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 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

TCSS 562 – Fall 2020

Online is green…
 100% reduction of carbon footprint from 

transit

 Saves commuting time
 Less fuel expenses

 Easier to achieve perfect attendance –
all lectures streamed LIVE, recorded 
for 24/7 availability
 UW deletes content after ~90 days

20 class meetings
 No Class on Wed Nov 11
 No Lecture/Office Hours on Wed Nov 25

 This course will not have exams!

 This course helps with preparation for 
TCSS 558 – Applied Distributed Computing

TCSS 562
FALL 2020

L1.5

 [1] Cloud Computing: Concepts, Technology and Architecture*

 Thomas Erl,  Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, First Edition 2013 *, Second Edition 2018

 [3] Cloud Computing: 
A Hands-On Approach

 Arshdeep Bahga
2013
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REFERENCES

* - available online via UW library
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 [4] Systems Performance: Enterprise and the Cloud *

 Brendan Gregg, First Edition 2013

 [5] AWS Administration – The Definitive Guide *

 Yohan Wadia, First Edition 2016

 Research papers
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REFERENCES - 2

* - available online via UW library

 Project Proposal

 Project Status Reports / Activities / Quiz

 ~ 2-4 total items  (??)

 Variety of formats: in class, online, reading, activity

 Midterm

 Open book, note, etc.  

 Class Presentation

 Term Project / Paper / Presentation
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TCS562 COURSE WORK

 Each student will make one presentation in a team of ~3

 Technology sharing presentation

 PPT Slides, demonstration

 Provide technology overview of one cloud service offering 

 Present overview of features, performance, etc.

 Cloud Research Paper Presentation

 PPT slides, identify research contributions, strengths and 
weaknesses of paper, possible areas for future work
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CLASS PRESENTATION

 Project description to be posted 
 Teams of ~3, self formed, one project leader
 Scope can vary based on team size and personal 

background w/ instructor approval
 Proposal due: Sunday October 18, 11:59pm (tentative) 

 Approach: 
 Build a “cloud native” serverless application
 Compose multiple FaaS functions (services)
 Compare implementations with alternate:
 Service compositions 
 External services (e.g. database, key-value store)
 Application flow control - AWS Step Functions, laptop client, etc.

 How does application design impact cost and performance?
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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TCS562 TERM PROJECT

 Deliverables

 Demo in class at end of quarter (TBD)

 Project report paper (4-6 pgs IEEE format, template 
provided)

 GitHub (project source)

 How-To document (via GitHub markdown)

 A standard project will be offered:
 Previously groups built an Extract-Transform-Load style 

serverless data processing pipeline combing AWS Lambda, 
S3, and Amazon Aurora Serverless DB
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TCSS562 TERM PROJECT - 2

 Creative case studies are encouraged !!!

 Compare and contrast alternative designs considering various 
cloud services, languages, platforms, etc.

 Examples:

 Object/blob storage services
 Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted 

 Cloud Relational Database services
 Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB

 Platform-as-a-Service hosting (PaaS) alternatives
 Amazon Elastic Beanstalk, Heroku, others

 Function-as-a-Service platforms
 Google Cloud Functions, Azure Functions, IBM Cloud Functions

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.12

CASE STUDY ALTERNATIVES
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 File-based storage systems

 Amazon EBS, Amazon EFS, others

 Container orchestration services

 Amazon ECS, AKS, Azure Kubernetes Service

 Queueing services comparison

 Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, 0Mq, 
others

 NoSQL database services comparison

 DynamoDB, Google BigTable, MongoDB, Cassandra
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CASE STUDY ALTERNATIVES - 2

 Do “something” that involves multiple processing steps

 Implementation is probably service-based 

 implementation involves use of external services (e.g. 
databases, object stores, queues)  

 Case studies will contrast alternate designs

 Which designs offer the fastest performance?

 Lowest cost?

