
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.1

Introduction

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

October 24, 2016 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L10.2

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems

September 30, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.4

OBJECTIVES – 9/30

TCSS 562 – Fall 2020

Online is green…
 100% reduction of carbon footprint from

transit

 Saves commuting time
 Less fuel expenses

 Easier to achieve perfect attendance –
all lectures streamed LIVE, recorded
for 24/7 availability
 UW deletes content after ~90 days

20 class meetings
 No Class on Wed Nov 11
 No Lecture/Office Hours on Wed Nov 25

 This course will not have exams!

 This course helps with preparation for
TCSS 558 – Applied Distributed Computing

TCSS 562
FALL 2020

L1.5

 [1] Cloud Computing: Concepts, Technology and Architecture*

 Thomas Erl, Prentice Hall 2013

 [2] Cloud Computing - Theory and Practice

 Dan Marinescu, First Edition 2013 *, Second Edition 2018

 [3] Cloud Computing:
A Hands-On Approach

 Arshdeep Bahga
2013

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.6

REFERENCES

* - available online via UW library

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.2

 [4] Systems Performance: Enterprise and the Cloud *

 Brendan Gregg, First Edition 2013

 [5] AWS Administration – The Definitive Guide *

 Yohan Wadia, First Edition 2016

 Research papers

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.7

REFERENCES - 2

* - available online via UW library

 Project Proposal

 Project Status Reports / Activities / Quiz

 ~ 2-4 total items (??)

 Variety of formats: in class, online, reading, activity

 Midterm

 Open book, note, etc.

 Class Presentation

 Term Project / Paper / Presentation

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.8

TCS562 COURSE WORK

 Each student will make one presentation in a team of ~3

 Technology sharing presentation

 PPT Slides, demonstration

 Provide technology overview of one cloud service offering

 Present overview of features, performance, etc.

 Cloud Research Paper Presentation

 PPT slides, identify research contributions, strengths and
weaknesses of paper, possible areas for future work

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.9

CLASS PRESENTATION

 Project description to be posted
 Teams of ~3, self formed, one project leader
 Scope can vary based on team size and personal

background w/ instructor approval
 Proposal due: Sunday October 18, 11:59pm (tentative)

 Approach:
 Build a “cloud native” serverless application
 Compose multiple FaaS functions (services)
 Compare implementations with alternate:
 Service compositions
 External services (e.g. database, key-value store)
 Application flow control - AWS Step Functions, laptop client, etc.

 How does application design impact cost and performance?
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.10

TCS562 TERM PROJECT

 Deliverables

 Demo in class at end of quarter (TBD)

 Project report paper (4-6 pgs IEEE format, template
provided)

 GitHub (project source)

 How-To document (via GitHub markdown)

 A standard project will be offered:
 Previously groups built an Extract-Transform-Load style

serverless data processing pipeline combing AWS Lambda,
S3, and Amazon Aurora Serverless DB

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.11

TCSS562 TERM PROJECT - 2

 Creative case studies are encouraged !!!

 Compare and contrast alternative designs considering various
cloud services, languages, platforms, etc.

 Examples:

 Object/blob storage services
 Amazon S3, Google blobstore, Azure blobstore, vs. self-hosted

 Cloud Relational Database services
 Amazon Relational Database Service (RDS), Aurora, Self-Hosted DB

 Platform-as-a-Service hosting (PaaS) alternatives
 Amazon Elastic Beanstalk, Heroku, others

 Function-as-a-Service platforms
 Google Cloud Functions, Azure Functions, IBM Cloud Functions

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.12

CASE STUDY ALTERNATIVES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.3

 File-based storage systems

 Amazon EBS, Amazon EFS, others

 Container orchestration services

 Amazon ECS, AKS, Azure Kubernetes Service

 Queueing services comparison

 Amazon SQS, Amazon MQ, Apache Kafka, RabbitMQ, 0Mq,
others

 NoSQL database services comparison

 DynamoDB, Google BigTable, MongoDB, Cassandra

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.13

CASE STUDY ALTERNATIVES - 2

 Do “something” that involves multiple processing steps

 Implementation is probably service-based

 implementation involves use of external services (e.g.
databases, object stores, queues)

 Case studies will contrast alternate designs

 Which designs offer the fastest performance?

 Lowest cost?

 Best maintainability?
e.g. have the least code?

