12/9/2021

Keeping Serverless Computing Alive with Greedy Dual-Caching

Fuerst, Sharma | Indiana University Bloomington

FaasCache

Presented by: T. Pal, P. Kotak, D. Ralisback
University of Washington | Tacoma | Fall 2021

Outline

Introduction

Related work
Techniques

Key contributions
Experimental evaluation
Authors conclusion
Critique

Gap analysis

12/9/2021

Introduction | Background

Why use FaaS?
START
| o Infinite horizontal scaling
guwmuadd&
xtract code
| e Pay for what you use
Container
stars Cold e Scaling is transparent + independent of function
l implementation
Runtime
bootstrap
| Key Disadvantage: ‘Cold-starts’
Code Warm . . C e s .
me e Unavoidable overhead of container initialization
e e Loss of artifacts / network / caches

Image source: https://medium.com/@danielmanchev/cold-warm-and-hot-start-in-aws-lambda-bc8d64f28575

Introduction | Motivation

The problem: Cloud providers’ current handling of FaaS cold-starts is inefficient

Why it’s a problem
e Consumer : High/unpredictable latency, increased application code complexity

e Provider : Excess resource expenditure — wasted opportunity

Why care (as a researcher)?

e Researchers overlap with cloud consumers
e Provider cost reduction affects consumer costs
e Environmental -- less energy for same utility

e Expand the set of problems that can leverage FaaS

https://medium.com/@danielmanchev/cold-warm-and-hot-start-in-aws-lambda-bc8d64f28575

12/9/2021

Introduction | Hypothesis

e FaaS cold-start should not be treated as a new field of study
e Map results from caching research to the cold start problem.

= Cache = Cache
1. Cache hit; read data 1. Cache hit; give warm instance
L K
Application 3. Update cache = Dispatcher 3. Update cache
» >
Datastore)
2. Cache miss; retrieve data 2. Cache miss; cold start

Resource Pool

5
Related Work
Orthogonal + Complementary
e (Cold start latency reduction: container startup overheads / lightweight VM’s
e Optimizing environment restoration: [Catalyzer] checkpointing/restoring state
e DAG scheduling: allocation based on known workflow.
e Tightening CPU-share bounds: [ENSURE] reduce deprovisioning by increasing colocation.
e Warm pools: Keep containers warm through autoscaling with ‘pod migrations’
6

https://ipads.se.sjtu.edu.cn/_media/publications/duasplos20.pdf
https://arxiv.org/pdf/2003.03423.pdf

12/9/2021

‘Most-Related’ Work

Fixed-time keep-alive + polling: standard approach in industry (bad)
e Time series + predictive allocation: Preemptive allocation from usage patterns
e Primary Motivator: [AZURE] data set

Range of function invocation frequency ~10"8
% functions w/ frequency > 1/min 81%
% functions w/ total latency < 10s 75%
% functions w/ predictable periods 40%
% contribution of most frequent 20% of functions 99.6%

Missing considerations
e Surge traffic: [PCPM] Caching doesn’t help with surges of utilization, only reuse of existing functions

e Memory overhead: [FAA$T]

Techniques | Keep-alive Policies

® Scope: Optimize total latency at the

server level. A
MAX Memory usage
o Design trade-offs? (graph)
Idea
o Greedy-Dual-Size-Frequency caching
e Only evict when a new container
doesn’t fit
/O + Latency
e Favor: MIN
o small containers
o frequent use >
o high init costs No keep-alive Infinite keep-alive

[Warm Container Retention Time]

https://arxiv.org/pdf/2003.03423.pdf
https://www.usenix.org/system/files/hotcloud19-paper-mohan.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2021/06/socc2021-final21.pdf

12/9/2021

Techniques | Keep-alive Policies (cont.)

Evict container with lowest priority based on

priority = clock + (frequency x cost) / size

e clock: Shared by all containers. Increments after each eviction.
e frequency: the number of times the function has been invoked
e cost: cold start time of the function
e size: memory usage! of this container

Alternatives:

e Simplifies to LRU, LFU for param subsets
e Landlord algorithm is also possible.

Lcould also be the magnitude of an n-D “resource footprint vector”

Techniques | Server Provisioning Policies

Scope: determining the size and capacity of the servers for handling FaaS workloads

Design trade-offs? Analogous to server-level

—— Reuse Dist. —— GreedyDual

Static Approach
o Choose minimum cache size that achieves some
success metric
e Eg

o Cache Hit Ratio > threshold é
o Optimize marginal utility £
¢ e
Hit-ratio(c) = Z P(Reuse-distance = x) " Full Graph
x:O 00 25 50 75 100 125 15.0 175

Cache Size (GB)

10

10

12/9/2021

Techniques | Server Provisioning Policies

Shortcomings of Static Approach

e The caching analogy crumbles for concurrent executions (caches consider unique sets of objects)
e (Cache-hit-ratio is poisoned (to some degree) by concurrency. How to contend with this?