 Best maintainability?
e.g. have the least code?
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KEY IDEA

 Alternative: conduct a cloud-related research project on any 
topic focused on specific research goals / questions
 Can be used to help spur MS Capstone/Thesis work

 If you’re interested in this option, please talk with the instructor

 First step is to identify 1 – 2 research questions 

 Instructor will help guide projects throughout the quarter

 Project approval based on team preparedness to execute 
project 
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TERM PROJECT: RESEARCH

 Project cloud infrastructure support:

 Sign up for the Github Student Developer Pack:
 https://education.github.com/pack
 Includes up to $100 in Amazon Cloud Credits    - starter account =( 
 Includes up to $100 in Microsoft Azure Credits
 AWS credit extensions available as needed
 Unlimited private git repositories 

 Microsoft Azure for Students
 $100 free credit per account valid for 1 year
 https://azure.microsoft.com/en-us/free/students/
 Also: $200 free credit option for 1 month

 Google Cloud
 $300 free credit for 1 year
 https://cloud.google.com/free/

 Chameleon / CloudLab
 Bare metal NSF cloud - free
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PROJECT SUPPORT

 Projects can lead to papers or posters presented at 
ACM/IEEE/USENIX conferences, workshops
 Networking and research opportunity 
 … travel ???

 Conference participation (posters, papers) 
helps differentiate your resume from others

 Project can support preliminary work for:
UWT - MS capstone/thesis project proposals

 Research projects provide valuable practicum experience 
with cloud systems analysis, prototyping

 Publications are key for building your resume/CV,
Also key if applying to PhD programs
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TCSS562 TERM PROJECT OPPORTUNITIES

 Project status report / term project check-ins

Written status report 

 2-3 times in quarter 

 Part of: “Project Status Reports / Activities / Quizzes”
category

 10% of grade

 Project meetings with instructor
 After class, end half of class, office hours
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TCSS562 TERM PROJECT - 3
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 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Course webpage is embedded into Canvas
 In CANVAS to access links:

RIGHT-CLICK – Open in new window

 Syllabus online at:
http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments
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TCSS562 – SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/QJZvJXuUgGzUzf1V8

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.22

DEMOGRAPHICS SURVEY

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/3wmwKvWrF5EAeoju5

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html
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AWS CLOUD CREDITS SURVEY
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OBJECTIVES – 9/30
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OBJECTIVES – 9/30

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 General interest in parallel computing

Moore’s Law - # of transistors doubles every 18 months

 Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

 Overclocking to 7GHz takes 
more than just liquid nitrogen:
 https://tinyurl.com/y93s2yz2

Solutions:
 Vary CPU clock speed

 Add CPU cores

Multi-core technology
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CLOUD COMPUTING: 
HOW DID WE GET HERE?
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 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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AMD’S 64-CORE 7NM CPUS
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 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: 
hyperthreads add
+32.9% 
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HYPER THREADING

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific 
applications

 Not every problem solution has a parallel algorithm
 Chicken and egg problem…

 Many commercial efforts promoting pure parallel 
programming efforts have failed

 Enterprise computing world has been skeptical and 
less involved in parallel programming
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite” 
scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting 
parallelism

Cloud applications

Based on client-server paradigm

Thin clients leverage compute hosted on the cloud

Applications run many web service instances

Employ load balancing
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

Big Data requires massive amounts of compute 
resources

MAP – REDUCE

Single instruction, multiple data (SIMD)

Exploit data level parallelism

Bioinformatics example
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local 
alignment of two protein sequences
 Embarrassingly parallel, each task can run in isolation

 Use case for GPU acceleration 

AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human 
protein sequences (20,336)
 Python client as scheduler

 C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications. 
PLoS One 2013, 8:e82138
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SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes
 Partitions 20,336 sequences into 41 sets
 Execution cost: ~ 82¢  (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28 
minutes
 Execution cost: ~ 87¢  (~408x speed-up)

 Hardware
 Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
 Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs
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Compute clouds are large-scale distributed 
systems

Heterogeneous systems

Homogeneous systems

Autonomous

Self organizing 

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.37

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 Discovering parallelism and development of parallel 
algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large 
systems of linear equations or solving systems of Partial 
Differential Equations (PDEs), require algorithms based on 
domain decomposition methods. 

