TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Containerization,
Kubernetes

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

MW 5:50-7:50 PM

OBJECTIVES - 11/23

| = Questions from 11/18 |
® Quiz 2- extended until Wed 11/25 @ 11:59p
® No Office Hours 11/27
® Class on 11/25:

Office hours, and finish any remaining lecture from today

® |ntroduction to Containerization cont’d
® Tutorial 7

m 2" hour:

® [ntroduction to Kubernetes
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

L15.2

Slides by Wes J. Lloyd

[Fall 2020]

L15.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Take After Each Class
® Extra Credit

Announcements

for completing v Upcoming Assigniernt
Assignments ipcoming Assignments

Diseussions _, Class Activity 1 - Implicit vs. Explicit Parallelism
Faom Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts
Grades Tutorial 1 - Linux
Available until Oct 19 at 11:59pm | Due Oct 15 at 11:59pm | -/20 pts

People
Pages
Files * Past Assignments
Quizzes

® TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations - Available until Dec 18 at 11:59pm | Due Oct & at 8:59pm | -/1pts
UW Libraries " .

“* TCSS 562 - Online Daily Feedback Survey - 2/30
W Resorirces * Available until Dec 18 3t 11:59pm | Due Oct 4 at 8:5%m | ~/1pts

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma ts3
TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am
Quiz Instructions
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5] 7 8 9 ie
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5] 7 8 9 1e
Slow Just Right Fast
November 23, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] o

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2020]

L15.2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (22 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.30 (T - previous 6.09)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.35 (J - previous 5.55)

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.5
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

FEEDBACK FROM 11/18

® Can you please help me to understand how data travels
between cloud regions?

m |s it the same as how the internet works (like packets
travelling over the network) or any different way?"

® Yes, travel from one cloud region to another will typically
be routed over the Internet as regions span considerable
distances (thousands of KMs)

® Please note there are substantial data egress charges
= S3 to off-cloud: 9¢/GB

= S3 to distant regions: 2 ¥/GB

= S3 to local regions (Ohio=>Virginia): 1 ¢/GB

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.6
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 2

m |s 3-tier architecture still the dominant architecture in cloud?

® Three tier architecture?
® Do you mean model-view-controller?

® How is that different from service oriented architecture in

cloud?

® Model-view-controller is one possible way to compose
components of an service oriented application

® Model: data persistence
= View: webservices to render web-based GUI
® Controller: webservices to implement application logic

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

TUTORIAL QUESTIONS

® Tutorial 5: Thursday Nov 19" @ 11:59p

m Tutorial 6: Tuesday Nov 24th @ 11:59p

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

Slides by Wes J. Lloyd

[Fall 2020]

L15.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

UPCOMING TUTORIALS

® Tutorial 7- [POSTED] Introduction to Docker Containerization

= Extra credit tutorials - submit by Dec 18 @ 11:59p
® Tutorial 8 - Introduction to FaaS IV: Step Functions and SQS
® Tutorial 9 - Asynchronous Function Profiling with SAAF

® Ungraded tutorials:

® Tutorial 10 - Automating Experiments with SAAF & FaaS
Runner

® Tutorial 11 - Scaling beyond a single client - concurrent
webservice benchmarking with multiple EC2 instances

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.9
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

OBJECTIVES - 11/23

® Questions from 11/18
| " Quiz 2- extended until Wed 11/25 @ 11:59p |
® No Office Hours 11/27

® Class on 11/25:
Office hours, and finish any remaining lecture from today

® |ntroduction to Containerization cont’d
® Tutorial 7

m 2" hour:

® [ntroduction to Kubernetes
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

L15.10
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QuIZ 2

® Hello Professor — | am not happy with my quiz score, can |
retake the quiz?

® Quiz grade from Canvas is temporary

® Partial credit will be applied for questions having
second/third best answers based on complete review of
all quiz attempts the class completes the quiz

® Final quiz score will likely be curved

= This helps to adjust for poorly written/understood
questions

® Tutorials 8 & 9 will be available for extra credit

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.11
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

W Should TCSS 562 Fall 2020 include a Quiz 3?