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.14

KEY IDEA

 Alternative: conduct a cloud-related research project on any
topic focused on specific research goals / questions
 Can be used to help spur MS Capstone/Thesis work

 If you’re interested in this option, please talk with the instructor

 First step is to identify 1 – 2 research questions

 Instructor will help guide projects throughout the quarter

 Project approval based on team preparedness to execute
project

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.15

TERM PROJECT: RESEARCH

 Project cloud infrastructure support:

 Sign up for the Github Student Developer Pack:
 https://education.github.com/pack
 Includes up to $100 in Amazon Cloud Credits - starter account =(
 Includes up to $100 in Microsoft Azure Credits
 AWS credit extensions available as needed
 Unlimited private git repositories

 Microsoft Azure for Students
 $100 free credit per account valid for 1 year
 https://azure.microsoft.com/en-us/free/students/
 Also: $200 free credit option for 1 month

 Google Cloud
 $300 free credit for 1 year
 https://cloud.google.com/free/

 Chameleon / CloudLab
 Bare metal NSF cloud - free

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.16

PROJECT SUPPORT

 Projects can lead to papers or posters presented at
ACM/IEEE/USENIX conferences, workshops
 Networking and research opportunity
 … travel ???

 Conference participation (posters, papers)
helps differentiate your resume from others

 Project can support preliminary work for:
UWT - MS capstone/thesis project proposals

 Research projects provide valuable practicum experience
with cloud systems analysis, prototyping

 Publications are key for building your resume/CV,
Also key if applying to PhD programs

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.17

TCSS562 TERM PROJECT OPPORTUNITIES

 Project status report / term project check-ins

Written status report

 2-3 times in quarter

 Part of: “Project Status Reports / Activities / Quizzes”
category

 10% of grade

 Project meetings with instructor
 After class, end half of class, office hours

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.18

TCSS562 TERM PROJECT - 3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.4

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems

September 30, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.19

OBJECTIVES – 9/30

 Course webpage is embedded into Canvas
 In CANVAS to access links:

RIGHT-CLICK – Open in new window

 Syllabus online at:
http://faculty.washington.edu/wlloyd/courses/tcss562/

 Grading

 Schedule

 Assignments

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.20

TCSS562 – SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems

September 30, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.21

OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/QJZvJXuUgGzUzf1V8

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.22

DEMOGRAPHICS SURVEY

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems

September 30, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.23

OBJECTIVES – 9/30

 Please complete the ONLINE demographics survey:

 https://forms.gle/3wmwKvWrF5EAeoju5

 Linked from course webpage in Canvas:

 http://faculty.washington.edu/wlloyd/courses/tcss562/
announcements.html

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.24

AWS CLOUD CREDITS SURVEY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.5

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems

September 30, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.25

OBJECTIVES – 9/30

 Course Introduction

 Syllabus

 Demographics Survey

 AWS Cloud Credits Survey

 Tutorial 1 – Intro to Linux

 Cloud Computing – How did we get here?
Chapter 4 Marinescu 2nd edition:
Introduction to parallel and distributed systems

September 30, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.26

OBJECTIVES – 9/30

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.27

OBJECTIVES

 General interest in parallel computing

Moore’s Law - # of transistors doubles every 18 months

 Post 2004: heat dissipation challenges:
can no longer easily increase cloud speed

 Overclocking to 7GHz takes
more than just liquid nitrogen:
 https://tinyurl.com/y93s2yz2

Solutions:
 Vary CPU clock speed

 Add CPU cores

Multi-core technology

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.28

CLOUD COMPUTING:
HOW DID WE GET HERE?

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.29

 Epyc Rome CPUs

 Announced August 2019

 EPYC 7H12 requires liquid cooling

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.30

AMD’S 64-CORE 7NM CPUS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.6

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4760
same CPU, with and
without HTT

 Example: 
hyperthreads add
+32.9%

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.31

HYPER THREADING

 To make computing faster, we must go “parallel”

 Difficult to expose parallelism in scientific
applications

 Not every problem solution has a parallel algorithm
 Chicken and egg problem…

 Many commercial efforts promoting pure parallel
programming efforts have failed

 Enterprise computing world has been skeptical and
less involved in parallel programming

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.32

CLOUD COMPUTING:
HOW DID WE GET HERE? - 2

Cloud computing provides access to “infinite”
scalable compute infrastructure on demand

