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 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

TCSS 562 – Fall 2020

Online is green…
 100% reduction of carbon footprint from 

transit

 Saves commuting time
 Less fuel expenses

 Easier to achieve perfect attendance –
all lectures streamed LIVE, recorded 
for 24/7 availability
 UW deletes content after ~90 days

20 class meetings
 No Class on Wed Nov 11
 No Lecture/Office Hours on Wed Nov 25

 This course will not have exams!

 This course helps with preparation for 
TCSS 558 – Applied Distributed Computing

TCSS 562
FALL 2020

L1.5

 [1] Cloud Computing: Concepts, Technology and Architecture*

 Thomas Erl,  Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, First Edition 2013 *, Second Edition 2018

 [3] Cloud Computing: 
A Hands-On Approach

 Arshdeep Bahga
2013
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REFERENCES
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 [4] Systems Performance: Enterprise and the Cloud *

 Brendan Gregg, First Edition 2013

 [5] AWS Administration – The Definitive Guide *

 Yohan Wadia, First Edition 2016

 Research papers
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REFERENCES - 2

* - available online via UW library

 Project Proposal

 Project Status Reports / Activities / Quiz

 ~ 2-4 total items  (??)

 Variety of formats: in class, online, reading, activity

 Midterm

 Open book, note, etc.  

 Class Presentation

 Term Project / Paper / Presentation
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TCS562 COURSE WORK

 Each student will make one presentation in a team of ~3

 Technology sharing presentation

 PPT Slides, demonstration

 Provide technology overview of one cloud service offering 

 Present overview of features, performance, etc.

 Cloud Research Paper Presentation

 PPT slides, identify research contributions, strengths and 
weaknesses of paper, possible areas for future work
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CLASS PRESENTATION

 Project description to be posted 
 Teams of ~3, self formed, one project leader
 Scope can vary based on team size and personal 

background w/ instructor approval
 Proposal due: Sunday October 18, 11:59pm (tentative) 

 Approach: 
 Build a “cloud native” serverless application
 Compose multiple FaaS functions (services)
 Compare implementations with alternate:
 Service compositions 
 External services (e.g. database, key-value store)
 Application flow control - AWS Step Functions, laptop client, etc.

 How does application design impact cost and performance?
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TCS562 TERM PROJECT

 Deliverables

 Demo in class at end of quarter (TBD)

 Project report paper (4-6 pgs IEEE format, template 
provided)

 GitHub (project source)

 How-To document (via GitHub markdown)

 A standard project will be offered:
 Previously groups built an Extract-Transform-Load style 

serverless data processing pipeline combing AWS Lambda, 
S3, and Amazon Aurora Serverless DB
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TCSS562 TERM PROJECT - 2

 Creative case studies are encouraged !!!

 Compare and contrast alternative designs considering various 
cloud services, languages, platforms, etc.

 Examples:

 Object/blob storage services
 Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted 

 Cloud Relational Database services
 Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB

 Platform-as-a-Service hosting (PaaS) alternatives
 Amazon Elastic Beanstalk, Heroku, others

 Function-as-a-Service platforms
 Google Cloud Functions, Azure Functions, IBM Cloud Functions
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CASE STUDY ALTERNATIVES
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 File-based storage systems

 Amazon EBS, Amazon EFS, others

 Container orchestration services

 Amazon ECS, AKS, Azure Kubernetes Service

 Queueing services comparison

 Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, 0Mq, 
others

 NoSQL database services comparison

 DynamoDB, Google BigTable, MongoDB, Cassandra
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CASE STUDY ALTERNATIVES - 2

 Do “something” that involves multiple processing steps

 Implementation is probably service-based 

 implementation involves use of external services (e.g. 
databases, object stores, queues)  

 Case studies will contrast alternate designs

 Which designs offer the fastest performance?

 Lowest cost?

 Best maintainability?
e.g. have the least code?
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KEY IDEA

 Alternative: conduct a cloud-related research project on any 
topic focused on specific research goals / questions
 Can be used to help spur MS Capstone/Thesis work

 If you’re interested in this option, please talk with the instructor

 First step is to identify 1 – 2 research questions 

 Instructor will help guide projects throughout the quarter

 Project approval based on team preparedness to execute 
project 
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TERM PROJECT: RESEARCH

 Project cloud infrastructure support:

 Sign up for the Github Student Developer Pack:
 https://education.github.com/pack
 Includes up to $100 in Amazon Cloud Credits    - starter account =( 
 Includes up to $100 in Microsoft Azure Credits
 AWS credit extensions available as needed
 Unlimited private git repositories 

 Microsoft Azure for Students
 $100 free credit per account valid for 1 year
 https://azure.microsoft.com/en-us/free/students/
 Also: $200 free credit option for 1 month

 Google Cloud
 $300 free credit for 1 year
 https://cloud.google.com/free/

 Chameleon / CloudLab
 Bare metal NSF cloud - free
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PROJECT SUPPORT

 Projects can lead to papers or posters presented at 
ACM/IEEE/USENIX conferences, workshops
 Networking and research opportunity 
 … travel ???