YES - Include Quiz 3 -
offered week of Dec Tth

No - Skip Quiz 3, Base
the Quiz score off of Quiz
1&2 only

Indifference - | am
happy with any outcome
:quiz or no quiz

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Slides by Wes J. Lloyd

[Fall 2020]

L15.6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/23

® Questions from 11/18
® Quiz 2- extended until Wed 11/25 @ 11:59p
| = No Office Hours 11/27 |

® Class on 11/25:
Office hours, and finish any remaining lecture from today

E |Introduction to Containerization cont’d
® Tutorial 7

= 2nd hour:

= |Introduction to Kubernetes
® Tutorial questions

®E Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

115.13
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

OBJECTIVES - 11/23

® Questions from 11/18
B Quiz 2- extended until Wed 11/25 @ 11:59p
® No Office Hours 11/27

® Class on 11/25:

Office hours, and finish any remaining lecture from today

® |ntroduction to Containerization cont’d
® Tutorial 7

m 2" hour:

® [ntroduction to Kubernetes
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

L15.14
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GROUP PRESENTATION

= TWO OPTIONS:

® Cloud technology presentation

® Cloud research paper presentation
= Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

® Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:
Monday November 23 @ 11:59pm

® Presentation dates:
= Monday November 30, Wednesday December 2
= Monday December 7, Wednesday December 9

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

OBJECTIVES - 11/23

® Questions from 11/18
B Quiz 2- extended until Wed 11/25 @ 11:59p
® No Office Hours 11/27

® Class on 11/25:
Office hours, and finish any remaining lecture from today

| = Introduction to Containerization cont’d |

® Tutorial 7

= 2nd hour:

® |ntroduction to Kubernetes

® Tutorial questions

® Team planning

November 23, 2020

TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

Slides by Wes J. Lloyd

[Fall 2020]

L15.8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

povembey2232020 School of Engineering and Technology, University of Washington -

OTHER DOCKER TOOLS

= Docker Machine: Docker Engine
automatically provision
and manage sets of contatnerd
docker hosts to = | ==

form a cluster containerd-shim containerd-shim

= Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

a q a A . L15.18
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.9

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

" Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.19
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

KEY ORCHESTRATION FEATURES

® Management of container hosts
® Launching set of containers
®m Rescheduling failed containers
® Linking containers to support workflows
® Providing connectivity to clients outside the container cluster
® Firewall: control network/port accessibility
® Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
® Load balancing over groups of containers
® Rolling upgrades of containers for application

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.20
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm
® Apache mesos/marathon
® Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

® Amazon elastic container service (ECS)
® Apache aurora

®= Container-as-a-Service
= Serverless containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.21
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

OBJECTIVES - 11/23

® Questions from 11/18
B Quiz 2- extended until Wed 11/25 @ 11:59p
® No Office Hours 11/27

® Class on 11/25:
Office hours, and finish any remaining lecture from today

® Introduction to Containerization cont’d
| = Tutorial 7 |

m 2" hour:

® [ntroduction to Kubernetes
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

L15.22
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.11

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Fajje020]
November 23, 2020 School of Engineering and Technology, University of Wastgllgton -
Tacoma

TUTORIAL COVERAGE

= Docker CLI > Docker Enginer (dockerd) 2> containerd 2 runc

®m Concepts:

= Docker installation

® Working with docker files

= Docker run - create a container

® Docker ps - list containers

B Docker exec -it - run a process in an existing container
® Docker stop -stop container

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.24
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

commit
cp
create
deploy
diff
events
exec
export
history
images
import
info
inspect
kill
load
login
logout
logs
pause

restart
rm

rmi

run
save
search
start
stats
stop
tag

top
unpause
update
version
wait

Attach local standard input, output, and error streams to a running container

Build an image from a Dockerfile

Create a new image from a container's changes

Copy files/folders between a container and the local filesystem
Create a new container

