
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.1

Containerization,
Kubernetes

Wes J. Lloyd
School of Engineering and Technology
University of Washington – Tacoma

MW 5:50-7:50 PM

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OBJECTIVES – 11/23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.2

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit
for completing

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

ONLINE DAILY FEEDBACK SURVEY

November 23, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.3

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.30 ( - previous 6.09)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.35 ( - previous 5.55)

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

MATERIAL / PACE

 Can you please help me to understand how data travels
between cloud regions?

 Is it the same as how the internet works (l ike packets
travelling over the network) or any different way?"

 Yes, travel from one cloud region to another will typically
be routed over the Internet as regions span considerable
distances (thousands of KMs)

 Please note there are substantial data egress charges
 S3 to off-cloud: 9/GB
 S3 to distant regions: 2 /GB
 S3 to local regions (OhioVirginia): 1 /GB

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK FROM 11/18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.4

 Is 3-tier architecture stil l the dominant architecture in cloud?

 Three tier architecture?

 Do you mean model-view-controller?

 How is that different from service oriented architecture in
cloud?

 Model-view-controller is one possible way to compose
components of an service oriented application

 Model: data persistence

 View: webservices to render web-based GUI

 Controller: webservices to implement application logic

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

FEEDBACK - 2

 Tutorial 5: Thursday Nov 19th @ 11:59p

 Tutorial 6: Tuesday Nov 24th @ 11:59p

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

TUTORIAL QUESTIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.5

 Tutorial 7– [POSTED] Introduction to Docker Containerization

 Extra credit tutorials – submit by Dec 18 @ 11:59p
 Tutorial 8 – Introduction to FaaS IV: Step Functions and SQS

 Tutorial 9 – Asynchronous Function Profiling with SAAF

 Ungraded tutorials:
 Tutorial 10 – Automating Experiments with SAAF & FaaS

Runner

 Tutorial 11 – Scaling beyond a single client – concurrent
webservice benchmarking with multiple EC2 instances

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

UPCOMING TUTORIALS

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

OBJECTIVES – 11/23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.6

 Hello Professor – I am not happy with my quiz score, can I
retake the quiz?

 Quiz grade from Canvas is temporary

 Partial credit will be applied for questions having
second/third best answers based on complete review of
all quiz attempts the class completes the quiz

 Final quiz score will likely be curved

 This helps to adjust for poorly written/understood
questions

 Tutorials 8 & 9 will be available for extra credit

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

QUIZ 2

October 24, 2016
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.7

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

OBJECTIVES – 11/23

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

OBJECTIVES – 11/23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.8

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation
 Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:
Monday November 23rd @ 11:59pm

 Presentation dates:
 Monday November 30, Wednesday December 2

 Monday December 7, Wednesday December 9

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

GROUP PRESENTATION

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

OBJECTIVES – 11/23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.9

CONTAINERIZATION

November 23, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.17

 Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

 Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

 Docker Compose: Config file (YAML) for multi -container
application; Describes how to deploy and configure multiple
containers

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

OTHER DOCKER TOOLS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.10

 Framework(s) to deploy multiple containers
Provide container clusters using cloud VMs
Similar to “private clusters”
Reduce VM idle CPU time in public clouds
Better leverage “sunk cost” resources
Compact multiple apps onto shared public cloud

infrastructure
Generate to cost savings
Reduce vendor lock-in

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

CONTAINER ORCHESTRATION
FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall : control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

 Scale in/out, add/remove containers

 Load balancing over groups of containers

 Roll ing upgrades of containers for application

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

KEY ORCHESTRATION FEATURES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.11

 Docker swarm

 Apache mesos/marathon

 Kubernetes

Many public cloud provides moving to offer Kubernetes-as-
a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service
 Serverless containers without managing clusters

 Azure Container Instances, AWS Fargate…

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

OBJECTIVES – 11/23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.12

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 23, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -
Tacoma

L15.23

 Docker CLI  Docker Enginer (dockerd)  containerd  runc

 Concepts:

 Docker installation

 Working with docker files

 Docker run – create a container

 Docker ps – list containers

 Docker exec –it – run a process in an existing container

 Docker stop –stop container

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

TUTORIAL COVERAGE

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.13

November 23, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.25

Docker CLI

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

TUTORIAL 7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.14

WE WILL RETURN AT
~6:56PM

 Questions from 11/18

 Quiz 2– extended until Wed 11/25 @ 11:59p

 No Office Hours 11/27

 Class on 11/25:
Office hours, and finish any remaining lecture from today

 Introduction to Containerization cont’d

 Tutorial 7

 2nd hour:

