
12/9/2021

1

FaasCache
Keeping Serverless Computing Alive with Greedy Dual-Caching

Fuerst, Sharma | Indiana University Bloomington

Presented by: T. Pal, P. Kotak, D. Ralisback
University of Washington | Tacoma | Fall 2021

Outline

● Introduction
● Related work
● Techniques
● Key contributions
● Experimental evaluation
● Authors conclusion
● Critique
● Gap analysis

2

1

2

12/9/2021

2

Introduction | Background

Why use FaaS?

● Infinite horizontal scaling

● Pay for what you use

● Scaling is transparent + independent of function
implementation

Key Disadvantage: ‘Cold-starts’

● Unavoidable overhead of container initialization

● Loss of artifacts / network / caches

3Image source: https://medium.com/@danielmanchev/cold-warm-and-hot-start-in-aws-lambda-bc8d64f28575

Introduction | Motivation

The problem: Cloud providers’ current handling of FaaS cold-starts is inefficient

Why it’s a problem

● Consumer : High/unpredictable latency, increased application code complexity

● Provider : Excess resource expenditure → wasted opportunity

Why care (as a researcher)?

● Researchers overlap with cloud consumers

● Provider cost reduction affects consumer costs

● Environmental -- less energy for same utility

● Expand the set of problems that can leverage FaaS

4

3

4

https://medium.com/@danielmanchev/cold-warm-and-hot-start-in-aws-lambda-bc8d64f28575

12/9/2021

3

Introduction | Hypothesis

● FaaS cold-start should not be treated as a new field of study

● Map results from caching research to the cold start problem.

5

Related Work

Orthogonal + Complementary

● Cold start latency reduction: container startup overheads / lightweight VM’s

● Optimizing environment restoration: [Catalyzer] checkpointing/restoring state

● DAG scheduling: allocation based on known workflow.

● Tightening CPU-share bounds: [ENSURE] reduce deprovisioning by increasing colocation.

● Warm pools: Keep containers warm through autoscaling with ‘pod migrations’

6

5

6

https://ipads.se.sjtu.edu.cn/_media/publications/duasplos20.pdf
https://arxiv.org/pdf/2003.03423.pdf

12/9/2021

4

‘Most-Related’ Work

● Fixed-time keep-alive + polling: standard approach in industry (bad)
● Time series + predictive allocation: Preemptive allocation from usage patterns
● Primary Motivator: [AZURE] data set

Missing considerations
● Surge traffic: [PCPM] Caching doesn’t help with surges of utilization, only reuse of existing functions
● Memory overhead: [FAA$T]

7

Range of function invocation frequency ~10^8

% functions w/ frequency > 1/min 81%

% functions w/ total latency < 10s 75%

% functions w/ predictable periods 40%

% contribution of most frequent 20% of functions 99.6%

Techniques | Keep-alive Policies

● Scope: Optimize total latency at the
server level.

● Design trade-offs? (graph)

Idea
● Greedy-Dual-Size-Frequency caching

● Only evict when a new container
doesn’t fit

● Favor:
○ small containers
○ frequent use
○ high init costs

8

7

8

https://arxiv.org/pdf/2003.03423.pdf
https://www.usenix.org/system/files/hotcloud19-paper-mohan.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2021/06/socc2021-final21.pdf

12/9/2021

5

Techniques | Keep-alive Policies (cont.)

Evict container with lowest priority based on

priority = clock + (frequency x cost) / size

● clock: Shared by all containers. Increments after each eviction.
● frequency: the number of times the function has been invoked
● cost: cold start time of the function
● size: memory usage1 of this container

__
Alternatives:
● Simplifies to LRU, LFU for param subsets
● Landlord algorithm is also possible.

9

1could also be the magnitude of an n-D “resource footprint vector”

Techniques | Server Provisioning Policies

Scope: determining the size and capacity of the servers for handling FaaS workloads

Design trade-offs? Analogous to server-level

10

Static Approach
● Choose minimum cache size that achieves some

success metric
● E.g.

○ Cache Hit Ratio > threshold
○ Optimize marginal utility

9

10

12/9/2021

6

Techniques | Server Provisioning Policies

Shortcomings of Static Approach

● The caching analogy crumbles for concurrent executions (caches consider unique sets of objects)
● Cache-hit-ratio is poisoned (to some degree) by concurrency. How to contend with this?