Deploy a new stack or update an existing stack

Inspect changes to files or directories on a container's filesystem
Get real time events from the server

Run a command in a running container

Export a container's filesystem as a tar archive

Show the history of an image

List images

Import the contents from a tarball to create a filesystem image
Display system-wide information

Return low-level information on Docker objects

Kill one or more running containers

Load an image from a tar archive or STDIN Docker CLI

Log in to a Docker registry

Log out from a Docker registry

Fetch the logs of a container

Pause all processes within one or more containers

List port mappings or a specific mapping for the container

List containers

Pull an image or a repository from a registry

Push an image or a repository to a registry

Rename a contailner

Restart one or more containers

Remove one or more containers

Remove one or more images

Run a command in a new container

Save one or more images to a tar archive (streamed to STDOUT by default)
Search the Docker Hub for images

Start one or more stopped containers

Display a live stream of container(s) resource usage statistics
Stop one or more running containers

Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

Display the running processes of a container

Unpause all processes within one or more containers

Update configuration of one or more containers

Show the Docker version information

Block until one or more containers stop, then print their exit codes

TUTORIAL 7

Linux performance benchmarks

® stress-ng
100s of CPU, memory, disk, network stress tests

Sysbench
Used in tutorial for memory stress test

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

Slides by Wes J. Lloyd

[Fall 2020]

L15.13

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WE WILL RETURN AT
~6:56PM

OBJECTIVES - 11/23

® Questions from 11/18
® Quiz 2- extended until Wed 11/25 @ 11:59p
® No Office Hours 11/27

= Class on 11/25:
Office hours, and finish any remaining lecture from today

® |ntroduction to Containerization cont’d

® Tutorial 7

= 2nd hour:

| = Introduction to Kubernetes |

® Tutorial questions

® Team planning

November 23, 2020

TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

Slides by Wes J. Lloyd

[Fall 2020]

L15.14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBERNETES

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

KUBERNETES

® Name is from the Greek word meaning Helmsman
= The person who steers a seafaring ship
= The logo reinforces this theme

= Kubernetes is also sometimes called K8s

® Kubernetes is an application orchestrator

® Most common use case is to containerize
cloud-native microservices applications

® What is an orchestrator?
= System that deploys and manages applications

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

Slides by Wes J. Lloyd

[Fall 2020]

L15.15

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBERNETES - 2

Why does Google want
to give Kubernetes away
® |nitially developed by Google for free?
® Goal: make it easier for potential customers to use Google Cloud
® Kubernetes leverages knowledge gained from two internal
container management systems developed at Google
= Borg and Omega

®m Google donated Kubernetes to the Cloud Native Computing
Foundation in 2014 as an open-source project

® Kubernetes is written in Go (Golang)

® Kubernetes is available under the Apache 2.0 license

® Releases were previously maintained for only 8 months!
m Starting w/ v 1.19 (released Aug 2020) support is 1 year

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.31
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

GOALS OF KUBERNETES

Deploy your application

Scale it up and down dynamically according to demand
Self-heal it when things break

Perform zero-downtime rolling updates and rollbacks

® These features represent automatic infrastructure
management

5 R

®m Containerized applications run in container(s)

= Compared to VMs, containers are thought of as being:
= Faster
= More light-weight
= More suited to rapidly evolving software requirements

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.32
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD NATIVE APPLICATIONS

® Applications desighed to meet modern software
requirements including:

= Auto-scaling: resources to meet demand

= Self-healing: required for high availability (HA) and fault

tolerance

= Rolling software updates: with no application downtime
for DevOPS

= Portability: can run anywhere there’s a Kubernetes cluster

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

L15.33

WHAT IS A MICROSERVICES APP?