 Introduction to Kubernetes

 Tutorial questions

 Team planning

November 23, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

OBJECTIVES – 11/23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.15

KUBERNETES

L15.29

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

 Name is from the Greek word meaning Helmsman
 The person who steers a seafaring ship

 The logo reinforces this theme

 Kubernetes is also sometimes called K8s

 Kubernetes is an application orchestrator

 Most common use case is to containerize
cloud-native microservices applications

 What is an orchestrator?
 System that deploys and manages applications

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

KUBERNETES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.16

 Init ially developed by Google

 Goal: make it easier for potential customers to use Google Cloud

 Kubernetes leverages knowledge gained from two internal
container management systems developed at Google
 Borg and Omega

 Google donated Kubernetes to the Cloud Native Computing
Foundation in 2014 as an open-source project

 Kubernetes is written in Go (Golang)

 Kubernetes is available under the Apache 2.0 l icense

 Releases were previously maintained for only 8 months!

 Starting w/ v 1.19 (released Aug 2020) support is 1 year

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

KUBERNETES – 2
Why does Google want

to give Kubernetes away
for free?

1. Deploy your application

2. Scale it up and down dynamically according to demand

3. Self-heal it when things break

4. Perform zero-downtime rolling updates and rollbacks

 These features represent automatic infrastructure
management

 Containerized applications run in container(s)

 Compared to VMs, containers are thought of as being:

 Faster

More light-weight

More suited to rapidly evolving software requirements
November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L15.32

GOALS OF KUBERNETES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.17

 Applications designed to meet modern software
requirements including:

 Auto-scaling: resources to meet demand

 Self-healing: required for high availability (HA) and fault
tolerance

 Rolling software updates: with no application downtime
for DevOPS

 Portability: can run anywhere there’s a Kubernetes cluster

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

CLOUD NATIVE APPLICATIONS

 Application consisting of many specialized parts that
communicate and form a meaningful application

 Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store

 KEY IDEAS:

 Each microservice can be coded/maintained by different team

 Each has its own release cadence

 Each is deployed/scaled separately

 Can patch & scale the log service w/o impacting others

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

WHAT IS A MICROSERVICES APP?

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.18

 Provides “an operating system for the cloud”

 Offers the de-facto standard platform for deploying and
managing cloud-native applications

 OS: abstracts physical server, schedules processes

 Kubernetes: abstracts the cloud , schedules microservices

 Kubernetes abstracts differences between private and public
clouds

 Enable cloud-native applications to be cloud agnostic
 i.e. they don’t care WHAT cloud they run on

 Enables fluid application migration between clouds

 Kubernetes provides r ich set of tools/APIs to introspect
(observe and examine) your apps

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

KUBERNETES - 3

 Features:

 A “control plane” – brain of the cluster
 Implements autoscaling, rolling updates w/o downtime, self-healing

 A “bunch of nodes” – workers (muscle) of the cluster

 Provides orchestration

 The process of organizing everything into a useful application

 And also keeping it running smoothly

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

KUBERNETES - 4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.19

 Master node(s) manage the cluster by:
 Making scheduling decisions

 Performing monitoring

 Implementing changes

 Responding to events

 Masters implement the control plane of a Kubernetes cluster

 Recipe for deploying to Kubernetes:

 Write app as independent microservices in preferred language

 Package each microservice in a container

 Create a manifest to encapsulate the definit ion of a Pod

 Deploy Pods to the cluster w/ a higher-level controller such as
“Deployments” or “DaemonSets”

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

KUBERNETES - CLUSTER MANAGEMENT

 Imperative definition: sets of commands and operations
 Example: BASH script, Dockerfile

 Declarative definition: specification of a service’s properties
 What level of service it should sustain, etc.

