
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.1

Cloud Computing –
How did we get here?

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.2

 Please classify your perspective on material covered in today’s
class (18 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.94

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.5

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

MATERIAL / PACE

 How should we achieve hyper threading?

 Hyperthreading is automatic

 Modern CPUs expose each physical CPU core as two CPU cores
 cat /proc/cpuinfo command lists individual cores

 Operating system schedules processes & threads to run on a
hyperthread

 On CPUs with hyperthreading, every CPU core has two
hyperthreads

 To the operating system they are seen as full -featured
independent CPU cores

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

FEEDBACK FROM 9/30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.3

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

CAT /PROC/CPUINFO

If a CPU has hyperthreading
enabled, the “ht” flag is listed

October 5, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.4

October 5, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.7

Each processor core consists of multiple stages

Hyperthreading is the idea to share the physical stages
of a CPU core to execute two instructions at once

When should we use hyper threading if we can,
and when should not?
 Disabling hyperthreading will reduce the number of CPU

cores exposed to the operating system in half

 Hyperthreading can be disabled in the System BIOS or
UEFI (uniform extensible firmware interface) software

 BIOS / UEFI is a small resident program that can be
accessed by pressing a function-key when rebooting the
computer

 BIOS / UEFI is used to configure hardware options

Making changes requires rebooting the computer

October 24, 2016 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

FEEDBACK - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.5

What is infrastructure?
 Generic term referring to computer hardware used to host

a cloud service

 Infrastructure can consist of virtual machines, micro
virtual machines, containers, functions

 Infrastructure in the cloud suffers from sharing problems

 How do we share resources among users?

Without suffering performance losses from resource
contention

Without risking exposure of personal information to
others

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

FEEDBACK - 3

October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L10.10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.6

October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L10.11

October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L10.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.7

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

OBJECTIVES – 10/5

 Compute clouds are large-scale distributed systems

Heterogeneous systems
Many services/platforms w/ diverse hw + capabilities

Homogeneous systems
Within a platform – illusion of identical hardware

Autonomous
 Automatic management and maintenance- largely with

little human intervention

Self organizing
 User requested resources organize themselves to satisfy

requests on-demand

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.8

Compute clouds are large-scale distributed
systems

 Infrastructure-as-a-Service (IaaS)
Provide VMs on demand to users
ec2instances.info (AWS EC2)

Clouds can consist of
Homogeneous hardware (servers, etc.)
Heterogeneous hardware (servers, etc.)

Which is preferable?

September 25, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

CLOUD COMPUTING:
HOW DID WE GET HERE?

 If providing IaaS, what are advantages/
disadvantages of using homogeneous hardware?
 Easier to provide same quality of service to end users
 Less performance variance
 Components with variable performance: CPUs, memory

(speed differences), disks (SSDs, HDDs), network interfaces
(caches?)

 Homogeneous hardware (servers): components are
interchangeable
 As components fail, identical backups are

immediately available
 Example: blade servers

 As clouds grow, why is HW homogeneity difficult to maintain?
 What are some advantages of using heterogeneous HW?

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

HARDWARE HETEROGENEITY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.9

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

OBJECTIVES – 10/5

 Discovering parallelism and development of parallel
algorithms requires considerable ef fort

 Example: numerical analysis problems, such as solving large
systems of l inear equations or solving systems of Partial
Dif ferential Equations (PDEs), require algorithms based on
domain decomposition methods.

 How can problems be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

PARALLELISM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.10

 Coordination of nodes
 Requires message passing or shared memory
 Debugging parallel message passing code is easier

than parallel shared memory code

 Message passing: all of the interactions are clear
 Coordination via specific programming API (MPI)

 Shared memory : interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L2.19

PARALLELISM - 2

Parallelism:
Goal: Perform multiple operations at the same time

to achieve a speed-up

 Types of parallelism:
 Thread-level parallelism (TLP)
Control flow architecture

Data-level parallelism
Data flow architecture

Bit-level parallelism
 Instruction-level parallelism (ILP)