 Infrastructure availability is key to exploiting
parallelism

Cloud applications

Based on client-server paradigm

Thin clients leverage compute hosted on the cloud

Applications run many web service instances

Employ load balancing

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.33

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

Big Data requires massive amounts of compute
resources

MAP – REDUCE

Single instruction, multiple data (SIMD)

Exploit data level parallelism

Bioinformatics example

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.34

CLOUD COMPUTING:
HOW DID WE GET HERE? - 4

SMITH WATERMAN USE CASE

Applies dynamic programming to find best local
alignment of two protein sequences
 Embarrassingly parallel, each task can run in isolation

 Use case for GPU acceleration

AWS Lambda Serverless Computing Use Case:
Goal: Pair-wise comparison of all unique human
protein sequences (20,336)
 Python client as scheduler

 C Striped Smith-Waterman (SSW) execution engine
From: Zhao M, Lee WP, Garrison EP, Marth GT: SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications.
PLoS One 2013, 8:e82138

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.35

SMITH WATERMAN RUNTIME

 Laptop server and client (2-core, 4-HT): 8.7 hours

 AWS Lambda FaaS, laptop as client: 2.2 minutes
 Partitions 20,336 sequences into 41 sets
 Execution cost: ~ 82¢ (~237x speed-up)

 AWS Lambda server, EC2 instance as client: 1.28
minutes
 Execution cost: ~ 87¢ (~408x speed-up)

 Hardware
 Laptop client: Intel i5-7200U 2.5 GHz :4 HT, 2 CPU
 Cloud client: EC2 Virtual Machine - m5.24xlarge: 96 vCPUs
 Cloud server: Lambda ~1000 Intel E5-2666v3 2.9GHz CPUs

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.7

Compute clouds are large-scale distributed
systems

Heterogeneous systems

Homogeneous systems

Autonomous

Self organizing

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.37

CLOUD COMPUTING:
HOW DID WE GET HERE? - 3

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.38

OBJECTIVES

 Discovering parallelism and development of parallel
algorithms requires considerable effort

 Example: numerical analysis problems, such as solving large
systems of linear equations or solving systems of Partial
Differential Equations (PDEs), require algorithms based on
domain decomposition methods.

 How can problems be split into independent chunks?

 Fine-grained parallelism
 Only small bits of code can run in parallel without coordination

 Communication is required to synchronize state across nodes

 Coarse-grained parallelism
 Large blocks of code can run without coordination

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.39

PARALLELISM

 Coordination of nodes
 Requires message passing or shared memory
 Debugging parallel message passing code is easier

than parallel shared memory code

 Message passing: all of the interactions are clear
 Coordination via specific programming API (MPI)

 Shared memory: interactions can be implicit – must
read the code!!

 Processing speed is orders of magnitude faster than
communication speed (CPU > memory bus speed)

 Avoiding coordination achieves the best speed-up
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.40

PARALLELISM - 2

Parallelism:
Goal: Perform multiple operations at the same time

to achieve a speed-up

 Thread-level parallelism (TLP)
Control flow architecture

Data-level parallelism
Data flow architecture

Bit-level parallelism
 Instruction-level parallelism (ILP)

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.41

TYPES OF PARALLELISM

 Number of threads an application runs at any one time
 Varies throughout program execution
 As a metric:
 Minimum: 1 thread
 Can measure average, maximum (peak)

 QUESTION: What are the consequences of average (TLP)
for scheduling an application to run on a computer with a
f ixed number of CPU cores and hyperthreads?

 Let’s say there are 4 cores, or 8 hyper-threads…

Key to avoiding waste of computing resources
is knowing your application’s TLP…
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.42

THREAD LEVEL PARALLELISM (TLP)

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.8

 By John von Neumann (1945)

 Also called the Von Neumann architecture

 Dominant computer system architecture

 Program counter (PC) determines next instruction
to load into instruction register

 Program execution is sequential

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.43

CONTROL-FLOW ARCHITECTURE

Partition data into big chunks, run separate copies
of the program on them with little or no
communication

Problems are considered to be
embarrassingly parallel

Also perfectly parallel or pleasingly parallel…

 Little or no effort needed to separate problem
into a number of parallel tasks

MapReduce programming model is an example

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.44

DATA-LEVEL PARALLELISM

 Alternate architecture used by network routers, digital
signal processors, special purpose systems

