
TCSS 562: Software Engineering ​School of Engineering and
Technology
for Cloud Computing University of Washington –
Tacoma
Fall 2020
http://faculty.washington.edu/wlloyd/courses/tcss​562

Tutorial 10 – Introduction to FaaS Runner

Disclaimer: Subject to updates as corrections are found
Version 0.01

Scoring: 40 pts maximum

The purpose of this tutorial is to provide a comprehensive overview of many of FaaS Runners most important
features. This tutorial will cover creating complex experiments, automating them, and creating pipelines of
functions.

1. Download the FaaS Runner tutorial functions.

To begin, using git, clone the GitHub repository for this tutorial.

If you do not already have git installed, plus do so.

On ubuntu see the official documentation:
https://help.ubuntu.com/lts/serverguide/git.html.en

For a full tutorial on the use of git, here is an old tutorial for TCSS 360:
http://faculty.washington.edu/wlloyd/courses/tcss360/assignments/TCSS360_w2017_Tutorial_1.pdf

If you prefer using a GUI-based tool, on Windows/Mac check out the GitHub Desktop:
https://desktop.github.com/

Once having access to a git client, create a folder and clone the source repository:

This tutorial builds upon Tutorial 4. If you have not completed that tutorial, please review it and install any
dependencies (such as Maven and the AWS CLI). This tutorial does not require code changes but does require
being able to deploy functions using the built in publish scripts.

SAAF Documentation: ​https://github.com/wlloyduw/SAAF/tree/master/java_template

FaaS Runner Documentation: ​https://github.com/wlloyduw/SAAF/tree/master/test

1

git clone ​https://github.com/RCordingly/faas_runner_tutorial

http://faculty.washington.edu/wlloyd/courses/tcss360
https://help.ubuntu.com/lts/serverguide/git.html.en
http://faculty.washington.edu/wlloyd/courses/tcss360/assignments/TCSS360_w2017_Tutorial_1.pdf
https://desktop.github.com/
https://github.com/wlloyduw/SAAF/tree/master/java_template
https://github.com/wlloyduw/SAAF/tree/master/test

2. Deploy the Included Functions

Included in the repository are four functions that need to be deployed to AWS Lambda. To simplify this process,
SAAF's built in publish scripts can be used to deploy them automatically. The repository contains three 'Hello
World' functions; pello_world, jello_world, and nello_world, and the CalcsService function.

The Jello/Pello/Nello naming is because these are Hello World functions written in ​J​ava, ​P​ython, and ​N​ode.js
respectively. SAAF supports functions written in each of these languages.

To deploy these, we must first configure each config.json file with a role ARN. You should already have an ARN
created from Tutorial 4 so you can retrieve that by visiting the AWS webpage, go to IAM -> Roles and select the
role you would like to use.

Copy your ARN shown at the top of the page. All functions can share the same ARN. Next open the ​config.json
files located in each function's ​deploy​ folder and paste the ARN into the JSON attribute called​ lambdaRoleARN​.
No other attributes in the config files need to be changed.

You may use any text editor to enter the ARN. The example below shows opening each file in Nano.

2

3. Deploy each Function.

Once each configuration file has an ARN, each function should be able to be deployed using the publish scripts.

The publish scripts automatically package functions and can deploy them to AWS Lambda, Google Cloud
Functions, IBM Cloud Functions, and Azure Functions. Here we are just deploying to AWS Lambda with a
memory reservation setting of 1024 MBs. The publish scripts can be used to deploy new functions or update
existing functions.

To verify that each deployment was successful, the publish script will automatically invoke the function with
the ​test​ payload in the config file. Verify that each function was deployed and executed successfully. The
output should look similar to the example below.

