
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.1

Cloud Computing –
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 10/7

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit
for completing

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

ONLINE DAILY FEEDBACK SURVEY

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.4

 Please classify your perspective on material covered in today’s
class (15 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.46 ()

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.3 ()

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

MATERIAL / PACE

 Parallelism is equivalent to multitasking, the notion of
performing several things simultaneously

 In lecture #2 different types of parallelism were
described: thread level, data level, etc.

 Does every computer now enact all types of parallelism
and determine for which tasks automatically? Or is it
configurable what type of parallelism is present on the
computer?

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK FROM 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.2

Available ? Automatic ?
Thread-Level
Parallelism (TLP)

Data-Level
Parallelism (DLP)

Bit-Level Parallelism

Instruction-Level
Parallelism

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level
Parallelism (DLP)

Bit-Level Parallelism

Instruction-Level
Parallelism

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level
Parallelism (DLP)

YES 1

But only available when
using special extensions
(e.g. SIMD instructions)

NO
Programmer implements
code to use DLP features

Bit-Level Parallelism

Instruction-Level
Parallelism

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level
Parallelism (DLP)

YES 1

But only available when
using special extensions
(e.g. SIMD instructions)

NO
Programmer implements
code to use DLP features

Bit-Level Parallelism YES YES

Instruction-Level
Parallelism

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Available ? Automatic ?
Thread-Level
Parallelism (TLP)

YES NO
Programmer implements threads

Data-Level
Parallelism (DLP)

YES 1

But only available when
using special extensions
(e.g. SIMD instructions)

NO
Programmer implements
code to use DLP features

Bit-Level Parallelism YES YES

Instruction-Level
Parallelism

YES YES

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

AVAILABLE ON X86 CPUS

1- see: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

 Can I assume that implicit parallelism is f ine-grained
parallelism, and explicit parallelism is coarse-grained
parallelism?

Granularity (grain size) is measured as the ratio between:
Tcomp (computation time) and Tcomm (communication time)

 Fine grained parallelism indicates small grains
 Lots of communication overhead is required for the parallel

computation to proceed

 Coarse-grained parallelism indicates large grains (rocks)
 Little/no communication is required for parallel work

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

GRANULARITY IN PARALLEL COMPUTING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.3

 Can I assume that implicit parallelism is f ine-grained
parallelism, and explicit parallelism is coarse-grained
parallelism?

Granularity (grain size) is measured as the ratio between:
Tcomp (computation time) and Tcomm (communication time)

 Fine grained parallelism indicates small grains
 Lots of communication overhead is required for the parallel

computation to proceed

 Coarse-grained parallelism indicates large grains (rocks)
 Little/no communication is required for parallel work

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

GRANULARITY IN PARALLEL COMPUTING

NO – here’s why:

Implicit
Bit-level parallelism requires no communication / coordination
between processes. It happens automatically

Instruction-level parallelism includes optimization such as speculative execution
which is executing instructions in advance out-of-order within a program.
This requires no communication between processes/threads.

Explicit
TLP and DLP can have fine or coarse-grained granularity depending on the code

 I read that data-level
parallelism is used widely
on multi-GPUs.
Could you talk more about i t?

 We will discuss GPUs soon.

 Recommended paper on the
future of computing in light
of the decline of Moore’s law

PDF:
https://tinyurl.com/y4p8yeyj

https ://d l .acm.org/doi/abs/10.1145/3282307

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

FEEDBACK - 2

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

OBJECTIVES – 10/7

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

OBJECTIVES – 10/7

 We will form groups of ~3 and go into breakout rooms
 Each group will complete a Google Doc worksheet
 Add names to Google Doc as they appear in Canvas
 Once completed, one person should submit a PDF of the

Google Doc to Canvas
 Instructor will score all group members based on the

uploaded PDF file
 To get started:
 Log into your UW Google Account
 Link to shared Google Drive
 Follow link:

https://tinyurl.com/yy9jlz3y

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

CLASS ACTIVITY 1

 Applies to:

 Bit-level, instruction-level

 Advantages:

 No extra work on the part of the programmer, benefit is free

 Disadvantages:

 May not be applicable to all problems

 For some algorithms hyperthreading, speculative execution
may not help, and could actually be slower

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

IMPLICIT PARALLELISM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.4

 Applies to:
 Thread-level, Data-level (TLP, DLP)

 Advantages:
 Achieve better speed-up by taking advantage of modern HW

features (e.g. multi-cores, CPU extensions)
 Can be very advantageous for some algorithms