 Operations performed when input (data) becomes
available

 Envisioned to provide much higher parallelism

 Multiple problems has prevented wide-scale adoption
 Efficiently broadcasting data tokens in a massively

parallel system
 Efficiently dispatching instruction tokens in a massively

parallel system
 Building content addressable memory large enough to

hold all of the dependencies of a real program
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.45

DATA FLOW ARCHITECTURE

 Architecture not as popular as control-flow

 Modern CPUs emulate data flow architecture for dynamic
instruction scheduling since the 1990s

 Out-of-order execution – reduces CPU idle time by not blocking
for instructions requiring data by defining execution windows

 Execution windows: identify instructions that can be run by
data dependency

 Instructions are completed in data dependency order within
execution window
 Execution window size typically 32 to 200 instructions

Utility of data flow architectures has been
much less than envisioned

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.46

DATA FLOW ARCHITECTURE - 2

 Computations on large words (e.g. 64-bit integer) are
performed as a single instruction

 Fewer instructions are required on 64-bit CPUs to process
larger operands (A+B) providing dramatic performance
improvements

 Processors have evolved: 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

QUESTION: How many instructions are required to add two
64-bit numbers on a 16-bit CPU? (Intel 8088)

 64-bit MAX int = 9,223,372,036,854,775,807 (signed)

 16-bit MAX int = 32,767 (signed)

 Intel 8088 – limited to 16-bit registers

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.47

BIT-LEVEL PARALLELISM

 CPU pipelining architectures enable ILP

 CPUs have multi-stage processing pipelines

 Pipelining: split instructions into sequence of steps that
can execute concurrently on different CPU circuitry

 Basic RISC CPU - Each instruction has 5 pipeline stages:

 IF – instruction fetch

 ID- instruction decode

 EX – instruction execution

 MEM – memory access

 WB – write back

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.48

INSTRUCTION-LEVEL PARALLELISM (ILP)

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.9

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.49

CPU PIPELINING

 RISC CPU:

 After 5 clock cycles, all 5 stages of an instruction are
loaded

 Starting with 6th clock cycle, one full instruction
completes each cycle

 The CPU performs 5 tasks per clock cycle!
Fetch, decode, execute, memory read, memory write back

 Pentium 4 (CISC CPU) – processing pipeline w/ 35 stages!

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.50

INSTRUCTION LEVEL PARALLELISM - 2

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.51

OBJECTIVES

Michael Flynn’s proposed taxonomy of computer
architectures based on concurrent instructions and
number of data streams (1966)

 SISD (Single Instruction Single Data)

 SIMD (Single Instruction, Multiple Data)

 MIMD (Multiple Instructions, Multiple Data)

 LESS COMMON: MISD (Multiple Instructions, Single Data)

 Pipeline architectures: functional units perform different
operations on the same data

 For fault tolerance, may want to execute same instructions
redundantly to detect and mask errors – for task replication

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.52

MICHAEL FLYNN’S COMPUTER
ARCHITECTURE TAXONOMY

 SISD (Single Instruction Single Data)
Scalar architecture with one processor/core.

 Individual cores of modern multicore processors are
“SISD”

 SIMD (Single Instruction, Multiple Data)
Supports vector processing

When SIMD instructions are issued, operations on
individual vector components are carried out concurrently

 Two 64-element vectors can be added in parallel

 Vector processing instructions added to modern CPUs

 Example: Intel MMX (multimedia) instructions

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.53

FLYNN’S TAXONOMY

 Exploit data-parallelism: vector operations enable speedups

 Vectors architecture provide vector registers that can store
entire matrices into a CPU register

 SIMD CPU extension (e.g. MMX) add support for vector
operations on traditional CPUs

 Vector operations reduce total number of instructions for
large vector operations

 Provides higher potential speedup vs. MIMD architecture

 Developers can think sequentially; not worry about
parallel ism

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.54

(SIMD): VECTOR PROCESSING
ADVANTAGES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.10

 MIMD (Multiple Instructions, Multiple Data) - system with
several processors and/or cores that function asynchronously
and independently

 At any time, different processors/cores may execute different
instructions on different data

 Multi-core CPUs are MIMD

 Processors share memory via interconnection networks
 Hypercube, 2D torus, 3D torus, omega network, other topologies

 MIMD systems have different methods of sharing memory
 Uniform Memory Access (UMA)

 Cache Only Memory Access (COMA)

 Non-Uniform Memory Access (NUMA)

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.55

FLYNN’S TAXONOMY - 2

 Arithmetic intensity: Ratio of work (W) to
memory traffic r/w (Q)

Example: # of floating point ops per byte of data read
 Characterizes application scalability with SIMD support
 SIMD can perform many fast matrix operations in parallel

 High arithmetic Intensity:
Programs with dense matrix operations scale up nicely
(many calcs vs memory RW, supports lots of parallelism)

 Low arithmetic intensity:
Programs with sparse matrix operations do not scale well
with problem size
(memory RW becomes bottleneck, not enough ops!)