3

cd {base directory where project was cloned}
nano pello_world/deploy/config.json
nano jello_world/deploy/config.json
nano nello_world/deploy/config.json
nano calcService/deploy/config.json

cd {base directory where project was cloned}

./publish.sh AWS GCF IBM AZURE MEMORY
./pello_world/deploy/publish.sh 1 0 0 0 1024
./jello_world/deploy/publish.sh 1 0 0 0 1024
./nello_world/deploy/publish.sh 1 0 0 0 1024
./calcs_service/deploy/publish.sh 1 0 0 0 1024

Each function should now be visible on the AWS Lambda web page:

4. Running an Experiment with FaaS Runner

Now that we have all of our functions deployed, we will begin running some experiments with FaaS Runner. To
work with FaaS Runner, open the ​test​ folder in a terminal and execute the ​faas_runner.py​ script.

FaaS Runner uses two types of files. Function files, which define the endpoints needed to execute a function,
and experiment files that define how to process an experiment. Let's execute the built-in calcsService
experiment to get an understanding of what FaaS Runner is doing and how the output is recorded.

4

cd ./test
./faas_runner.py ​-f ./functions/calcsService.json ​ ​-e ./experiments/calcsServiceExp1.json

The ​-f ​flag defines the path to the function file and ​-e defines the path to the experiment file. After executing
this function FaaS Runner should execute the entire experiment and automatically open a spreadsheet on
MacOS and Linux.

FaaS Runner produces a lot of output text to show what is going on. It is broken into section that will be
explained here.

The first section is where the function information and experiment data are loaded. Here you can see the list of
loaded functions, and the list of loaded experiments. For this experiment we only have one function and one
experiment. If an experiment or function file is missing attributes (such as in this example ​parentPayload,
payloadFolder, shufflePayloads, passPayloads, ​and​ transitions​) default values will be used instead.

The second section applies any modifications to payloads if you choose to use inheritance. FaaS Runner has the
ability to define parent payloads that children can inherit values from. This can be useful if you have an
experiment but want to override some attribute instead of recreating the entire experiment file. In this first
example we are not using this feature.

5

Next we have the section where functions are actually being invoked. At the start you can see the payloads of
each function invocation and then shortly later you begin seeing the results of each run denoted by ​STDOUT​.
For long running experiments this section can be useful to make sure an experiment is executing properly.

The next section is where the report is generated. The text shown here is the raw text of the CSV data that will
be opened as a spreadsheet.

The final section is where files are written to disk. If an output path is not defined, FaaS Runner automatically
saves data to the ​history folder. Navigate to that folder and view its contents. After running this experiment,
you should see the CSV report alongside a folder with the same name. The folder will contain the JSON
response payloads of each run in the experiment. This data can be used to regenerate a report.

6

5. Overriding Attributes with Command Line Arguments

Next, let's create a more complex experiment with CalcsService. We will use the same experiment and function
files but override attributes using command line arguments. Any attribute in function or experiment files can
be defined through command line arguments.

For this experiment we are going to use the same workload but repeat it with different memory settings. FaaS
Runner can automatically reconfigure memory settings on all supported platforms. This experiment will take a
couple minutes.

This is the most complex experiment yet so let's see what is going on. We are defining the same function and
experiment files (denoted with the ​-f ​and ​-e ​flags). Then we are overriding the experiment file's
memorySettings ​attribute. Overriding attributes can be done by simply using the attribute name as a flag with
'--' at the start. The memorySettings attribute is expected to be a list of memory settings you want to use. In
this case we are using 256 MBs, 512 MBs, 1024 MBs, and 2048 MBs. Next we are overriding the ​openCSV
attribute to be false. For larger experiments it can be annoying having many CSV files automatically opened so
we will retrieve this information later. Finally, we define the output path by using the ​-o flag to be our newly
created ​memorySettingExperiment ​folder. The order of command line arguments does not matter.

7

mkdir memorySettingExperiment

./faas_runner.py -f ./functions/calcsService.json -e ./experiments/calcsServiceExp1.json
--memorySettings [256, 512, 1024, 2048] ​ ​--openCSV false ​ ​-o memorySettingExperiment

Just like with the first experiment, if we open the output folder, we can now see CSV reports and folders of
JSON files for each memory setting.