 Disadvantages:
 Code is harder to debug …
 More programmer effort required
 TLP: synchronization is hard - race conditions and dead

locking, coordination of shared memory

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be
concerned with the available number of vir tual CPU
processing cores when choosing a cloud-based vir tual
machine if wanting to obtain the best possible speed-up?
(Yes / No√)

 8. For instruction-level parallelism, should a developer be
concerned with the physical CPU’s architecture used to
host a cloud-based virtual machine if wanting to obtain
the best possible speed-up? (Yes √ / No)

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

PARALLELISM QUESTIONS

 9. For thread level parallelism (TLP) where a programmer
has spent considerable effort to parallelize their code and
algorithms, what consequences result when this code is
deployed on a virtual machine with too few virtual CPU
processing cores?

 VM is oversubscribed – application waits – threads are
queued – performance is slow

 What happens when this code is deployed on a virtual
machine with too many vir tual CPU processing cores?
VM runs well – application does not wait – performance is
good – cost is high (unused capacity) – SPARE capacity
can allow workload to grow in the future

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

PARALLELISM QUESTIONS - 2

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

OBJECTIVES – 10/7

Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different
operations on the same data

 For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors – for task replication

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

MICHAEL FLYNN’S COMPUTER
ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

FLYNN’S TAXONOMY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.5

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

 Vector operations reduce total number of instructions for
large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about
parallel ism

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

(SIMD): VECTOR PROCESSING
ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

 At any time, different processors/cores may execute different
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

FLYNN’S TAXONOMY - 2

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left) floating point performance (right)

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
 performance is limited by??

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

OBJECTIVES – 10/7

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model:
single instruction, multiple thread

 Programmed using CUDA- C like programming
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each
data element (e.g. vector or matrix)

 Thousands of threads run concurrently
October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L3.30

GRAPHICAL PROCESSING UNITS (GPUS)

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.6

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

OBJECTIVES – 10/7

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1) execution time of total sequential computation
T(N) execution time for performing N parallel

computations in parallel

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “per fect scaling”

 Must consider data transfer and computation setup time

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized
determines the overall speedup

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a

perfectly even work distribution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is the maximum possible speedup of the program?

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized (e.g.
must run sequentially)

 Can be used to estimate runtime of paral lel portion of program

 Example:
Consider a program that is embarrassingly parallel,
but 25% cannot be parallelized. α=.25
QUESTION: I f deploying the job on a 2-core CPU, what scaled
speedup is possible assuming the use of two processes that
run in parallel?

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

GUSTAFSON'S LAW

 QUESTION:
What is the scaled speed-up on a 2-core CPU ?

S(N) = N + (1 - N) α

N=2, α=.25

S(N) = 2 + (1 - 2) .25

S(N) = ?

 What is the scaled speed-up on a 4-core CPU?

S(N) = N + (1 - N) α

N=4, α=.25

S(N) = 4 + (1 - 4) .25

S(N) = ?

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

GUSTAFSON’S EXAMPLE

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.7

 We can use Gustafson’s to calculate the runtime of the parallel
portion deployed on a multi -core system

 The parallel runtime + sequential runtime = the total runtime
 The speed-up of the total-runtime can never exceed the theoretical

speed-up calculated using Amdahl’s law
 For example if S=4, and α=.25, and seq-runtime=100s, then with

using an inf inite number of CPUs, where the chunk runtime
approaches zero, the runtime can never drop below 25s (4x speedup)

 Gustafson’s: As the number of CPUs grow, we also have to reduce
the computation chunk size so that the individual chunk runtime
becomes very short
 In practice this may not be feasible, because the minimum chunk

runtime may be limited by various factors to achieve the theoretical
(Amdahl’s speedup)

 See examples in Spreadsheet

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

GUSTAFSON’S & AMDAHL’S EXAMPLE

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat
removal challenges
 Transition from: increasing clock rates to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the
same computational resources and speed

 Asymmetric core processor – on a multi-core CPU, some cores
have more resources and speed

 Dynamic core processor – processing resources and speed can
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

MOORE’S LAW

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

OBJECTIVES – 10/7

 Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing
facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented
by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L3.40

DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting

operations performed on them
 Performance transparency: system can be reconfigured based

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.8

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

OBJECTIVES – 10/7

 Sof t modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other
and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L3.44

TYPES OF MODULARITY

 Multi-core CPU technology and hyper-threading

 What is a
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU)

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

INTRODUCTION TO
CLOUD COMPUTING

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.9

 Questions from 10/5

 Tutorial 2 – Introduction to Bash Scripting

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing –based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 7, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

OBJECTIVES – 10/7

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

OBJECTIVES – 10/5

 LINKEDIN - TOP IT Skills from job app data

 #1 Cloud and Distributed Computing

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

WHY STUDY CLOUD COMPUTING?

