaluation Harvest vs. Spot VMs

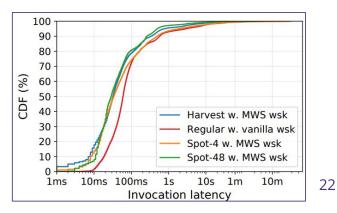
- Invocation failure rate are higher on VMs with more CPUs and more often on spot VMs
- CPU sensitivity is higher on Harvest
 VMs and decreases as the number
 of CPUs increases
 - CPUs X time normalized with the cluster's idle CPUs X time
- > Spot instances cost more
 - H2 offers 0.211\$/hour
 - Lowest per-CPU price of Spot VM is 0.313\$/hour




Figure 18: Harvest VMs vs Spot VMs. Hx refers to Harvest VMs with base size of x CPUs, and Sx refers to Spot VMs with x CPUs.

UNIVERSITY of WASHINGTON


21


Evaluation Experiments on Real Harvest VMs

- > Implemented on Azure
- > Number of CPUs cannot be controlled for these experiments
- > Tested on four clusters shown in Table 4

VM type	Base CPUs	Max CPUs	Memory
Harvest	2	6	16GB
Regular	8	8	32GB
Spot-4	4	4	16GB
Spot-48	48	48	192GB

Author's Conclusions

- > Adopting harvested resources improves efficiency and reduces costs for FaaS applications
 - 48%-89% cost savings over dedicated resources
 - Only 4.1% of FaaS invocations are longer than 30 seconds and >90% of Harvest VMs live longer than 1 day
 - Resource variation is relatively stable with 70% of CPU change intervals longer than the longest invocation time
 - Eviction is rare and is a joint probability of long running invocations and an eviction occurring simultaneously
- > MWS load balancing provides performance benefit of 22.6x higher throughput than vanilla OpenWhisk

UNIVERSITY of WASHINGTON

Critique: Strengths

- > A Harvest VM is more flexible and efficient than a spot instance
- Performance improvement serverless computing workloads on Harvest VMs significantly outperforms running them on regular VMs under the same cost budget
- Cold starts due to optimization of a load balancer are also minimal when the workload runs on Harvest VMs
- > Cost savings when provisioned with the same amount of resources

Critique: Weaknesses

- > Limited to small workloads (for example as FaaS), longer workloads could be evicted. Long applications (longer than 30s invocation period) should be run on a regular VM
- > Resource variations in Harvest VMs CPU changes. Despite offering a large amount of resources at low price, evictions and resource variation can impact the system reliability and performance
- > Harvest VMs tend to be more heterogeneous than regular VMs

UNIVERSITY of WASHINGTON

Critique: Evaluation

- > Add a conclusion for every area of study (subtopic)
- > Expand section 8 Conclusion, briefly state conclusion for the study above

Gaps

- > The latency of the three algorithms was depicted in a graph for regular VM (Faster and Cheaper Serverless Computing on Harvested Resources, p.733); however, it would be beneficial to build a graph for Harvest VM as well.
- For subtopic 7 add comparison for Harvest VMs vs Regular VMs
- > Add strategy how to combine Regular and Harvest VMs

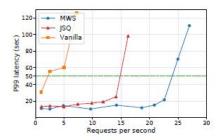


Figure 12: P99 latency across load balancing algorithms.

UNIVERSITY of WASHINGTON

28

"If someone asks me what cloud computing is, I try not to get bogged down with definitions. I tell them that, simply put, cloud computing is a better way to run your business."

- Marc Benioff, Founder, CEO and Chairman, Salesforce