6. Creating a Unified Report

Instead of having 4 different reports for each memory setting, lets combine all the runs into one report. To do
this we must first create a folder will all of the json files. This can be easily done through the command line.

Next we can use the ​compile_results.py ​script to create a single report with all 40 runs. Simply supply the path
to the folder of json files (​./memorySettingExperiment/combined​) and then the path to an experiment file
(​./experiments/calcsServiceExp1.json​).

This should generate a report such as the one shown below.

8

cd memorySettingExperiment
mkdir combined
cp -r **/*.json ./combined
cd ..

./compile_results.py {FOLDER PATH} {PATH TO EXPERIMENT JSON}
./compile_results.py ./memorySettingExperiment/combined ./experiments/calcsServiceExp1.json

Now that we can regenerate reports, this gives us the ability to create experiment files dedicated to formatting
a report. Let's create a new experiment file to categorize this data.

Edit the report.json file so that the ReportGenerator will create groups based on the ​functionMemory
attribute.

FaaS Runner has the ability to automatically aggregate data returned by functions. By adding an attribute to
the ​outputGroups attribute in an experiment file the ReportGenerator will automatically group runs with
shared values together. For example if you run an experiment with 256MBs and 512MBs of memory, grouping
by functionMemory will automatically calculate the average of all runs at each memory setting. By adding an
attribute to ​outputRawOfGroup the ReportGenerator will simply print out the raw data of an entire group
together in one block of CSV. These two attributes can be incredibly useful to get quick experiment results
without having to use other tools like Excel.

9

cd ./experiments
cp calcsServiceExp1.json report.json
nano report.json
cd ..

Once edited and saved, run the ​report_compiler.py​ script again with the newly created ​report.json ​file.

In the report you should now see aggregated categories for functionMemory. Alongside that, the results of
each run should also be consolidated together in the report.

10

./compile_results.py ./memorySettingExperiment/combined ./experiments/report.json

7. Creating Complex Experiments with Scripts

Now that you have the ability to run multiple experiments and combine the results together into one report,
we can create even more complex experiments with FaaS Runner. For the most complex experiments it is best
to create a script that then invokes FaaS Runner. We can leverage many features of FaaS Runner to improve
this process.

For this experiment we will use all the features of our calcsService application. CalcsService is a CPU bound
workload that does random math (a * b / c). The amount of calculations can be defined using the calcs
attribute. For our next experiment we want to add variability to our runtime and measure how runtime
changes as the number of calculations increases or decreases. To do this we can add many payloads to the list
of ​payloads attribute and FaaS Runner will distribute them between function invocations. Here we will use
payload inheritance to define a single ​parentPayload ​that will contain attributes that all function invocations
will use. Then the values in the ​payloads​ list will override the values in the ​parentPayload​ if there are conflicts.

Next, we want to measure the impact of the FaaS freeze/thaw lifecycle. After a memory value is changed all
infrastructure allocated to the function will be destroyed, entering the function into a luke-warm state where
the application code is cached but infrastructure must be reallocated. To fully achieve the “cold” state we must
wait around 45 minutes. To measure the impact of the “luke-warm” state we simply need to run an experiment
a second time after getting to the luke-warm state. So one experiment run is in the luke-warm state and the
next will be warm. This same methodology can apply when comparing cold to warm states. To run an
experiment twice in succession we can use FaaS Runner’s ​iterations​ attribute.

11

On AWS Lambda, the CPU allocated to a function varies in performance depending on the memory setting
assigned to a function. At low settings (<256MBs) a function may have allocated 1/10 of a single CPU core up
to over 2 CPU cores after 1536MBs. We can measure this performance variability by executing an experiment
across multiple memory settings. Like we did in the previous experiment, we can define multiple memory
settings using the ​memorySettings​ attribute in FaaS Runner.