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.56

ARITHMETIC INTENSITY

 When program reaches a given arithmetic intensity
performance of code running on CPU hits a “roof”

 CPU performance bottleneck changes from:
memory bandwidth (left)  floating point performance (right)

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.57

ROOFLINE MODEL

Key take-aways:
When a program’s has low
Arithmetic Intensity, memory
bandwidth limits performance..

With high Arithmetic intensity,
the system has peak parallel
performance…
 performance is limited by??

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.58

OBJECTIVES

 GPU provides multiple SIMD processors

 Typically 7 to 15 SIMD processors each

 32,768 total registers, divided into 16 lanes
(2048 registers each)

 GPU programming model:
single instruction, multiple thread

 Programmed using CUDA- C like programming
language by NVIDIA for GPUs

 CUDA threads – single thread associated with each
data element (e.g. vector or matrix)

 Thousands of threads run concurrently
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.59

GRAPHICAL PROCESSING UNITS (GPUS)

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.60

OBJECTIVES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.11

Parallel hardware and software systems allow:
 Solve problems demanding resources not available on

single system.
 Reduce time required to obtain solution

 The speed-up (S) measures effectiveness of
parallelization:

S(N) = T(1) / T(N)

T(1)  execution time of total sequential computation
T(N)  execution time for performing N parallel

computations in parallel

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.61

PARALLEL COMPUTING

 Consider embarrassingly parallel image processing
 Eight images (multiple data)
 Apply image transformation (greyscale) in parallel
 8-core CPU, 16 hyperthreads

 Sequential processing: perform transformations one at a time
using a single program thread
 8 images, 3 seconds each: T(1) = 24 seconds

 Parallel processing
 8 images, 3 seconds each: T(N) = 3 seconds

 Speedup: S(N) = 24 / 3 = 8x speedup
 Called “per fect scaling”

 Must consider data transfer and computation setup time

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.62

SPEED-UP EXAMPLE

 Portion of computation which cannot be parallelized
determines the overall speedup

 For an embarrassingly parallel job of fixed size
 Assuming no overhead for distributing the work, and a

perfectly even work distribution

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Maximum speedup is:

S = 1/ α

 Example:
Consider a program where 25% cannot be parallelized
Q: What is the maximum possible speedup of the program?

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.63

AMDAHL’S LAW

 Calculates the scaled speed-up using “N” processors

S(N) = N + (1 - N) α

N: Number of processors

α: fraction of program run time which can’t be parallelized
(e.g. must run sequentially)

 Example:
Consider a program that is embarrassingly parallel,
but 25% cannot be parallelized. α=.25
QUESTION: I f deploying the job on a 2-core CPU, what
scaled speedup is possible assuming the use of two
processes that run in parallel?

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.64

GUSTAFSON'S LAW

 QUESTION:
What is the maximum theoretical speed-up on a 2-core CPU ?
S(N) = N + (1 - N) α
N=2, α=.25
S(N) = 2 + (1 - 2) .25
S(N) = ?

 What is the maximum theoretical speed-up on a 4-core CPU?
S(N) = N + (1 - N) α
N=4, α=.25
S(N) = 4 + (1 - 4) .25
S(N) = ?

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.65

GUSTAFSON’S EXAMPLE

 Transistors on a chip doubles approximately every 1.5 years

 CPUs now have billions of transistors

 Power dissipation issues at faster clock rates leads to heat
removal challenges
 Transition from: increasing clock rates  to adding CPU cores

 Symmetric core processor –multi-core CPU, all cores have the
same computational resources and speed

 Asymmetric core processor – on a multi-core CPU, some cores
have more resources and speed

 Dynamic core processor – processing resources and speed can
be dynamically configured among cores

 Observation: asymmetric processors of fer a higher speedup

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.66

MOORE’S LAW

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.12

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.67

OBJECTIVES

 Collection of autonomous computers, connected through a
network with distribution software called “middleware” that
enables coordination of activities and sharing of resources

 Key characteristics:

 Users perceive system as a single, integrated computing
facility.

