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Cloud Computing –
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562: 
SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING  Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit 
for completing
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 
class (15 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.46 () 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.3 ( )
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MATERIAL / PACE

 Parallelism is equivalent to multitasking, the notion of 
performing several things simultaneously

 In lecture #2 different types of parallelism were 
described: thread level, data level, etc. 

 Does every computer now enact all types of  parallelism 
and determine for which tasks automatically? Or is it 
configurable what type of  parallelism is present on the 
computer?
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FEEDBACK FROM 10/5
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Available ? Automatic ?
Thread-Level 
Parallelism (TLP)

Data-Level 
Parallelism (DLP)

Bit-Level Parallelism

Instruction-Level 
Parallelism
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AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level 
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level 
Parallelism (DLP)

Bit-Level Parallelism

Instruction-Level 
Parallelism
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AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level 
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level 
Parallelism (DLP)

YES 1

But only available when 
using special extensions
(e.g. SIMD instructions)

NO 
Programmer implements 
code to use DLP features

Bit-Level Parallelism

Instruction-Level 
Parallelism
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AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level 
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level 
Parallelism (DLP)

YES 1

But only available when 
using special extensions
(e.g. SIMD instructions)

NO 
Programmer implements 
code to use DLP features

Bit-Level Parallelism YES YES

Instruction-Level 
Parallelism
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AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level 
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level 
Parallelism (DLP)

YES 1

But only available when 
using special extensions
(e.g. SIMD instructions)

NO 
Programmer implements 
code to use DLP features

Bit-Level Parallelism YES YES

Instruction-Level 
Parallelism

YES YES
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AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

 Can I  assume that implicit parallelism is f ine-grained 
parallelism, and explicit parallelism is coarse-grained 
parallelism?

Granularity (grain size) is measured as the ratio between:
Tcomp (computation time) and Tcomm (communication time) 

 Fine grained parallelism indicates small grains
 Lots of communication overhead is required for the parallel 

computation to proceed

 Coarse-grained parallelism indicates large grains (rocks)
 Little/no communication is required for parallel work
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GRANULARITY IN PARALLEL COMPUTING



TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.3

 Can I  assume that implicit parallelism is f ine-grained 
parallelism, and explicit parallelism is coarse-grained 
parallelism?

Granularity (grain size) is measured as the ratio between:
Tcomp (computation time) and Tcomm (communication time) 

 Fine grained parallelism indicates small grains
 Lots of communication overhead is required for the parallel 

computation to proceed

 Coarse-grained parallelism indicates large grains (rocks)
 Little/no communication is required for parallel work
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GRANULARITY IN PARALLEL COMPUTING

NO – here’s why:

Implicit
Bit-level parallelism requires no communication / coordination 
between processes.  It happens automatically

Instruction-level parallelism includes optimization such as speculative execution 
which is executing instructions in advance out-of-order within a program.
This requires no communication between processes/threads.

Explicit
TLP and DLP can have fine or coarse-grained granularity depending on the code

 I  read that data-level  
parallelism is  used widely 
on multi-GPUs.
Could you talk more about i t?

 We will discuss GPUs soon.

 Recommended paper on the
future of computing in light
of the decline of Moore’s law 

PDF:
https://tinyurl.com/y4p8yeyj

https ://d l .acm.org/doi/abs/10.1145/3282307
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FEEDBACK - 2

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

 We will form groups of ~3 and go into breakout rooms
 Each group will complete a Google Doc worksheet
 Add names to Google Doc as they appear in Canvas
 Once completed, one person should submit a PDF of the 

Google Doc to Canvas
 Instructor will score all group members based on the 

uploaded PDF file
 To get started:
 Log into your UW Google Account
 Link to shared Google Drive
 Follow link:

https://tinyurl.com/yy9jlz3y
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CLASS ACTIVITY 1

 Applies to:

 Bit-level, instruction-level

 Advantages:

 No extra work on the part of the programmer, benefit is free

 Disadvantages:

 May not be applicable to all problems

 For some algorithms hyperthreading, speculative execution 
may not help, and could actually be slower
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IMPLICIT PARALLELISM 
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 Applies to:
 Thread-level, Data-level (TLP, DLP)