Finally, the calcsService application has the feature to produce memory stress by setting the ​arraySize attribute
to a large number. When doing random math (a * b / c), calcsService does not use primitive variables (e.g.
int/double) but instead creates arrays and accesses the random numbers from those arrays. By setting
arraySize to be a large number (e.g. 1,000,000) we create memory stress in two ways. First, creating large
arrays requires allocating and freeing large amounts of memory. Second, the numbers to do math with are
assigned and read from random indices in the arrays. Reading and writing to random positions in memory can
greatly impact performance as it can cause something called page faults. Pieces of memory are frequently
cached in different levels of memory (e.g. L1/L2/L3) so when an application reads something that is not cached
a slowdown occurs. We can measure the memory performance of AWS Lambda by running the experiment
once without memory stress (arraySize = 1) and with memory stress (arraySize = 1000000).

Here is the summarized process of what we want the experiment to do:

1. Vary the number of calculations (calcs) calcsService does between 1,000 and 100,000 in steps of 1,000 in
each experiment run.
2.​ Repeat the experiment a second time to measure cold/warm performance.
3.​ Change memory setting between 256 MBs, 1024 MBs and 2048 MBs.
4.​ Repeat all the steps once again with memory stress (arraySize = 1,000,000).

We can create a bash script to easily create FaaS Runner arguments and execute this experiment. The script is
included below, see highlighted sections for the implementation of each step. Review comments to see what
arguments are being defined. Save and execute this script as ​complexTest.sh in the ​test directory. This
experiment will take a few minutes to complete.

12

#!/bin/bash

FaaS Runner Complex Experiment Example
@author Robert Cordingly

Define Experiment Arguments
args=​"--function calcsServiceTutorial ​--runs 100 --threads 100 --warmupBuffer 0 --combineSheets 0 --sleepTime 0
--openCSV 0 ​--iterations 2​ ​--memorySettings [256, 1024, 2048]​"

Create parent payload.
parentPayloadNoMemory=​"​{​\"​threads​\"​:2,​\"​sleep​\"​:0,​\"​loops​\"​:1000,​\"​arraySize​\"​:​1​}​"
parentPayloadMemory=​"​{​\"​threads​\"​:2,​\"​sleep​\"​:0,​\"​loops​\"​:1000,​\"​arraySize​\"​:​1000000​}​"

Generate scaling number of calcs payloads.

This creates a list of payloads like this:
[{"calcs":1000},{"calcs":2000},...,{"calcs":99000},{"calcs":100000}]
start=1000
step=1000
end=100000
payloads=​"​[​"
for​ ​calcs​ ​in​ ​$(​seq ​$start​ ​$step​ ​$end​)
do
 payloads=​"​$payloads​{​\"​calcs​\"​:​$calcs​}​"
 ​if​ [​"​$calcs​"​ ​-lt​ ​"​$end​"​]
 ​then
 payloads=​"​$payloads​,​"
 ​else
 payloads=​"​$payloads​]​"
 ​fi
done

Created Payloads List:
echo​ ​"​Created Payloads List:​"
echo ​$payloads

Create Output Folders
mkdir complexExperiment
mkdir complexExperiment/NoMemory
mkdir complexExperiment/Memory

Run Experiments with and without Memory Stress
./faas_runner.py​ -o ./complexExperiment/NoMemory --payloads ​$payloads​ --parentPayload ​$parentPayloadNoMemory​ ​$args
./faas_runner.py​ -o ./complexExperiment/Memory --payloads ​$payloads​ --parentPayload ​$parentPayloadMemory​ ​$args

echo​ ​"​Experiments Done!​"

This script leverages FaaS Runner's payload inheritance. We first create a ​parentPayload that contains
attributes that all function invocations in an experiment will use. In this case we create two parents, one with
memory stress and one without. Then we create the ​payloads attribute to vary the number of calculations. This

13

list of payloads will be distributed randomly between the threads. Finally, we define all other attributes in the
args variable. This script also creates a few folders to keep our output organized. Unlike previous experiments,
this experiment does not use any experiment or function files. Everything is defined through command line
arguments and makes use of FaaS Runner's default parameters. For example, by default FaaS Runner assumes
you are using AWS Lambda. Save and execute this script as ​complexTest.sh in the ​test directory. This
experiment will take a few minutes to complete.