 Conference participation (posters, papers) 
helps differentiate your resume from others

 Project can support preliminary work for:
UWT - MS capstone/thesis project proposals

 Research projects provide valuable practicum experience 
with cloud systems analysis, prototyping

 Publications are key for building your resume/CV,
Also key if applying to PhD programs
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TCSS562 TERM PROJECT OPPORTUNITIES

 Project status report / term project check-ins

Written status report 

 2-3 times in quarter 

 Part of: “Project Status Reports / Activities / Quizzes”
category

 10% of grade

 Project meetings with instructor
 After class, end half of class, office hours
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TCSS562 TERM PROJECT - 3
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 Course Introduction
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 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Course webpage is embedded into Canvas
 In CANVAS to access links:

RIGHT-CLICK – Open in new window

 Syllabus online at:
http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments
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TCSS562 – SOFTWARE ENGINEERING 
FOR CLOUD COMPUTING

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/QJZvJXuUgGzUzf1V8

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html
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DEMOGRAPHICS SURVEY

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems 
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OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/3wmwKvWrF5EAeoju5

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html
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AWS CLOUD CREDITS SURVEY
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OBJECTIVES – 9/30

 Course Introduction

 Syllabus

 Demographics Survey
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Chapter 4 Marinescu 2nd edition:
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OBJECTIVES – 9/30

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 General interest in parallel computing

Moore’s Law - # of transistors doubles every 18 months

 Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

 Overclocking to 7GHz takes 
more than just liquid nitrogen:
 https://tinyurl.com/y93s2yz2

Solutions:
 Vary CPU clock speed

 Add CPU cores

Multi-core technology
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CLOUD COMPUTING: 
HOW DID WE GET HERE?
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 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling
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AMD’S 64-CORE 7NM CPUS
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 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads 
are not equivalent 
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: 
hyperthreads add
+32.9% 
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HYPER THREADING

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific 
applications

 Not every problem solution has a parallel algorithm
 Chicken and egg problem…

 Many commercial efforts promoting pure parallel 
programming efforts have failed

 Enterprise computing world has been skeptical and 
less involved in parallel programming
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite” 
scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting 
parallelism

Cloud applications

Based on client-server paradigm

Thin clients leverage compute hosted on the cloud

Applications run many web service instances

Employ load balancing
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

Big Data requires massive amounts of compute 
resources

MAP – REDUCE

Single instruction, multiple data (SIMD)

Exploit data level parallelism

Bioinformatics example
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local 
alignment of two protein sequences
 Embarrassingly parallel, each task can run in isolation

 Use case for GPU acceleration 

AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human 
protein sequences (20,336)
 Python client as scheduler

 C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications. 
PLoS One 2013, 8:e82138
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SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes
 Partitions 20,336 sequences into 41 sets
 Execution cost: ~ 82¢  (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28 
minutes
 Execution cost: ~ 87¢  (~408x speed-up)

 Hardware
 Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
 Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs
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Compute clouds are large-scale distributed 
systems

Heterogeneous systems

Homogeneous systems

Autonomous

Self organizing 
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CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 Discovering parallelism and development of parallel 
algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large 
systems of linear equations or solving systems of Partial 
Differential Equations (PDEs), require algorithms based on 
domain decomposition methods. 

 How can problems be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination 

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination
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PARALLELISM

 Coordination of nodes
 Requires message passing or shared memory
 Debugging parallel message passing code is easier 

than parallel shared memory code

 Message passing: all of the interactions are clear
 Coordination via specific programming API (MPI)

 Shared memory: interactions can be implicit – must 
read the code!!

 Processing speed is orders of magnitude faster than 
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
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PARALLELISM - 2

Parallelism: 
Goal: Perform multiple operations at the same time 

to achieve a speed-up

 Thread-level parallelism (TLP)
Control flow architecture

Data-level parallelism
Data flow architecture

Bit-level parallelism
 Instruction-level parallelism (ILP)
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TYPES OF PARALLELISM

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of  average (TLP) 
for scheduling an application to run on a computer with a 
f ixed number of  CPU cores and hyperthreads? 