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

TYPES OF PARALLELISM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.11

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
fixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

THREAD LEVEL PARALLELISM (TLP)

 Typical architecture used today – w/ multiple threads

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines
next instruction to load into
instruction register

 Program execution
is sequential

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

CONTROL-FLOW ARCHITECTURE

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.12

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively

parallel system
 Efficiently dispatching instruction tokens in a massively

parallel system
 Building content addressable memory large enough to

hold all of the dependencies of a real program
October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L2.24

DATA FLOW ARCHITECTURE

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.13

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows

 Execution windows: identify instructions that can be run by
data dependency

 Instructions are completed in data dependency order within
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

BIT-LEVEL PARALLELISM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.14

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

INSTRUCTION-LEVEL PARALLELISM (ILP)

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

CPU PIPELINING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.15

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are
loaded

 Starting with 6th clock cycle, one full instruction
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

INSTRUCTION LEVEL PARALLELISM - 2

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.16

 We will form groups of ~3 and go into breakout rooms
 Each group will complete a Google Doc worksheet
 Add names to Google Doc as they appear in Canvas
 Once completed, one person should submit a PDF of the

Google Doc to Canvas
 Instructor will score all group members based on the

uploaded PDF file
 To get started:
 Log into your UW Google Account
 Link to shared Google Drive
 Follow link:

https://tinyurl.com/yy9jlz3y

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

CLASS ACTIVITY 1

 Applies to:

 Advantages:

 Disadvantages:

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

IMPLICIT PARALLELISM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.17

 Applies to:

 Advantages:

 Disadvantages:

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

EXPLICIT PARALLELISM

 7. For bit-level parallelism, should a developer be
concerned with the available number of virtual CPU
processing cores when choosing a cloud-based virtual
machine if wanting to obtain the best possible speed-up?
(Yes / No)

 8. For instruction-level parallelism, should a developer be
concerned with the physical CPU’s architecture used to
host a cloud-based virtual machine if wanting to obtain
the best possible speed-up? (Yes / No)

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

PARALLELISM QUESTIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.18

 9. For thread level parallelism (TLP) where a programmer
has spent considerable effort to parallelize their code and
algorithms, what consequences result when this code is
deployed on a virtual machine with too few virtual CPU
processing cores?

 What happens when this code is deployed on a virtual
machine with too many virtual CPU processing cores?

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

PARALLELISM QUESTIONS - 2

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.19

Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different
operations on the same data

 For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors – for task replication

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

MICHAEL FLYNN’S COMPUTER
ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

FLYNN’S TAXONOMY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.20

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

 Vector operations reduce total number of instructions for
large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about
parallelism

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

(SIMD): VECTOR PROCESSING
ADVANTAGES

 MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

 At any time, dif ferent processors/cores may execute different
instructions on dif ferent data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

FLYNN’S TAXONOMY - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.21

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (r ight)

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
 performance is limited by??

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.22

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

OBJECTIVES – 10/5

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model:
single instruction, multiple thread

 Programmed using CUDA- C like programming
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each
data element (e.g. vector or matrix)

 Thousands of threads run concurrently
October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L2.44

GRAPHICAL PROCESSING UNITS (GPUS)

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.23

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

OBJECTIVES – 10/5

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel

computations in parallel

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

PARALLEL COMPUTING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.24

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “perfect scaling”

 Must consider data transfer and computation setup time

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized
determines the overall speedup

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a

perfectly even work distr ibution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is the maximum possible speedup of the program?

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

AMDAHL’S LAW

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.25

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel,
but 25% cannot be parallelized. α=.25
QUESTION: If deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

GUSTAFSON'S LAW

 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N) = N + (1 - N) α
N=2, α=.25
S(N) = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N) = N + (1 - N) α
N=4, α=.25
S(N) = 4 + (1 - 4) .25
S(N) = ?