Task 1: Create a single report with all data from the complex experiment. In your ​report.json file add
"​newcontainer" and ​"arraySize" to the ​outputGroups list just like you did in section 6 for ​functionMemory​.
Copy all json files from both the NoMemory and Memory folders into one combined folder. Run the
report_compiler.py​ script on the folder to generate the report.

FaaS Runner can aggregate data for any attribute returned by a function. For all data returned by SAAF and
their definitions see: ​https://github.com/wlloyduw/SAAF/tree/master/java_template

For all FaaS Runner experiment execution, data aggregation, and report generation options see:
https://github.com/wlloyduw/SAAF/tree/master/test

Task Questions:

1. Read the report and scroll down to the aggregated results for ​newcontainer​, what was the impact on
the avg_userRuntime column of the cold (newcontainer = 1) versus warm (newcontainer = 0)?

2. What was the impact of memory stress on average runtime? Look at the aggregated results for
arraySize​.

3. What was the impact of different memory settings on average runtime? Look at the aggregated results
for ​functionMemory​.

8. Using FaaS Runner with Function Pipelines

Alongside running individual functions, FaaS Runner can execute complex pipelines of functions. To begin we
must first explain the syntax. To execute a pipeline, you must define lists of ​functions and ​experiments​. Like
with single function calls, both functions and experiments can be defined through either files or command line
arguments. For these examples we will use both.

Using the included function and experiment files. Try executing this experiment:

14

Run the Experiment
cd ./test
./complexTest.sh

Create a single report.
cd ./complexExperiment
mkdir combined
find . | grep json | xargs -I{} -n1 cp '{}' ./combined/
cd ..
./compile_results.py ./complexExperiment/combined ./experiments/report.json

https://github.com/wlloyduw/SAAF/tree/master/java_template
https://github.com/wlloyduw/SAAF/tree/master/test

Now let's explain what happened. The first experiment, in this case ​jello.json​, ​is considered our parent
experiment. This experiment file defines how many runs are going to be executed, the number of threads, and
will be used to generate the report. In this case, this experiment file says that there will be 3 runs with 1
thread. In our output we saw a total of 9 function calls. For pipelines, the number of runs are runs of the entire
pipeline. 1 Threads means that the pipeline was called sequentially so we saw responses come back in the
expected order of Jello, Pello, Nello, Jello, Pello, Nello, etc. If we chose 3 threads, then 3 instances of the
pipeline would run concurrently.

Now take a look at the message and payload column of each function:

Since each experiment file defined payloads for the function, those payloads
were used in the function invocation.

Instead of supplying a specific set of payloads to each function in the pipeline
it may be necessary to pass the results from one function invocation to
another.

Let's try and pass the response message from each function to the next,
resulting in a final message of "Nello Pello Jello Jello"

15

./faas_runner.py ​-f ./functions/jello.json ./functions/pello.json ./functions/nello.json
-e ./experiments/jello.json ./experiments/pello.json ./experiments/nello.json

9. Command Line Arguments and Passing Attributes in a Pipeline

FaaS Runner has the built-in attribute ​passPayloads that does just that! By default, this attribute is false so we
can override that with command line arguments just like with single function experiments. Run the same
experiment again but add the ​"--passPayloads true"​ flag.

As we can see now ALL attributes returned by previous functions
are passed onto the payload of the next function invocation. But
our message response is still unchanged.

This is because the Hello World functions expects an attribute
called "name" as the input and returns the response in the
"message" attribute. Between function invocations we need to
rename "message" to "name" to get the desired output we want.