 Computerworld
Magazine

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

WHY STUDY CLOUD COMPUTING? - 2

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

OBJECTIVES – 10/5

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the
computers of the future, then computing may someday be
organized as a public utility just as the telephone system is a
public utility… The computer utility could become the basis of
a new and important industry…”

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

A BRIEF HISTORY OF CLOUD COMPUTING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.10

 Internet based computer utilities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

CLOUD HISTORY - 2

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power
to host enterprise applications

 Infrastructure

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web
based application for online documentation creation and
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted
platform for hosting scalable web applications on google-
hosted datacenters

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

CLOUD HISTORY: SERVICES - 2
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall, 5th printing, 2015

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

MORE CONCISE DEFINITION

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.11

Capacity planning

Cost reduction

Operational overhead

Organizational agility

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

BUSINESS DRIVERS
FOR CLOUD COMPUTING

 Capacity planning
 Process of determining and fulfilling future demand for IT

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of
available resources vs. demand

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

BUSINESS DRIVERS
FOR CLOUD COMPUTING

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.63

Dwight, The Office TV sitcom

 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand
increases

 Load prediction
 Capacity planning helps anticipate demand flucations

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

BUSINESS DRIVERS FOR CLOUD - 2

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

CAPACITY PLANNING

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

CAPACITY PLANNING - 2

 Capacity planning

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.12

 Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support

agreements, purchases

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

BUSINESS DRIVERS FOR CLOUD - 3

 Organizational agility

 Ability to adapt and evolve infrastructure to face change
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a
lower financial commitment

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

BUSINESS DRIVERS FOR CLOUD - 4

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

OBJECTIVES – 10/5

Cluster computing

Grid computing

Virtualization

Others

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD

 Cluster computing (clustering)
 Cluster is a group of independent IT resources

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide
HW failover to ensure high availability (HA)

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

CLUSTER COMPUTING

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.72

GRID COMPUTING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.13

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.73

GRID COMPUTING - 2 VIRTUALIZATION

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

VIRTUALIZATION

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.75

 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,
reliability, and scalability challenges

 CPU and other HW enhancements have minimized
performance GAPs

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.76

VIRTUALIZATION

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.77

OBJECTIVES – 10/5

 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scal ing
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.78

KEY TERMINOLOGY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.14

 Reconfigure vir tual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine
resources are exceeded

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.79

VERTICAL SCALING

 Increase (scale-out) or decrease (scale-in) number of vir tual
servers based on demand

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.80

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.81

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.82

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.83

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.84

HORIZONTAL VS VERTICAL SCALING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.15

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.85

HORIZONTAL VS VERTICAL SCALING

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS),
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability,
reliability, and performance

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.86

KEY TERMINOLOGY - 2

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.87

OBJECTIVES – 10/5

 Cloud providers
 Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on
anticipated business needs

 Businesses become more agile and lower their financial risks by
eliminating large capital investments in physical infrastructure

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.88

GOALS AND BENEFITS

 On demand access to pay-as-you-go resources on a short-term
basis (less commitment)

 Ability to acquire “unlimited” computing
resources on demand when required for
business needs

 Ability to add/remove IT resources at
a fine-grained level

 Abstraction of server infrastructure so
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments
more agile…

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.89

CLOUD BENEFITS - 2

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 million (purchase only)

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.90

CLOUD BENEFITS - 3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.16

Gene Wilder, Charlie and the Chocolate Factory

 Increased scalability
 Example demand over a

24-hour day

 Increased availability

 Increased reliability

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.92

CLOUD BENEFITS

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.93

OBJECTIVES – 10/5

 Increased security vulnerabilities
 Expansion of trust boundaries now include the external

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.94

CLOUD ADOPTION RISKS

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.95

NETWORK LATENCY COSTS

 Performance monitoring of cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of

aggregated cloud resources working together
 User must monitor this aggregate performance

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect

to laws for data privacy and storage

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.96

CLOUD RISKS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L3.17

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.97

CLOUD: VENDOR LOCK-IN QUESTIONS

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.98

WE WILL RETURN AT
7:03PM

TCSS 562
OFFICE HOURS

PLEASE SAY HELLO

L3.100