Dynamic Auto-scaling Policy (Periodically reoptimize VM memory size)

Calculate the ideal cache size with recent metrics A

e Assume there is an ideal miss rate HR(C,) =1-m=1- h_
e Compute > A

e Invert result to determine cache size

11

11

Key Contributions

e Equivalence between concepts: FaaS keep-alive = object caching
o Rigorous/extensive body of work to leverage for a new problem
e A specific family of keep-alive policies based on Greedy-Dual caching
o Cold start overhead reduction: 3x
o Application latency reduction: 6x
o Requests served per host: 2x

A static resource allocation policy based on cache hit ratio, and

an elastic policy based on maintaining an ideal hit ratio
o Reduces average server size by 30%

12

12

12/9/2021

Experimental Evaluation

e Experiments conducted
o Experimental evaluation of the caching based keep-alive and provisioning techniques was
conducted by using function workload traces and serverless benchmarks
e Experimental design
o Trace samples from the Azure Function trace
m Three trace samples

Trace Num Invocations Regs per sec Avg. IAT
e Rare Representative 1,348,162 190 /s 5.4 ms
° Representative Rare 202,121 30 /s 36 ms
Random 4,291,250 600 /s 1.8 ms

e Random
o Asingle server with 250 GB RAM and 48-core Intel Xeon Platinum 2.10 GHz CPUs is used for
running all functions.

13
13
Experimental Evaluation
e Methods used
o Trace-Driven Keep-Alive Evaluation
m It uses the Azure function traces to evaluate different keep-alive policies in the discrete
event simulator.
o OpenWhisk Evaluation
m Evaluating the performance of the FaasCache system on real functions.
14

14

12/9/2021

Key Experimental Results

e Figure 1 shows increase in execution time due to cold-starts for different workloads derived from the
Azure function trace.

o 2 @
E E E
IS = (= By
520 —® 5e N gus |y
‘é 1.5 LRU g \‘» 2 \
g % 6 ! f10 ¥
& HIST w et w kA
< 1.0 size S 4 SN = k)
] LND % SR o5 %
g 05 FREQ g 2 - = £ TEEmEERIaa ammea
= £ £ 50 e e
0.0 - B . o - - . g -
20 a0 60 80 = 20 a0 6 g0 # 10 20 30 40 50
Memory (GB) Memory (GB) Memary (GB)
(a) Representative functions. (b) Rare functions. () Random sampling.

e Figure 2 shows fraction of cold starts is lower with caching-based keep-alive.

50 — GD | 40
£ 30 HIST 2 £ 10
2 Te | B Z
ERTS #10 = 5
o o e o
40 60 80 20 40 60 -1o] 10 20 30 40 50
Memory (GB) Memory (GB) Memory (GB)
(a) Representative functions. (b) Rare functions. (¢) Random sampling.
15
15
Key Experimental Results
e Workload type versus the number of invocations is shown in figure 3
EEE OW Cold WmE OW Warm B FC Cold FC Warm
€ 20000 -
=
=
1]
[
o
>
£ 100001
-
5]
0 , ,
kewed Freq Cyclic Skewed Size
Workload Type
16
16

12/9/2021

Authors’ Conclusions

e Function keep-alive and object caching are equivalent problems
o Far-reaching implications in cloud resources management policies
o Future research should be viewed through this lens

e Specifically, Greedy-Dual (considering frequency and memory size) is a good heuristic

e Tradeoff between memory utilization and cold-start overheads can be analyzed with hit-ratio curves

e FaasCache - an OpenWhisk-based framework, implements Greedy-Dual caching-based techniques and produce
positive results

17

17
Critique: Strengths
e primary strengths
o Performance: Reduce cold-start overheads by 3, improve application-latency by 6, and reduce system load to
serve 2X more requests
o Cost-effective : To some extent. Greedy-Dual algorithm’s eviction policy is based on size and frequency of the
object
o Scalability : Supports diverse FaaS workload and server resources are adjustable using dynamic vertical-
scaling policy
e In general, new approaches that don’t provide at least a 10% performance improvement are not very
significant depending on the problem. An order of magnitude (10x) improvement is preferred.
o Improvements are not OOM, but the framework of thought seems significant
18
18

12/9/2021

Critique: Weaknesses

e Weaknesses:

o

o O O O O o

o

o

Favors superusers

It demands for huge infrastructure

This could be things such as complexity/effort of applying the approach, or it’s usability.
Requires adoption by cloud providers to reap benefits

All results are empirical. It would be interesting to see more theory developed around this
Deals with small datasets

In research, domain agnostic solutions can have broader impacts and importance than one-off
solutions for a specific use case.

Not enough information about security or fault tolerant characteristics

Not fully dynamic. It depends on the past traffic intensity(invocations per second)

Not useful for the concurrent execution of functions

19
19
Critique: Evaluation

e Authors have not talked about fault tolerance and the security of this method

e Narrow scoped experiment

e Notenough information available for reproducing tests

e In this paper, authors have discussed the GDSF impact on co-located application, cluster-level implementation but this

discussion lacks proofs.

20

10

12/9/2021

Gap Analysis

e This work warrants
o Arigorous definition of the mapping between the two problem spaces
o Abetter understanding of the differences between unique objects and concurrent functions
e Assumptions
o Users must know an ideal miss ratio
o Prior knowledge required to predict the EtE workload
o Memory is the only important factor.
e Future work
o Find better / more specific eviction heuristics (or learn them) for particular workloads
o Reconcile difference between hit ratio curve and actual curve (caused by concurrency)
o Combine with orthogonal related works section
o Separate init from function code for predictive loading.
o the tradeoff between function and other colocated application

21

21

Question break.

22

22

11

