
Faster and Cheaper 
Serverless Computing on 
Harvested Resources

Presenters: Bob Schmitz, Danielle Lambion, and Viktoriya Grishkina

December 2, 2021

Authors: Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, 
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini

1

> Introduction
> Background/Related Work
> Summary of Technology
> Key Research Contributions
> Experimental Evaluation
> Conclusions
> Paper’s Strengths / Weaknesses
> Evaluation of Paper
> Identifying Gaps
> Questions?

Outline

2



What’s the problem?
> Serverless providers are required to manage the underlying VMs 

used for hosting serverless requests
> The driving factor of costs for providers is tied to resources that 

need to be allocated for serverless functions
– Serverless providers must must maintain high reliability and 

performance while keeping cost low

Introduction

3

What can be done to keep cost down for serverless 
applications?
> Use Harvest VMs [1]

– A proposed VM class in a published research paper by Microsoft
(not currently available to the public)

– Available for much cheaper due to relaxed guarantees of availability, 
similar to Spot requests

– Can provide better performance than Spot Request and regular VMs 
because resources will grow or shrink based off availability on the 
host server

– 30 second warning prior to eviction

Introduction

4[1] AMBATI, P., GOIRI, Í., FRUJERI, F., GUN, A., WANG, K., DOLAN, B., CORELL, B., PASUPULETI, S., MOSCIBRODA, T., ELNIKETY, S., AND BIANCHINI, R. 
Providing SLOs for Resource-Harvesting VMs in Cloud Platforms. In OSDI (2020).



What are the challenges of using Harvest VMs for FaaS?
> Harvested resources are evictable

– A mixture of “regular” VMs and Harvest VMs may be required for high 
reliability

> Managing Harvest VMs variability (i.e. hardware, heterogeneity) 
depends on designing an effective load balancer
– OpenWhisk an open-source FaaS platform was used for both 

managing load balancing and monitoring resources

Introduction

5

Serverless computing and FaaS
> Serverless provides the ability to upload code for applications 

without having to manage underlying resources
> Serverless providers must have resources at the ready whenever 

a function is executed
> Users only pay for resources utilized while running FaaS
> A published paper has shown that 50% of FaaS functions run for 

less than 1 second and 90% run less than 10 seconds on average
https://www.microsoft.com/en-us/research/uploads/prod/2020/05/serverless-ATC20.pdf

Background/Related Work

6



Harvest VMs
> New proposed class of virtual machine resource
> vCPU and memory will grow or shrink based off availability on the host 

server
https://www.microsoft.com/en-us/research/uploads/prod/2020/09/HarvestVMs-SLOs-OSDI20.pdf

Apache OpenWhisk
> OpenWhisk is an open-source FaaS platform which allows users to 

monitor resources and manage load balancing
> Several works have been published on scheduling, however they 

assumed constant resources (unlike Harvest VMs)  

Background/Related Work

7

> A 14-day period was selected as a trial period for collection metrics 
(traces) from Harvest VMs and serverless workflows

> 37 harvest VM instances
> To match the minimum memory of 16GB, vCPU count was limited to 32
> The average vCPU change was 12
> The maximum vCPU size was 30
> More than 90% of the Harvest VMs run longer than a day (w/o eviction)
> The majority of invocations of FaaS executions (86%) are shorter than 1 

sec., the longest one is a little less than 10 minutes

Summary
Harvest VMs Setup

8



> Strategy 1: No Failures

> Strategy 2: Bounded failures

> Strategy 3: Live and Let Die

Summary
Methodology for Handling Harvest VMs Variability

9

> “Vanilla” OpenWhisk load balancer
> Join-the-Shortest-Queue (JSQ)

– Monitors the compute load of each backend VM
– Authors approximated pending compute work with

where wc > wm
– Distributes the work to the least utilized VM

> Min-Worker-Set (MWS)
– Distributes to a smaller set of VMs

Summary
Developing/Implementing an Effective Load Balancer

10



> Modifications to this FaaS platform are 
represented with a dotted line

> Invokers are deployed one per VM to 
manage containers

> Harvest Monitor modules are deployed to 
gather
– CPUs allocated
– cumulative CPU time
– scheduled deallocation event

> A Resource Monitor module is used to 
track the resource variation in our system

> The Invoker and Controller implement the 
resource variation-aware MWS algorithm

Summary
OpenWhisk Implementation

11

1. FaaS are much cheaper cost on Harvest VMs compared to regular VMs
– harvested resources achieve 48% to 89% cost savings compared to 

regular VMs
2. Performance of FaaS is better on Harvest VMs versus regular VMs

– harvested resources achieves 2.2× to 9.0× higher throughput 
compared to regular VMs due to the ability to consume more vCPU 
and memory when available

3. Min-Worker-Set (MWS) load balancer algorithm is shown to be 
effective at managing Harvest VMs variability (i.e. vCPU/memory)
– 22.6× higher throughput compared to “vanilla” OpenWhisk load 

balancer due to addressing resource variability

Key Contributions

12



> If an eviction occurs, a running function will fail
> Eviction rate = # of evictions / # of existing VMs
> The average eviction rate over 14 days is 13.1%