® Application consisting of many specialized parts that
communicate and form a meaningful application

® Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store
= KEY IDEAS:

® Each microservice can be coded/maintained by different team

® Each has its own release cadence
® Each is deployed/scaled separately
® Can patch & scale the log service w/o impacting others

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

L15.34

Slides by Wes J. Lloyd

[Fall 2020]

L15.17

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBERNETES - 3

® Provides “an operating system for the cloud”

m Offers the de-facto standard platform for deploying and
managing cloud-native applications

® 0S: abstracts physical server, schedules processes
® Kubernetes: abstracts the cloud, schedules microservices

® Kubernetes abstracts differences between private and public
clouds

= Enable cloud-native applications to be cloud agnostic
= j.e. they don’t care WHAT cloud they run on
= Enables fluid application migration between clouds

® Kubernetes provides rich set of tools/APIs to introspect
(observe and examine) your apps

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

11535
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

KUBERNETES - 4

= Features:
®m A “control plane” - brain of the cluster

= Implements autoscaling, rolling updates w/o downtime, self-healing
® A “bunch of nodes” - workers (muscle) of the cluster

= Provides orchestration
® The process of organizing everything into a useful application
® And also keeping it running smoothly

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.36
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBERNETES - CLUSTER MANAGEMENT

® Master node(s) manage the cluster by:
= Making scheduling decisions
= Performing monitoring
= Implementing changes
= Responding to events
® Masters implement the control plane of a Kubernetes cluster

® Recipe for deploying to Kubernetes:

= Write app as independent microservices in preferred language
® Package each microservice in a container

® Create a manifest to encapsulate the definition of a Pod

® Deploy Pods to the cluster w/ a higher-level controller such as
“Deployments” or “DaemonSets”

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.37
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

DECLARATIVE SERVICE APPROACH

= Imperative definition: sets of commands and operations
= Example: BASH script, Dockerfile

® Declarative definition: specification of a service’s properties
= What level of service it should sustain, etc.

= Example: Kubernetes YAML files

= Kubernetes manages resources declaratively
® How apps are deployed and run are defined with YAML files
= YAML files are POSTed to Kubernetes endpoints

® Kubernetes deploys and manages applications based on
declarative service requirements

® |f something isn’t as it should be: Kubernetes automatically
tries to fix it

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.38
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.19

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBERNETES MASTERS

® Provide system services to host the control plane

® Simplest clusters use only 1 master - no replication
= Suitable for lab and dev/test environments

® Production environments: masters are replicated ~3-5x
= Provides fault tolerance and high availability (HA)
= Cloud-based managed Kubernetes services offer HA

deployments
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
Rorembens 2020 School of Engineering and Technology, University of Washington - Tacoma 11339

MASTER SERVICES

| = API Server |
u CIUSter Store Kubemetesl:lusmr

n Co n t ro I I er Kubernetes Master Server(s)
Manager

mScheduler
® Cloud controller

Linux Server(s)

Kubemetes Node Kubemetes Node Kubernetes Node

Linux Server Linux Server Linux Server

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.40
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

APl SERVER

® Can run on 1-node for lab, test/dev environments
® Default port is 443

®m Exposes a RESTful APl where YAML configuration files are
POST(ed) to

® YAML files (manifests) describe desired state of an
application

= Which container image(s) to use
= Which ports to expose
= How many POD replicas to run

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.41
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

MASTER SERVICES

m AP| Server

- CIUSter Store Kuhemetasf:lusmr

| Co n t ro I I er Kubernetes Master Server(s)
Manager

mScheduler
® Cloud controller

Linux Server(s)

Kubemetes Node Kubemetes Node Kubernetes Node

Linux Server Linux Server Linux Server

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.42
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.21

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLUSTER STORE

® Used to persist Kubernetes cluster state
® Persistently stores entire configuration and state of the
cluster
® Currently implemented with etcd
= Popular distributed key/value store (db) supporting replication
= HA deployments may use ~3-5 replicas
= |s the authority on true state of the cluster
m etcd prefers consistency over availability
m etcd failure: apps continue to run, nothing can be reconfigured
® Consistency of writes is vital