_

Dynamic Auto-scaling Policy (Periodically reoptimize VM memory size)

Calculate the ideal cache size with recent metrics
● Assume there is an ideal miss rate
● Compute →
● Invert result to determine cache size

11

Key Contributions

● Equivalence between concepts: FaaS keep-alive = object caching
○ Rigorous/extensive body of work to leverage for a new problem

● A specific family of keep-alive policies based on Greedy-Dual caching
○ Cold start overhead reduction: 3x

○ Application latency reduction: 6x

○ Requests served per host: 2x

● A static resource allocation policy based on cache hit ratio, and

● an elastic policy based on maintaining an ideal hit ratio
○ Reduces average server size by 30%

12

11

12

12/9/2021

7

Experimental Evaluation

● Experiments conducted
○ Experimental evaluation of the caching based keep-alive and provisioning techniques was

conducted by using function workload traces and serverless benchmarks

● Experimental design
○ Trace samples from the Azure Function trace

■ Three trace samples

● Rare

● Representative

● Random

○ A single server with 250 GB RAM and 48-core Intel Xeon Platinum 2.10 GHz CPUs is used for

running all functions.

13

Experimental Evaluation

● Methods used
○ Trace-Driven Keep-Alive Evaluation

■ It uses the Azure function traces to evaluate different keep-alive policies in the discrete

event simulator.

○ OpenWhisk Evaluation

■ Evaluating the performance of the FaasCache system on real functions.

14

13

14

12/9/2021

8

Key Experimental Results

● Figure 1 shows increase in execution time due to cold-starts for different workloads derived from the

Azure function trace.

● Figure 2 shows fraction of cold starts is lower with caching-based keep-alive.

15

Key Experimental Results

● Workload type versus the number of invocations is shown in figure 3

16

15

16

12/9/2021

9

Authors’ Conclusions

● Function keep-alive and object caching are equivalent problems

○ Far-reaching implications in cloud resources management policies
○ Future research should be viewed through this lens

● Specifically, Greedy-Dual (considering frequency and memory size) is a good heuristic

● Tradeoff between memory utilization and cold-start overheads can be analyzed with hit-ratio curves

● FaasCache - an OpenWhisk-based framework, implements Greedy-Dual caching-based techniques and produce

positive results

17

Critique: Strengths

● primary strengths

○ Performance: Reduce cold-start overheads by 3×, improve application-latency by 6×, and reduce system load to

serve 2× more requests

○ Cost-effective : To some extent. Greedy-Dual algorithm’s eviction policy is based on size and frequency of the

object

○ Scalability : Supports diverse FaaS workload and server resources are adjustable using dynamic vertical-

scaling policy

● In general, new approaches that don’t provide at least a 10% performance improvement are not very

significant depending on the problem. An order of magnitude (10x) improvement is preferred.

○ Improvements are not OOM, but the framework of thought seems significant

18

17

18

12/9/2021

10

Critique: Weaknesses
● Weaknesses:

○ Favors superusers

○ It demands for huge infrastructure

○ This could be things such as complexity/effort of applying the approach, or it’s usability.

○ Requires adoption by cloud providers to reap benefits

○ All results are empirical. It would be interesting to see more theory developed around this

○ Deals with small datasets

○ In research, domain agnostic solutions can have broader impacts and importance than one-off

solutions for a specific use case.

○ Not enough information about security or fault tolerant characteristics

○ Not fully dynamic. It depends on the past traffic intensity(invocations per second)

○ Not useful for the concurrent execution of functions

19

Critique: Evaluation

● Authors have not talked about fault tolerance and the security of this method

● Narrow scoped experiment

● Not enough information available for reproducing tests

● In this paper, authors have discussed the GDSF impact on co-located application, cluster-level implementation but this
discussion lacks proofs.

19

20

12/9/2021

11

Gap Analysis

● This work warrants

○ A rigorous definition of the mapping between the two problem spaces

○ A better understanding of the differences between unique objects and concurrent functions

● Assumptions

○ Users must know an ideal miss ratio

○ Prior knowledge required to predict the EtE workload

○ Memory is the only important factor.

● Future work

○ Find better / more specific eviction heuristics (or learn them) for particular workloads

○ Reconcile difference between hit ratio curve and actual curve (caused by concurrency)

○ Combine with orthogonal related works section

○ Separate init from function code for predictive loading.

○ the tradeoff between function and other colocated application

21

Question break.

22

21

22