 Example: Kubernetes YAML files

 Kubernetes manages resources declaratively

 How apps are deployed and run are defined with YAML files

 YAML fi les are POSTed to Kubernetes endpoints

 Kubernetes deploys and manages applications based on
declarative service requirements

 If something isn’t as it should be: Kubernetes automatically
tries to fix it

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

DECLARATIVE SERVICE APPROACH

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.20

 Provide system services to host the control plane

 Simplest clusters use only 1 master – no replication

 Suitable for lab and dev/test environments

 Production environments: masters are replicated ~3-5x

 Provides fault tolerance and high availability (HA)

 Cloud-based managed Kubernetes services offer HA
deployments

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

KUBERNETES MASTERS

API Server

Cluster store

Controller
Manager

Scheduler

Cloud controller manager

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

MASTER SERVICES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.21

 Can run on 1-node for lab, test/dev environments

 Default port is 443

 Exposes a RESTful API where YAML configuration files are
POST(ed) to

 YAML files (manifests) describe desired state of an
application

Which container image(s) to use

Which ports to expose

 How many POD replicas to run

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

API SERVER

API Server

Cluster store

Controller
Manager

Scheduler

Cloud controller manager

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

MASTER SERVICES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.22

 Used to persist Kubernetes cluster state

 Persistently stores entire configuration and state of the
cluster

 Currently implemented with etcd
 Popular distributed key/value store (db) supporting replication

 HA deployments may use ~3-5 replicas

 Is the authority on true state of the cluster

 etcd prefers consistency over availabil ity

 etcd failure: apps continue to run, nothing can be reconfigured

 Consistency of writes is vital

 Employs RAFT consensus protocol to negotiate which replica
has correct view of the system in the event of replica failure

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

CLUSTER STORE

API Server

Cluster store

Controller
Manager

Scheduler

Cloud controller manager

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

MASTER SERVICES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.23

 Provides a “controller” of the controllers
 Implements background control loops to monitor cluster

and respond to events

 Control loops include: node controller, endpoints controller,
replicaset controller, etc…

 GOAL: ensure cluster current state matches desired state

 Control Loop Logic:

1. Obtain desired state (defined in manifest YAMLs)

2. Observe the current state

3. Determine dif ferences

4. Reconcile differences

 Controllers are specialized to manage a specific resource type
 They are not aware/concerned with of other parts of the system

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

CONTROLLER MANAGER

API Server

Cluster store

Controller
Manager

Scheduler

Cloud controller manager

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

MASTER SERVICES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.24

 Scheduler’s job is to identify the best node to run a task
 Scheduler does not actually run tasks itself

 Assigns work tasks to appropriate healthy nodes

 Implements complex logic to filter out nodes incapable of
running specified task(s)

 Capable nodes are ranked

 Node with highest ranking is selected to run the task

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

TASK SCHEDULER

 Scheduler performs predicate (property) checks to verify
how/where to run tasks

 Is a node tainted?

 Does task have affinity (deploy together), anti-affinity
(separation) requirements?

 Is a required network port available on the node?

 Does node have sufficient free resources?

 Nodes incapable of running the task are eliminated as
candidate hosts

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

ENFORCING SCHEDULING PREDICATES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.25

 Remaining nodes are ranked based on for example:

1. Does the node have the required images?
 Cached images will lead to faster deployment time

2. How much free capacity (CPU, memory) does the node have?

3. How many tasks is the node already running?

 Each criterion is worth points

 Node with most points is selected

 If there is no suitable node, task is not scheduled, but marked
as pending

 PROBLEM: There is no one-sized f its all solution to selecting
the best node. How weights are assigned to conditions may
not reflect what is best for the task

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

RANKING NODES

API Server

Cluster store

Controller
Manager

Scheduler

Cloud controller manager

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

MASTER SERVICES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.26

 Abstracts and manages integration with specific cloud(s)

 Manages vendor specific cloud infrastructure to provide
instances (VMs), load balancing, storage, etc.

 Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

CLOUD CONTROLLER MANAGER

API Server

Cluster store

Controller
Manager

Scheduler

Cloud controller manager

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

MASTER SERVICES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.27

 Nodes perform tasks (i.e. host containers & services)

 Three primary functions:

1. Wait for the scheduler to assign work

2. Execute work (host containers, etc.)

3. Report back state information, etc.

 Nodes are considerably simpler than masters

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

WORKER NODES

Kubelet

Container
runtime
(Docker, etc.)

Kubernetes
Proxy

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

WORKER NODES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.28

 Main Kubernetes agent

 Runs on every node

 Adding a new node installs the kubelet onto the node

 Kubelet registers the node with the cluster

 Monitors API server for new work assignments

 Maintains reporting back to control plane

 When a node can’t run a task, kubelet is NOT responsible
for finding an alternate node

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

KUBELET

Kubelet

Container
runtime
(Docker, etc.)