 Advantages:
 Achieve better speed-up by taking advantage of modern HW 

features (e.g. multi-cores, CPU extensions)
 Can be very advantageous for some algorithms 

 Disadvantages:
 Code is harder to debug …
 More programmer effort required
 TLP: synchronization is hard - race conditions and dead 

locking, coordination of shared memory
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EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be 
concerned with the available number of vir tual CPU 
processing cores when choosing a cloud-based vir tual 
machine if wanting to obtain the best possible speed-up? 
(Yes / No√)  

 8. For instruction-level parallelism, should a developer be 
concerned with the physical CPU’s architecture used to 
host a cloud-based virtual machine if wanting to obtain 
the best possible speed-up? (Yes √ / No)
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PARALLELISM QUESTIONS

 9. For thread level parallelism (TLP) where a programmer 
has spent considerable effort to parallelize their code and 
algorithms, what consequences result when this code is 
deployed on a virtual machine with too few virtual CPU 
processing cores?  

 VM is oversubscribed – application waits – threads are 
queued – performance is slow

 What happens when this code is deployed on a virtual 
machine with too many vir tual CPU processing cores? 
VM runs well – application does not wait – performance is 
good – cost is high (unused capacity) – SPARE capacity 
can allow workload to grow in the future
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PARALLELISM QUESTIONS - 2

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

Michael Flynn’s proposed taxonomy of computer 
architectures based on concurrent instructions and 
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 
operations on the same data 

 For fault tolerance, may want to execute same instructions 
redundantly to detect and mask errors – for task replication
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MICHAEL FLYNN’S COMPUTER 
ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are 
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instructions are issued, operations on 
individual vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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FLYNN’S TAXONOMY
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 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 
operations on traditional CPUs

 Vector operations reduce total number of instructions for 
large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 
parallel ism
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(SIMD): VECTOR PROCESSING
ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with 
several processors and/or cores that function asynchronously 
and independently

 At any time, different processors/cores may execute different 
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity: Ratio of work (W) to 
memory traffic r/w (Q) 

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
 performance is limited by??

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model: 
single instruction, multiple thread

 Programmed using CUDA- C like programming 
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each 
data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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GRAPHICAL PROCESSING UNITS (GPUS)
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 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “per fect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized 
determines the overall speedup 

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a 

perfectly even work distribution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is  the maximum possible speedup of the program?

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized (e.g. 
must run sequentially)

 Can be used to estimate runtime of paral lel portion of program

 Example:
Consider a program that is embarrassingly parallel, 
but 25% cannot be parallelized.  α=.25
QUESTION: I f  deploying the job on a 2-core CPU, what scaled 
speedup is possible assuming the use of  two processes that 
run in parallel?
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GUSTAFSON'S LAW

 QUESTION:
What is the scaled speed-up on a 2-core CPU ?

S(N)  = N + (1 - N) α

N=2, α=.25

S(N)  = 2 + (1 - 2) .25

S(N) = ?

 What is the scaled speed-up on a 4-core CPU?

S(N)  = N + (1 - N) α

N=4, α=.25

S(N)  = 4 + (1 - 4) .25

S(N) = ?

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

GUSTAFSON’S EXAMPLE
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 We can use Gustafson’s to calculate the runtime of the parallel 
portion deployed on a multi -core system

 The parallel runtime + sequential runtime = the total runtime
 The speed-up of the total-runtime can never exceed the theoretical

speed-up calculated using Amdahl’s law
 For example if S=4, and α=.25, and seq-runtime=100s, then with 

using an inf inite number of  CPUs, where the chunk runtime 
approaches zero, the runtime can never drop below 25s (4x speedup)

 Gustafson’s: As the number of CPUs grow, we also have to reduce 
the computation chunk size so that the individual chunk runtime 
becomes very short
 In practice this may not be feasible, because the minimum chunk

runtime may be limited by various factors to achieve the theoretical 
(Amdahl’s speedup)

 See examples in Spreadsheet
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GUSTAFSON’S & AMDAHL’S EXAMPLE

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the 
same computational resources and speed  

 Asymmetric core processor – on a multi-core CPU, some cores 
have more resources and speed  

 Dynamic core processor – processing resources and speed can 
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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MOORE’S LAW

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 
facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 
by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting 

operations performed on them
 Performance transparency: system can be reconfigured based 