 How can problems be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination 

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination
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PARALLELISM

 Coordination of nodes
 Requires message passing or shared memory
 Debugging parallel message passing code is easier 

than parallel shared memory code

 Message passing: all of the interactions are clear
 Coordination via specific programming API (MPI)

 Shared memory: interactions can be implicit – must 
read the code!!

 Processing speed is orders of magnitude faster than 
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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PARALLELISM - 2

Parallelism: 
Goal: Perform multiple operations at the same time 

to achieve a speed-up

 Thread-level parallelism (TLP)
Control flow architecture

Data-level parallelism
Data flow architecture

Bit-level parallelism
 Instruction-level parallelism (ILP)
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TYPES OF PARALLELISM

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of  average (TLP) 
for scheduling an application to run on a computer with a 
f ixed number of  CPU cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources 
is knowing your application’s TLP…
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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THREAD LEVEL PARALLELISM (TLP)
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 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction 
to load into instruction register

 Program execution is sequential
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CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies 
of the program on them with little or no 
communication

Problems are considered to be 
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem 
into a number of parallel tasks

MapReduce programming model is an example
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DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital 
signal processors, special purpose systems

 Operations performed when input (data) becomes 
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively 

parallel system
 Efficiently dispatching instruction tokens in a massively 

parallel system
 Building content addressable memory large enough to 

hold all of the dependencies of a real program
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DATA FLOW ARCHITECTURE

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic 
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking 
for instructions requiring data by defining execution windows

 Execution windows: identify instructions that can be run by 
data dependency  

 Instructions are completed in data dependency order within 
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned
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DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are 
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process 
larger operands (A+B) providing dramatic performance 
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two 
64-bit numbers on a 16-bit CPU?  ( Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that 
can execute concurrently on different CPU circuitry 

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back
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INSTRUCTION-LEVEL PARALLELISM (ILP)
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CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are 
loaded

 Starting with 6th clock cycle, one full instruction 
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!
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INSTRUCTION LEVEL PARALLELISM - 2

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

Michael Flynn’s proposed taxonomy of computer 
architectures based on concurrent instructions and 
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 
operations on the same data 

 For fault tolerance, may want to execute same instructions 
redundantly to detect and mask errors – for task replication

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.52

MICHAEL FLYNN’S COMPUTER 
ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are 
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instructions are issued, operations on 
individual vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions
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FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 
operations on traditional CPUs

 Vector operations reduce total number of instructions for 
large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 
parallel ism
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(SIMD): VECTOR PROCESSING
ADVANTAGES
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 MIMD (Multiple Instructions, Multiple Data) - system with 
several processors and/or cores that function asynchronously 
and independently

 At any time, different processors/cores may execute different 
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity: Ratio of work (W) to 
memory traffic r/w (Q) 

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
 performance is limited by??

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model: 
single instruction, multiple thread

 Programmed using CUDA- C like programming 
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each 
data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES
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Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “per fect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized 
determines the overall speedup 

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a 

perfectly even work distribution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is  the maximum possible speedup of the program?
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AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel, 
but 25% cannot be parallelized.  α=.25
QUESTION: I f  deploying the job on a 2-core CPU, what 
scaled speedup is possible assuming the use of two 
processes that run in parallel?
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GUSTAFSON'S LAW

 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N)  = N + (1 - N) α
N=2, α=.25
S(N)  = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N)  = N + (1 - N) α
N=4, α=.25
S(N)  = 4 + (1 - 4) .25
S(N) = ?
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GUSTAFSON’S EXAMPLE

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the 
same computational resources and speed  

 Asymmetric core processor – on a multi-core CPU, some cores 
have more resources and speed  

 Dynamic core processor – processing resources and speed can 
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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MOORE’S LAW
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Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 
facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 
by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner
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DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting 

operations performed on them
 Performance transparency: system can be reconfigured based 

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.70

TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 Sof t modularity: TRADITIONAL 

 Divide a program into modules (classes) that call each other 
and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 
through message passing 

 The ubiquitous client-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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TYPES OF MODULARITY
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 Multi-core CPU technology and hyper-threading

 What is a 
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single 
Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU) 

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model: 
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes 
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3 QUESTIONS
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