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

GUSTAFSON’S EXAMPLE

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.26

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have bill ions of transistors

 Power dissipation issues at faster clock rates leads to heat
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the
same computational resources and speed

 Asymmetric core processor – on a multi -core CPU, some cores
have more resources and speed

 Dynamic core processor – processing resources and speed can
be dynamically configured among cores

 Observation: asymmetric processors offer a higher speedup

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

MOORE’S LAW

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.27

 Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing
facil ity.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented
by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L2.53

DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibil ity – reachable?

 Usability – user friendly

 Understandabil ity – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

DISTRIBUTED SYSTEMS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.28

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o inter ference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Failure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting

operations performed on them
 Performance transparency: system can be reconfigured based

on load and quality of service requirements
 Scaling transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.29

 Soft modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other
and communicate with shared-memory

 A procedure call ing convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous cl ient-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

TYPES OF MODULARITY

 Multi-core CPU technology and hyper-threading

 What is a
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.30

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU)

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes
 Distributed Systems – Types of Transparency
 Types of modularity - Soft, Enforced

October 5, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.31

INTRODUCTION TO
CLOUD COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.61

 Questions from 9/30

 Cloud Computing – How did we get here?
(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)

 Data, thread-level, task-level parallelism &
Parallel architectures

 Class Activity 1 – Implicit vs Explicit Parallelism

 SIMD architectures, vector processing, multimedia extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

 Modularity

 Introduction to Cloud Computing – loosely based on book #1:
Cloud Computing Concepts, Technology & Architecture

October 5, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.32

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

OBJECTIVES – 10/5

 LINKEDIN - TOP IT Skills from job app data

 #1 Cloud and Distributed Computing

 https://learning.linkedin.com/week-of-learning/top-skills

 #2 Statistical Analysis and Data Mining

 FORBES Survey – 6 Tech Skills That’ll Help You Earn More

 #1 Data Science

 #2 Cloud and Distributed Computing

 http://www.forbes.com/sites/laurencebradford/2016/12/
19/6-tech-skills-thatll-help-you-earn-more-in-2017/

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

WHY STUDY CLOUD COMPUTING?

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.33

 Computerworld
Magazine

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

WHY STUDY CLOUD COMPUTING? - 2

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.34

 John McCarthy, 1961
 Turing award winner for contributions to AI

 “If computers of the kind I have advocated become the
computers of the future, then computing may someday be
organized as a public uti l ity just as the telephone system is a
public uti lity… The computer util ity could become the basis of
a new and important industry…”

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

A BRIEF HISTORY OF CLOUD COMPUTING

 Internet based computer util ities

 Since the mid-1990s

 Search engines: Yahoo!, Google, Bing

 Email: Hotmail, Gmail

 2000s

 Social networking platforms: MySpace, Facebook, LinkedIn

 Social media: Twitter, YouTube

 Popularized core concepts

 Formed basis of cloud computing

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

CLOUD HISTORY - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.35

 Late 1990s – Early Software-as-a-Service (SaaS)
 Salesforce: Remotely provisioned services for the enterprise

 2002 -
 Amazon Web Services (AWS) platform: Enterprise oriented services

for remotely provisioned storage, computing resources, and business
functionality

 2006 – Infrastructure-as-a-Service (IaaS)
 Amazon launches Elastic Compute Cloud (EC2) service

 Organization can “lease” computing capacity and processing power
to host enterprise applications

 Infrastructure

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

CLOUD HISTORY: SERVICES - 1

 2006 – Software-as-a-Service (SaaS)

 Google: Offers Google DOCS, “MS Office” like fully-web
based application for online documentation creation and
collaboration

 2009 – Platform-as-a-Service (PaaS)

 Google: Offers Google App Engine, publicly hosted
platform for hosting scalable web applications on google-
hosted datacenters

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

CLOUD HISTORY: SERVICES - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.36

CLOUD COMPUTING
NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

“Cloud computing is a specialized form of
distributed computing that introduces utilization
models for remotely provisioning scalable and
measured resources.”