To do this, we can use FaaS Runner's ​transitions attribute. This
attribute expects a JSON object of key value pairs that will
rename one attribute to another between function invocations.
Like we did with passPayloads we can define this through
command line arguments:

FaaS Runner is passing all attributes from the response of one function into the request of the next. While it
does that, it renames the "message" attribute to "name" as defined by the transition attribute.

By default, when a command line argument is used to override something it applies it to ALL
experiment/function files. If you want to only apply an argument to one specific function in the pipeline you
can add array-style indexes to the argument (starting at 0). For example, if we want to do the same experiment
but only pass arguments from the first function to the second, we can apply ​passPayloads only to the second
function:

This syntax can be applied to any attribute. If you want to have specific transitions between functions in a
pipeline you can define that this way. This also allows complete pipelines to be entirely defined through
command line arguments. For example, the same pipeline can be executed without using function or
experiment files:

16

./faas_runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json -e

./experiments/jello.json ./experiments/pello.json ./experiments/nello.json ​--passPayloads
true

./faas_runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json -e

./experiments/jello.json ./experiments/pello.json ./experiments/nello.json --passPayloads
true ​--transitions {\"message\":\"name\"}

./faas_runner.py -f ./functions/jello.json ./functions/pello.json ./functions/nello.json -e

./experiments/jello.json ./experiments/pello.json ./experiments/nello.json
--passPayloads[1] true ​ --transitions {\"message\":\"name\"}

10. Dynamic Pipelines and State Machines

For the most complex pipelines, FaaS Runner can be used to orchestrate function execution by modifying
test/tools/pipeline_transition.py​.

def​ ​transition_function​(​index​, ​functions​, ​experiments​, ​payloads​, ​lastPayload​):
 ​return​ (index + 1, functions, experiments, payloads, lastPayload)

This is the default transition function, after each execution, increment the index to go to the next function;
leaving the functions, experiments, and payloads unchanged. To better understand what data is being passed
through here, add a few comments to ​pipeline_transition.py​ and rerun the previous pipeline:

def​ ​transition_function​(​index​, ​functions​, ​experiments​, ​payloads​, ​lastPayload​):

 ​print​(​"​------------------ INDEX ------------------​"​)
 ​print​(​str​(index))
 ​print​(​"​------------------ FUNCTIONS ------------------​"​)
 ​print​(​str​(functions))
 ​print​(​"​------------------ EXPERIMENTS ------------------​"​)
 ​print​(​str​(experiments))
 ​print​(​"​------------------ PAYLOADS ------------------​"​)
 ​print​(​str​(payloads))
 ​print​(​"​------------------ LAST PAYLOAD ------------------​"​)
 ​print​(​str​(lastPayload))
 ​print​(​"​------------------------------------​"​)

 ​return​ (index ​+​ ​1​, functions, experiments, payloads, lastPayload)

Task 2: Using the experiment defined below, create a transition function that skips the 2nd function
(pelloWorld) if the first function returns a message of "Jello End" otherwise execute the pipeline normally.

17

./faas_runner.py --function[0] jelloWorld --function[1] pelloWorld --function[2] nelloWorld
--runs 3 --threads 1 --payloads [{\"name\":\"Jello\"}] --passPayloads true --transitions
{\"message\":\"name\"}

./faas_runner.py --function[0] jelloWorld --function[1] pelloWorld --function[2] nelloWorld
--runs 10 --threads 1 --payloads [{\"name\":\"Jello\"},{\"name\":\"End\"}] --passPayloads
true --transitions {\"message\":\"name\"} --shufflePayloads true

Spoiler: ​Solution. Copy and Paste text from box below to reveal.
def transition_function(​index​, ​functions​, ​experiments​, ​payloads​, ​lastPayload​):

 if (lastPayload["message"] == "Jello End"):
 index += 1

 return (index + 1, functions, experiments, payloads, lastPayload)

18

