
https://dl.acm.org/doi/10.1145/3429880.3430097

Paper Review
TCSS 562 Software Engineering For Cloud Computing

By Shishir Reddy & Anindya Dey

1

● INTRODUCTION

● RELATED WORK

● FISSION OVERVIEW

● ACTIVE STANDBY APPROACH

● KEY CONTRIBUTIONS

● EXPERIMENTS & RESULTS

● CONCLUSION & FUTURE WORK

● CRITIQUE

2

OUTLINE

3

INTRODUCTION

● Function-as-a-Service(FaaS) is at the heart of Serverless computing

● High Availability and Fault Tolerance are most essential

● Retry Mechanism (current approaches)

● Alternative Fault Tolerance approach (Active-Standby failover)

4

● AWS Lambda, Google Cloud Functions, Microsoft Azure Functions

● OpenFaaS , Fission

● Fault-Tolerance Shim for Serverless Computing

● Fault-tolerant and transactional stateful serverless workflows

RELATED WORK

FISSION OVERVIEW

5

Executor
 Pool Manager : pool of generic warm containers, no auto-scale
 New Deploy : creates K8s deployments, horizontal auto scaling

Router
 -routes a function call to corresponding pod
 -triggers retries in case of failures

Retry Mechanism
 1. Router receives a fn(function) call
 2. Checks if the fn service record exists in the cache
 a) No - executor creates a new service for the fn
 b) Yes - sends req to fn pod
 3. If req fails, retries for a fixed no. of times & finally removes it from
cache & performs step 2a) again. Fig 1 : Overview of retry mechanism in Fission

6

New Deploy
creates and maintains two fn instances

K8s Readiness Probe
specifies state of the pods, configures heartbeat

CoreDNS
maintains IP address of the pods

Retry Mechanism
1. CoreDNS receives req from user & returns IP of active pod to user.
2. User directly sends req to pod
3. Heartbeat

a) Every 1 second between active & passive
b) Active is running, Passive fails readiness test
c) Active fails, Passive succeeds readiness test and becomes active & a
new passive pod is created
d) Passive fails, a new passive pod is created.

PROPOSED ACTIVE-STANDBY APPROACH

Fig 2 : AS overview in Fission

7

● High Availability approach for FaaS
- describes the approach, provides implementation in Fission

● High Availability vs Retry approach comparison
- experiments and evaluation on Grid’ 5000 testbed

KEY CONTRIBUTIONS

8

Test Environment
Grid’5000 testbed
5 nodes on Lyon site to deploy K8s (1.11), Fission AS, Fission Vanilla(1.5.0)
1 node to invoke functions
1 node for fault injection
Each node - 2 CPUs Intel Xeon E5-2620 v4, 8 cores/CPU, 64 GB memory

EXPERIMENTAL SETUP

Applications
Fibonacci & Guestbook

Workload
3000 requests in 5 minutes(Tsung)

Test Scenarios
Pod failure & Node failure

Metrics
Performance (Throughput & Response Time)
Availability (and HTTP status code)
Resource Consumption

9

Throughput : Same in both (11 req/sec)

RESULTS - NO FAILURE

Fig 3 : Fibonacci without failures Fig 4 : Guestbook without failures

Response Time : Fission : 16 ms, Fission AS : 2 ms
(Router component (vanilla) vs Core DNS (in AS))

Fig 5 : Fibonacci with pod failures

10
Fig 6 :Guestbook application with pod failures

● Active-Standby and vanilla

react to the pod failure

differently

● Vanilla retries the function

execution many times

● Active-Standby immediately

forwards traffic to the

standby instance

RESULTS - POD FAILURE

11

Fig 7 : Fibonacci with node failures

Fig 8 : Guestbook application with node failures

● Figures 7(a) and 8(a) show

peaks in throughput for

vanilla

● After a node crash, requests

are queued for vanilla,

resulting in increased

waiting and response times

● Vanilla tolerates short

failures better

RESULTS - NODE FAILURE

12

Problem
Increase availability of serverless functions in FaaS platforms

Method
Active-Standby failover approach for FaaS platforms.

Results
Active Standby outperforms vanilla in terms of response time and availability while incurring
an overhead in resource consumption

CONCLUSION

FUTURE WORK

13

○ Explore additional fault-tolerance techniques within a FaaS context like
check-point restart, logging, replication.

○ Passive node can operate more as a load-balancer with smart
management.

○ Use applications that give a better standard of performance.
○ Use applications that have more real-world significance

●

○ Design a smart fault tolerant system for FaaS which can use these
techniques to automatically make the right trade off between
availability, performance, energy consumption

Additional
Fault-Tolerance

Techniques

Goals

Serverless Application
Testing

14

1. Active-Standby for High-Availability in FaaS (https://doi.org/10.1145/3429880.343009)

2. A Fault-Tolerance Shim for Serverless Computing
(https://dl.acm.org/doi/pdf/10.1145/3342195.3387535)

3. Fault-tolerant and transactional stateful serverless
workflows(https://www.usenix.org/system/files/osdi20-zhang_haoran.pdf)

REFERENCES

15

Performance Increase:

● With node failures, recovery times are
significantly better for AS

Observations:

● The vanilla fault-tolerance system of
Fission reacts much harsher to node
failures over pod failures

CRITIQUE: STRENGTHS

16

Trade-Offs:

● 15% CPU and 12% in-memory for a pod failure recovery time gain of 55% and 140%
● This time might be significantly less if retry counts are reduced in Vanilla

Scalability:

● CPU and Memory overhead do not scale well across networks of larger functions
● If every function requires a copy, might become cost-prohibitive

Assumptions:

● Assumed that functions are idempotent in both approaches (may not be the case in real world
scenarios)

CRITIQUE: WEAKNESSES