 Compute nodes are autonomous

 Scheduling, resource management, and security implemented
by every node

 Multiple points of control and failure

 Nodes may not be accessible at all times

 System can be scaled by adding additional nodes

 Availability at low levels of HW/software/network reliability
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.68

DISTRIBUTED SYSTEMS

 Key non-functional attributes

 Known as “ilities” in software engineering

 Availability – 24/7 access?

 Reliability - Fault tolerance

 Accessibility – reachable?

 Usability – user friendly

 Understandability – can under

 Scalability – responds to variable demand

 Extensibility – can be easily modified, extended

 Maintainability – can be easily fixed

 Consistency – data is replicated correctly in timely manner

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.69

DISTRIBUTED SYSTEMS - 2

 Access transparency: local and remote objects accessed using
identical operations

 Location transparency: objects accessed w/o knowledge of
their location.

 Concurrency transparency: several processes run concurrently
using shared objects w/o interference among them

 Replication transparency: multiple instances of objects are
used to increase reliability
- users are unaware if and how the system is replicated

 Fai lure transparency: concealment of faults
 Migration transparency: objects are moved w/o affecting

operations performed on them
 Performance transparency: system can be reconfigured based

on load and quality of service requirements
 Scal ing transparency: system and applications can scale w/o

change in system structure and w/o affecting applications

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.70

TRANSPARENCY PROPERTIES OF
DISTRIBUTED SYSTEMS

Cloud Computing: How did we get here?
Parallel and distributed systems

(Marinescu Ch. 2 - 1st edition, Ch. 4 - 2nd edition)
 Data, thread-level, task-level parallelism

 Parallel architectures

 SIMD architectures, vector processing, multimedia
extensions

 Graphics processing units

 Speed-up, Amdahl's Law, Scaled Speedup

 Properties of distributed systems

Modularity

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.71

OBJECTIVES

 Sof t modularity: TRADITIONAL

 Divide a program into modules (classes) that call each other
and communicate with shared-memory

 A procedure calling convention is used (or method invocation)

 Enforced modularity: CLOUD COMPUTING

 Program is divided into modules that communicate only
through message passing

 The ubiquitous client-server paradigm

 Clients and servers are independent decoupled modules

 System is more robust if servers are stateless

 May be scaled and deployed separately

 May also FAIL separately!
September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L1.72

TYPES OF MODULARITY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L1.13

 Multi-core CPU technology and hyper-threading

 What is a
 Heterogeneous system?

 Homogeneous system?

 Autonomous or self-organizing system?

 Fine grained vs. coarse grained parallelism

 Parallel message passing code is easier to debug than
shared memory (e.g. p-threads)

 Know your application’s max/avg Thread Level
Parallelism (TLP)

 Data-level parallelism: Map-Reduce, (SIMD) Single
Instruction Multiple Data, Vector processing & GPUs

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.73

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS

 Bit-level parallelism

 Instruction-level parallelism (CPU pipelining)

 Flynn’s taxonomy: computer system architecture classification
 SISD – Single Instruction, Single Data (modern core of a CPU)

 SIMD – Single Instruction, Multiple Data (Data parallelism)

 MIMD – Multiple Instruction, Multiple Data

 MISD is RARE; application for fault tolerance…

 Arithmetic intensity: ratio of calculations vs memory RW

 Roofline model:
Memory bottleneck with low arithmetic intensity

 GPUs: ideal for programs with high arithmetic intensity
 SIMD and Vector processing supported by many large registers

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.74

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 2

 Speed-up (S)
S(N) = T(1) / T(N)

 Amdahl’s law:
S = 1/ α
α = percent of program that must be sequential

 Scaled speedup with N processes:
S(N) = N – α(N-1)

 Moore’s Law
 Symmetric core, Asymmetric core, Dynamic core CPU
 Distributed Systems Non-function quality attributes
 Distributed Systems – Types of Transparency
 Types of modularity- Soft, Enforced

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1.75

CLOUD COMPUTING – HOW DID WE GET HERE?
SUMMARY OF KEY POINTS - 3 QUESTIONS

September 30, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L1.76