From Cloud Computing Concepts, Technology, and Architecture

Z. Mahmood, R. Puttini, Prentice Hall , 5th printing, 2015

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

MORE CONCISE DEFINITION

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.37

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

OBJECTIVES – 10/5

Capacity planning

Cost reduction

Operational overhead

Organizational agility

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.74

BUSINESS DRIVERS
FOR CLOUD COMPUTING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.38

 Capacity planning
 Process of determining and fulfilling future demand for IT

resources

 Capacity vs. demand
 Discrepancy between capacity of IT resources and actual

demand

 Over-provisioning: resource capacity exceeds demand
 Under-provisioning: demand exceeds resource capacity

 Capacity planning aims to minimize the discrepancy of
available resources vs. demand

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.75

BUSINESS DRIVERS
FOR CLOUD COMPUTING

September 30, 2019
TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.76

Dwight, The Office TV sitcom

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.39

 Capacity planning
 Over-provisioning: is costly due to too much infrastructure

 Under-provisioning: is costly due to potential for business loss from
poor quality of service

 Capacity planning strategies
 Lead strategy: add capacity in anticipation of demand (pre-

provisioning)

 Lag strategy: add capacity when capacity is fully leveraged

 Match strategy: add capacity in small increments as demand
increases

 Load prediction
 Capacity planning helps anticipate demand flucations

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.77

BUSINESS DRIVERS FOR CLOUD - 2

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.78

CAPACITY PLANNING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.40

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.79

CAPACITY PLANNING - 2

 Capacity planning

 Cost reduction
 IT Infrastructure acquisition
 IT Infrastructure maintenance

 Operational overhead
 Technical personnel to maintain physical IT infrastructure
 System upgrades, patches that add testing to deployment

cycles
 Utility bills, capital investments for power and cooling
 Security and access control measures for server rooms
 Admin and accounting staff to track licenses, support

agreements, purchases

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.80

BUSINESS DRIVERS FOR CLOUD - 3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.41

 Organizational agility

 Ability to adapt and evolve infrastructure to face change
from internal and external business factors

 Funding constraints can lead to insufficient on premise IT

 Cloud computing enables IT resources to scale with a
lower financial commitment

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.81

BUSINESS DRIVERS FOR CLOUD - 4

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.82

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.42

Cluster computing

Grid computing

Virtualization

Others

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.83

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD

 Cluster computing (clustering)
 Cluster is a group of independent IT resources

interconnected as a single system

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be
swapped from another redundant server

 Enables warm replica servers

 Duplication of key infrastructure servers to provide
HW failover to ensure high availability (HA)

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.84

CLUSTER COMPUTING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.43

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resil iency

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.85

GRID COMPUTING

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.86

GRID COMPUTING - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.44

VIRTUALIZATION

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.87

VIRTUALIZATION

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.88

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.45

 Simulate physical hardware resources via software

 The virtual machine (virtual computer)

 Virtual local area network (VLAN)

 Virtual hard disk

 Virtual network attached storage array (NAS)

 Early incarnations featured significant performance,
reliability, and scalability challenges

 CPU and other HW enhancements have minimized
performance GAPs

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.89

VIRTUALIZATION

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.90

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.46

 On-Premise Infrastructure
 Local server infrastructure not configured as a cloud

 Cloud Provider
 Corporation or private organization responsible for maintaining cloud

 Cloud Consumer
 User of cloud services

 Scaling
 Vertical scaling

 Scale up: increase resources of a single virtual server

 Scale down: decrease resources of a single virtual server

 Horizontal scaling

 Scale out: increase number of virtual servers

 Scale in: decrease number of virtual servers

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.91

KEY TERMINOLOGY

 Reconfigure virtual machine to have different resources:
 CPU cores

 RAM

 HDD/SDD capacity

 May require VM migration if
physical host machine
resources are exceeded

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.92

VERTICAL SCALING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.47

 Increase (scale-out) or decrease (scale-in) number of vir tual
servers based on demand

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.93

HORIZONTAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.94

HORIZONTAL VS VERTICAL SCALING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.48

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.95

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.96

HORIZONTAL VS VERTICAL SCALING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.49