Kubernetes
Proxy

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

WORKER NODES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.29

 Each node requires a container runtime to run containers

 Early versions had custom support for a limited number of
container types, e.g. Docker

 Kubernetes now provides a standard Container Runtime
Interface (CRI)

 CRI exposes a clean interface for 3rd party container
runtimes to plug-in to

 Popular container runtimes: Docker, containerd, Kata

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

CONTAINER RUNTIME(S)

Kubelet

Container
runtime
(Docker, etc.)

Kubernetes
Proxy

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

WORKER NODES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.30

 Runs on every node in the cluster

 Responsible for managing the cluster’s networking

 Ensures each node obtains a unique IP address

 Implemented local IPTABLES and IPVS rules to route and load-
balance traf fic

 IPTABLES (ipv4) – enables configuration of IP packet fi ltering
rules of the Linux kernel firewall

 IPVS – IP Virtual Server: provides transport-layer (layer 4) load
balancing as part of the Linux kernel; Configured using
ipvsadm tool in Linux

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

KUBE-PROXY

Kubernetes DNS

Pods

Services

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

CORE KUBERNETES COMPONENTS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.31

 Every Kubernetes cluster has an internal DNS service

 Accessed with a static IP

 Hard-coded so that every container can find it

 Every service is registered with the DNS so that all
components can find every Service on the cluster by
NAME

 Is based on CoreDNS (https://coredns.io)

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

KUBERNETES DNS

Kubernetes DNS

Pods

Services

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

CORE KUBERNETES COMPONENTS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.32

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a single
microservice for hosting purposes

 Pods can have a single container, or multiple
containers if the service requires more than one

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

PODS

 Examples of multi -container Pods:
 Service meshes

 Web containers with a helper container that pulls latest content

 Containers with a tightly coupled log scraper or profiler

 YAML manifest files are used to provide a declarative
description for how to run and manage a Pod

 To run a pod, POST a YAML to the API Server:
“kubectl run <NAME>” where NAME is the service

 A Pod runs on a single node (host)

 Pods share:
 Interprocess communication (IPC) namespace

 Memory, Volumes, Network stack

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

PODS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.33

 Pods provide a “fenced” environment to run containers
 Provide a “sandbox”
 Only tightly coupled containers are deployed with a single pod
 Best practice: decouple individual containers to separate pods
 What is the best container composition into pods? (1:1, 1:many)

 Scaling
 Pods are the unit of scaling
 Add and remove pods to scale up/down
 Do not add containers to a pod, add pod instances
 Pod instances can be scheduled on the same or different host

 Atomic Operation
 Pods are either fully up and running their service (i.e. port

open/exposed), or pods are down / offline

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

PODS - 3

 Pod Lifecycle
 An application should not be tightly bound or dependent on a

specific Pod instance

 Pods are designed to fail and be replaced

 Use of service objects in Kubernetes help decouple pods to offer
resiliency upon failure

 Deployments
 Higher level controllers often used to deploy pods

 Controllers implement a controller and watch loop:

 “Deployments” – offer scalability & rolling updates

 “DaemonSets” – run instance of service on every cluster node

 “StatefulSets” – used for stateful components

 “CronJobs” – for short lived tasks that need to run at specified times

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

PODS - 4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.34

Kubernetes DNS

Pods

Services

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

CORE KUBERNETES COMPONENTS

 Pods managed with “Deployments” or “DameonSets”
controllers are automatically replaced when they die

 This provides resiliency for the application

 KEY IDEA: Pods are unreliable

 Services provide reliability by acting as a “GATEWAY”
to pods that implement the services

 They underlying pods can change over time

 The services endpoints remain and are always available

 Service objects provide an abstraction layer w/ a reliable
name and load balancing of requests to a set of pods

November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

KUBERNETES “SERVICES”

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.35

 Provide reliable front-end with:

 Stable DNS name

 IP Address

 Port

 Services do not posses application intelligence

 No support for application-layer host and path routing

 Services have a “label selector” which is a set of lables

 Requests/traffic is only sent to Pods with matching labels

 Services only send traffic to healthy Pods

 KEY IDEA: Services bring stable IP addresses and DNS
names to unstable Pods
November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L15.69

SERVICES

November 23, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.70

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L15.36

QUESTIONS

November 23, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.71