Experimental Evaluation
Handling Evictions

13

Strategy 1: No eviction failures
> Long applications (>=1 invocation >30 seconds) are on regular 

VMs, all else on Harvest VMs
> Least efficient provisioning strategy and high operational cost
> 94% of invocations on regular VMs are still short

Experimental Evaluation
Handling Evictions

14



Strategy 2: Bounded failures
> Provide an upper bound of 

acceptable evictions per 
application (e.g. 1%)

> Allocate regular VMs to 
applications that are in the xth 
(e.g. 99th) percentile duration 

> 94% of invocations on regular 
VMs are still short

Experimental Evaluation
Handling Evictions

15

Strategy 3: Live and let die
> Everything is on Harvest VMs
> Average invocation failure rate is 0.0015%
> The typical period has a failure rate of 3.68 X 10-8

– 7 nines of reliability (99.99999% reliable)
> Eviction is rare

– Requires two low probability events to occur simultaneously
> A long invocation is running
> An eviction occurs

Experimental Evaluation
Handling Evictions

16



> OpenWhisk on Azure with Ansible
– On real Harvest VMs and traces

> 1 Controller VM contains:
– Core OpenWhisk components
– NGINX
– CouchDB

> Variable number of invokers with their 
own VMs

> Table 2 Python functions are used for 
benchmarking

> Each experiment runs for 20 minutes, 
unless otherwise specified

Experimental Setup

17

> OpenWhisk with 10 invokers
> Each hosted by Regular VM with:

– 32 vCPUs
– 128 GB memory

> Each invoker varies between 5-28 CPUs

Evaluation
Impact of Load Balancing

18



Evaluation
Impact of Resource Variability

19

> “Active” denotes a Harvest VM cluster 
with significant CPU changes

> “Normal” denotes a Harvest VM cluster 
with normal variation

> “Dedicated” denotes a dedicated cluster 
using regular VMs

Evaluation
Cost vs. Performance

20

Budget is compared to cost of 2 Regular 
VMs with:
> 16 CPUs
> 64 GB



Evaluation
Harvest vs. Spot VMs

21

> Invocation failure rate are higher on 
VMs with more CPUs and more 
often on spot VMs

> CPU sensitivity is higher on Harvest 
VMs and decreases as the number 
of CPUs increases
– CPUs X time normalized with the 

cluster’s idle CPUs X time
> Spot instances cost more

– H2 offers 0.211$/hour
– Lowest per-CPU price of Spot VM 

is 0.313$/hour

Evaluation
Experiments on Real Harvest VMs

22

> Implemented on Azure
> Number of CPUs cannot be controlled for 

these experiments
> Tested on four clusters shown in Table 4



> Adopting harvested resources improves efficiency and reduces 
costs for FaaS applications
– 48%-89% cost savings over dedicated resources
– Only 4.1% of FaaS invocations are longer than 30 seconds and >90% of 

Harvest VMs live longer than 1 day
– Resource variation is relatively stable with 70% of CPU change 

intervals longer than the longest invocation time
– Eviction is rare and is a joint probability of long running invocations 

and an eviction occurring simultaneously
> MWS load balancing provides performance benefit of 22.6x higher 

throughput than vanilla OpenWhisk

Author’s Conclusions

23

> A Harvest VM is more flexible and efficient than a spot instance
> Performance improvement serverless computing workloads on 

Harvest VMs significantly outperforms running them on regular 
VMs under the same cost budget

> Cold starts due to optimization of a load balancer are also 
minimal when the workload runs on Harvest VMs

> Cost savings when provisioned with the same amount of 
resources 

Critique: Strengths

24



> Limited to small workloads (for example as FaaS), longer 
workloads could be evicted. Long applications (longer than 30s 
invocation period) should be run on a regular VM

> Resource variations in Harvest VMs – CPU changes. Despite 
offering a large amount of resources at low price, evictions and 
resource variation can impact the system reliability and 
performance

> Harvest VMs tend to be more heterogeneous than regular VMs

Critique: Weaknesses

25

> Add a conclusion for every area of study (subtopic)
> Expand section 8 - Conclusion, briefly state conclusion for the 

study above

Critique: Evaluation

26



> The latency of the three algorithms was depicted 
in a graph for regular VM (Faster and Cheaper 
Serverless Computing on Harvested Resources, 
p.733); however, it would be beneficial to build a 
graph for Harvest VM as well.

> For subtopic 7 add comparison for Harvest VMs vs 
Regular VMs

> Add strategy how to combine Regular and Harvest 
VMs

Gaps

27

“If someone asks me what cloud computing is, I try not to get 
bogged down with definitions. I tell them that, simply put, cloud 
computing is a better way to run your business.”

- Marc Benioff, Founder, CEO and Chairman, Salesforce

Questions

28