® Employs RAFT consensus protocol to negotiate which replica
has correct view of the system in the event of replica failure

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.43
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

MASTER SERVICES

= API Server
u CIUSter Store Kubemetesl:lusmr

n Co n t ro I I er Kubernetes Master Server(s)
Manager

mScheduler
® Cloud controller

Linux Server(s)

Kubemetes Node Kubemetes Node Kubernetes Node

Linux Server Linux Server Linux Server

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.44
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTROLLER MANAGER

® Provides a “controller” of the controllers

= Implements background control loops to monitor cluster
and respond to events

= Control loops include: node controller, endpoints controller,
replicaset controller, etc...

® GOAL: ensure cluster current state matches desired state

® Control Loop Logic:

Obtain desired state (defined in manifest YAMLSs)

Observe the current state

Determine differences

Reconcile differences
Controllers are specialized to manage a specific resource type
= They are not aware/concerned with of other parts of the system

=A@ N

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.45
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

MASTER SERVICES

= API Server
® Cluster store

Kubemetas Cluster

Kubernetes Master Server(s)

® Controller
Manager

ImScheduler |
® Cloud controller

Linux Server(s)

Kubemetes Node Kubemetes Node Kubernetes Node

Linux Server Linux Server Linux Server

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.46
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TASK SCHEDULER

® Scheduler’s job is to identify the best node to run a task
= Scheduler does not actually run tasks itself

m Assighs work tasks to appropriate healthy nodes

® Implements complex logic to filter out nodes incapable of
running specified task(s)

®m Capable nodes are ranked

® Node with highest ranking is selected to run the task

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.47
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

ENFORCING SCHEDULING PREDICATES

®m Scheduler performs predicate (property) checks to verify
how/where to run tasks

®" |s a node tainted?

= Does task have affinity (deploy together), anti-affinity
(separation) requirements?

= |s a required network port available on the node?
= Does node have sufficient free resources?

® Nodes incapable of running the task are eliminated as
candidate hosts

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.48
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

RANKING NODES

® Remaining nodes are ranked based on for example:

1. Does the node have the required images?
= Cached images will lead to faster deployment time

2. How much free capacity (CPU, memory) does the node have?
3. How many tasks is the node already running?

® Each criterion is worth points
= Node with most points is selected

® |f there is no suitable node, task is not scheduled, but marked
as pending

= PROBLEM: There is no one-sized fits all solution to selecting
the best node. How weights are assigned to conditions may
not reflect what is best for the task

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

L15.49

MASTER SERVICES

= API Server
u CIUSter Store Kubemetasl:lusmr

n CO n t ro I I er Kubernetes Master Server(s)
Manager

mScheduler

Linux Server(s)

® Cloud controller

Kubemetes Node Kubemetes Node Kubernetes Node

Linux Server Linux Server Linux Server

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

L15.50

Slides by Wes J. Lloyd

[Fall 2020]

L15.25

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD CONTROLLER MANAGER

® Abstracts and manages integration with specific cloud(s)

® Manages vendor specific cloud infrastructure to provide
instances (VMs), load balancing, storage, etc.

® Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.51
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

MASTER SERVICES

= API Server
u CIUSter Store Kubemetasl:lusmr

n CO n t ro I I er Kubernetes Master Server(s)
Manager

mScheduler

Linux Server(s)

® Cloud controller

Kubemetes Node Kubemetes Node Kubernetes Node

Linux Server Linux Server Linux Server

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.52
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.26

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WORKER NODES

® Nodes perform tasks (i.e. host containers & services)

= Three primary functions:

1. Wait for the scheduler to assign work
2. Execute work (host containers, etc.)
3. Report back state information, etc.

® Nodes are considerably simpler than masters

November 23, 2020

School of Engineering and Technology, University of Washington - Tacoma

TCSS562: Software Engineering for Cloud Computing [Fall 2020] 11553

WORKER NODES

= Kubelet |

® Container
runtime
(Docker, etc.)