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS
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 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L3.43

OBJECTIVES – 10/7

 Sof t modularity: TRADITIONAL 

 Divide a program into modules (classes) that call each other 
and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 
through message passing 

 The ubiquitous client-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY

 Multi-core CPU technology and hyper-threading

 What is a 
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single 
Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU) 

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model: 
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes 
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

INTRODUCTION TO 
CLOUD COMPUTING

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.48
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 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

 Modularity 

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture
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OBJECTIVES – 10/7

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption
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OBJECTIVES – 10/5

 LINKEDIN - TOP IT Skills from job  app data

 #1 Cloud and Distributed Computing 

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/
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WHY STUDY CLOUD COMPUTING?

 Computerworld
Magazine
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WHY STUDY CLOUD COMPUTING? - 2
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 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the 
computers of the future, then computing may someday be 
organized as a public utility just as the telephone system is a 
public utility… The computer utility could become the basis of 
a new and important industry…”
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 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing
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CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services 

for remotely provisioned storage, computing resources, and business 
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power 
to host enterprise applications

 Infrastructure
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CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web 
based application for online documentation creation and 
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted 
platform for hosting scalable web applications on google-
hosted datacenters
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CLOUD HISTORY: SERVICES - 2
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…
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“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015
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MORE CONCISE DEFINITION
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Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies
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Benefits of cloud adoption

Risks of cloud adoption
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Capacity planning

Cost reduction

Operational overhead

Organizational agility
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT 

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual 

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of 
available resources vs. demand
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BUSINESS DRIVERS 
FOR CLOUD COMPUTING
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Dwight, The Office TV sitcom

 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from 
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand 
increases

 Load prediction
 Capacity planning helps anticipate demand flucations
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BUSINESS DRIVERS FOR CLOUD - 2
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CAPACITY PLANNING
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CAPACITY PLANNING - 2

 Capacity planning 
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 Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment 

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support 

agreements, purchases
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BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change 
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a 
lower financial commitment
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BUSINESS DRIVERS FOR CLOUD - 4
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Cloud enabling technologies
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Benefits of cloud adoption
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Cluster computing

Grid computing

Virtualization

Others
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TECHNOLOGY INNOVATIONS 
LEADING TO CLOUD

 Cluster computing (clustering)
 Cluster is a group of independent IT resources 

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily 
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be 
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide 
HW failover to ensure high availability (HA)
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CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resiliency
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GRID COMPUTING 
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GRID COMPUTING - 2 VIRTUALIZATION
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VIRTUALIZATION
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 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance, 
reliability, and scalability challenges

 CPU and other HW enhancements have minimized 
performance GAPs
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VIRTUALIZATION

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption
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 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers
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KEY TERMINOLOGY
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 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine 
resources are exceeded
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VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual 
servers based on demand
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HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed
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HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required
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HORIZONTAL VS VERTICAL SCALING



TCSS 562: Software Engineering for Cloud Computing  
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.15

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive 

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity
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HORIZONTAL VS VERTICAL SCALING

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS), 
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability, 
reliability, and performance
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KEY TERMINOLOGY - 2
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 Cloud providers
 Leverage economies of scale through mass-acquisition and 

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be 
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on 
anticipated business needs

 Businesses become more agile and lower their financial risks by 
eliminating large capital investments in physical infrastructure 
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GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term 
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for 
business needs

 Ability to add/remove IT resources at 
a fine-grained level

 Abstraction of server infrastructure so 
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments 
more agile…
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CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as 
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate 
student, we recently deployed this science model across 5,900 
compute cores on Amazon for 2-days…

 What is  the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example: 
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)
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Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day  

 Increased availability

 Increased reliability
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CLOUD BENEFITS
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 Increased security vulnerabilities
 Expansion of trust boundaries now include the external 

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure 

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability 
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CLOUD ADOPTION RISKS
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NETWORK LATENCY COSTS

 Performance monitoring of  cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud 

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of 

aggregated cloud resources working together
 User must monitor this aggregate performance 

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more 

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect 

to laws for data privacy and storage
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CLOUD RISKS - 2
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CLOUD: VENDOR LOCK-IN QUESTIONS
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