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources 
is knowing your application’s TLP…
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
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THREAD LEVEL PARALLELISM (TLP)
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 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction 
to load into instruction register

 Program execution is sequential
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CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies 
of the program on them with little or no 
communication

Problems are considered to be 
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem 
into a number of parallel tasks

MapReduce programming model is an example
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DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital 
signal processors, special purpose systems

 Operations performed when input (data) becomes 
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively 

parallel system
 Efficiently dispatching instruction tokens in a massively 

parallel system
 Building content addressable memory large enough to 

hold all of the dependencies of a real program
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DATA FLOW ARCHITECTURE

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic 
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking 
for instructions requiring data by defining execution windows

 Execution windows: identify instructions that can be run by 
data dependency  

 Instructions are completed in data dependency order within 
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned
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DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are 
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process 
larger operands (A+B) providing dramatic performance 
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two 
64-bit numbers on a 16-bit CPU?  ( Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers
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BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that 
can execute concurrently on different CPU circuitry 

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back
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INSTRUCTION-LEVEL PARALLELISM (ILP)
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CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are 
loaded

 Starting with 6th clock cycle, one full instruction 
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!
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INSTRUCTION LEVEL PARALLELISM - 2

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

Michael Flynn’s proposed taxonomy of computer 
architectures based on concurrent instructions and 
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)  

 Pipeline architectures: functional units perform different 
operations on the same data 

 For fault tolerance, may want to execute same instructions 
redundantly to detect and mask errors – for task replication
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MICHAEL FLYNN’S COMPUTER 
ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are 
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instructions are issued, operations on 
individual vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions
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FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store 
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector 
operations on traditional CPUs

 Vector operations reduce total number of instructions for 
large vector operations 

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about 
parallel ism
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(SIMD): VECTOR PROCESSING
ADVANTAGES
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 MIMD (Multiple Instructions, Multiple Data) - system with 
several processors and/or cores that function asynchronously 
and independently

 At any time, different processors/cores may execute different 
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)
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FLYNN’S TAXONOMY - 2

 Arithmetic intensity: Ratio of work (W) to 
memory traffic r/w (Q) 

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel 

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well 
with problem size
(memory RW becomes bottleneck, not enough ops!)
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ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity 
performance of code running on CPU hits a “roof” 

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)
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ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory 
bandwidth limits performance..

With high Arithmetic intensity, 
the system has peak parallel 
performance…
 performance is limited by??

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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OBJECTIVES

 GPU provides multiple SIMD processors 

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model: 
single instruction, multiple thread

 Programmed using CUDA- C like programming 
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each 
data element (e.g. vector or matrix)

 Thousands of threads run concurrently 
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GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?
Parallel and distributed systems 

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia 
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems 

Modularity 
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Parallel hardware and software systems allow: 
 Solve problems demanding resources not available on 

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of 
parallelization:

S(N) = T(1) / T(N) 

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel 

computations in parallel 
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PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time 
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “per fect scaling”

 Must consider data transfer and computation setup time
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SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized 
determines the overall speedup 

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a 

perfectly even work distribution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is  the maximum possible speedup of the program?
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AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N)  = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized 
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel, 
but 25% cannot be parallelized.  α=.25
QUESTION: I f  deploying the job on a 2-core CPU, what 
scaled speedup is possible assuming the use of two 
processes that run in parallel?
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GUSTAFSON'S LAW

 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N)  = N + (1 - N) α
N=2, α=.25
S(N)  = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N)  = N + (1 - N) α
N=4, α=.25
S(N)  = 4 + (1 - 4) .25
S(N) = ?
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GUSTAFSON’S EXAMPLE

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat 
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the 
same computational resources and speed  

 Asymmetric core processor – on a multi-core CPU, some cores 
have more resources and speed  

 Dynamic core processor – processing resources and speed can 
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup
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OBJECTIVES

 Collection of autonomous computers, connected through a 
network with distribution software called “middleware” that 
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing 
facility. 

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented 
by every node 

 Multiple points of control and failure

 Nodes may not be accessible at all times 

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
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DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance 

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.69

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using 
identical operations

 Location transparency: objects accessed w/o knowledge of 
their location.

 Concurrency transparency: several processes run concurrently 
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are 
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting 

operations performed on them
 Performance transparency: system can be reconfigured based 

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o 

change in system structure and w/o affecting applications
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TRANSPARENCY PROPERTIES OF 
DISTRIBUTED SYSTEMS
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OBJECTIVES

 Sof t modularity: TRADITIONAL 

 Divide a program into modules (classes) that call each other 
and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only 
through message passing 

 The ubiquitous client-server paradigm 

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
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 Multi-core CPU technology and hyper-threading

 What is a 
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than 
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level 
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single 
Instruction Multiple Data, Vector processing & GPUs
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU) 

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model: 
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers 
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N)  = N – α( N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes 
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced
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CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3 QUESTIONS
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