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.97

HORIZONTAL VS VERTICAL SCALING

Horizontal Scaling Vertical Scaling

Less expensive using commodity HW
Requires expensive

high capacity servers

IT resources instantly available IT resources typically instantly available

Resource replication
and automated scaling

Additional setup is normally needed

Additional servers required No additional servers required

Not limited by individual server capacity Limited by individual server capacity

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.98

HORIZONTAL VS VERTICAL SCALING

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.50

 Cloud services

 Broad array of resources accessible “as-a-service”

 Categorized as Infrastructure (IaaS), Platform (PaaS),
Software (SaaS)

 Service-level-agreements (SLAs):

 Establish expectations for: uptime, security, availability,
reliability, and performance

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.99

KEY TERMINOLOGY - 2

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.100

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.51

 Cloud providers
 Leverage economies of scale through mass-acquisition and

management of large-scale IT resources

 Locate datacenters to optimize costs where electricity is low

 Cloud consumers
 Key business/accounting difference:

 Cloud computing enables anticipated capital expenditures to be
replaced with operational expenditures

 Operational expenditures always scale with the business

 Eliminates need to invest in server infrastructure based on
anticipated business needs

 Businesses become more agile and lower their financial risks by
eliminating large capital investments in physical infrastructure

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.101

GOALS AND BENEFITS

 On demand access to pay -as-you-go resources on a short-term
basis (less commitment)

 Abil ity to acquire “unlimited” computing
resources on demand when required for
business needs

 Abil ity to add/remove IT resources at
a fine-grained level

 Abstraction of server infrastructure so
applications deployments are not dependent
on specific locations, hardware, etc.

 The cloud has made our software deployments
more agile…

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.102

CLOUD BENEFITS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.52

 Example: Using 100 servers for 1 hour costs the same as
using 1 server for 100 hours

 Rosetta Protein Folding: Working with a UW-Tacoma graduate
student, we recently deployed this science model across 5,900
compute cores on Amazon for 2-days…

 What is the cost to purchase 5,900 compute cores?

 Recent Dell Server purchase example:
20 cores on 2 servers for $4,478…

 Using this ratio 5,900 cores costs $1.3 mill ion (purchase only)

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.103

CLOUD BENEFITS - 3

Gene Wilder, Charlie and the Chocolate Factory

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.53

 Increased scalability
 Example demand over a

24-hour day 

 Increased availability

 Increased reliabil ity

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.105

CLOUD BENEFITS

 Introduction to Cloud Computing

Why study cloud computing?

History of cloud computing

Business drivers

Cloud enabling technologies

Terminology

Benefits of cloud adoption

Risks of cloud adoption

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.106

OBJECTIVES – 10/5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.54

 Increased security vulnerabilities
 Expansion of trust boundaries now include the external

cloud
 Security responsibility shared with cloud provider

 Reduced operational governance / control
 Users have less control of physical hardware
 Cloud user does not directly control resources to ensure

quality-of-service
 Infrastructure management is abstracted
 Quality and stability of resources can vary
 Network latency costs and variability

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.107

CLOUD ADOPTION RISKS

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.108

NETWORK LATENCY COSTS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.55

 Performance monitoring of cloud applications
 Cloud metrics (AWS cloudwatch) support monitoring cloud

infrastructure (network load, CPU utilization, I/O)
 Performance of cloud applications depends on the health of

aggregated cloud resources working together
 User must monitor this aggregate performance

 Limited portability among clouds
 Early cloud systems have significant “vendor” lock-in
 Common APIs and deployment models are slow to evolve
 Operating system containers help make applications more

portable, but containers still must be deployed

 Geographical issues
 Abstraction of cloud location leads to legal challenges with respect

to laws for data privacy and storage

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.109

CLOUD RISKS - 2

September 30, 2019 TCSS562: Software Engineering for Cloud Computing [Fall 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.110

CLOUD: VENDOR LOCK-IN

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.56

QUESTIONS

October 5, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.111

WE WILL RETURN AT
7:03PM

L2.112

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L2.57

TCSS 562
OFFICE HOURS

PLEASE SAY HELLO

L2.113