® Kubernetes
Proxy

Kubemetas Cluster

Kubernetes Master Server(s)

Linux Server(s)

Kubemetes Node Kubemetes Node

Linux Server

Linux Server Linux Server

Kubernetes Node

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

L15.54

Slides by Wes J. Lloyd

[Fall 2020]

L15.27

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBELET

® Main Kubernetes agent

® Runs on every node

® Adding a new node installs the kubelet onto the node
® Kubelet registers the node with the cluster

® Monitors API server for new work assignments

® Maintains reporting back to control plane

® When a node can’t run a task, kubelet is NOT responsible
for finding an alternate node

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.55
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

WORKER NODES

® Kubelet

- Container Kubemetasl:lusmr
I’ u n t i m e Kubernetes Master Server(s)

(Docker, etc.)

® Kubernetes

Linux Server(s)

Proxy
Kubemetes Node Kubemetes Node Kubernetes Node
Linux Server Linux Server Linux Server
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma 11556

Slides by Wes J. Lloyd

[Fall 2020]

L15.28

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER RUNTIME(S)

® Each node requires a container runtime to run containers

® Early versions had custom support for a limited number of
container types, e.g. Docker

® Kubernetes now provides a standard Container Runtime
Interface (CRI)

® CRI exposes a clean interface for 3 party container
runtimes to plug-in to

® Popular container runtimes: Docker, containerd, Kata

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

115.57
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

WORKER NODES

® Kubelet

- Container Kubemetasl:lusmr
I’ u n t i m e Kubernetes Master Server(s)

(Docker, etc.)

® Kubernetes

Linux Server(s)

Proxy
Kubemetes Node Kubemetes Node Kubernetes Node
Linux Server Linux Server Linux Server
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma 11558

Slides by Wes J. Lloyd

[Fall 2020]

L15.29

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

® Runs on every
® Responsible fo

KUBE-PROXY

node in the cluster
r managing the cluster’s networking

® Ensures each node obtains a unique IP address
® Implemented local IPTABLES and IPVS rules to route and load-

balance traffic

= |PTABLES (ipv4) - enables configuration of IP packet filtering
rules of the Linux kernel firewall

® |PVS - IP Virtual Server: provides transport-layer (layer 4) load

balancing as p

art of the Linux kernel; Configured using

ipvsadm tool in Linux

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

CORE KUBERNETES COMPONENTS

= Kubernetes DNS
= Pods
= Services
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma 11560

Slides by Wes J. Lloyd

[Fall 2020]

L15.30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KUBERNETES DNS

= Every Kubernetes cluster has an internal DNS service

m Accessed with a static IP

® Hard-coded so that every container can find it

= Every service is registered with the DNS so that all
components can find every Service on the cluster by

NAME

® |s based on CoreDNS (https://coredns.io)

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

CORE KUBERNETES COMPONENTS

® Kubernetes DNS

® Pods

mServices

November 23, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

Slides by Wes J. Lloyd

[Fall 2020]

L15.31

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PODS

® Pod - atomic unit of deployment & scheduling in Kubernetes

® A Kubernetes Pod is defined to run a containerized application
= Kubernetes manages Pods, not individual containers

® Cannot run a container directly on Kubernetes

= All containers run through Pods

® Pod comes from “pod of whales”
® Docker logo shows a whale with containers stacked on top
® Whale represents the Docker engine that runs on a single host

® Pods encapsulate the definition of a single
microservice for hosting purposes

= Pods can have a single container, or multiple
containers if the service requires more than one dOCer

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.63
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

® Examples of multi-container Pods:
= Service meshes

= Web containers with a helper container that pulls latest content
= Containers with a tightly coupled log scraper or profiler

® YAML manifest files are used to provide a declarative
description for how to run and manage a Pod

® To run a pod, POST a YAML to the API Server:
“kubectl run <NAME>" where NAME is the service

® A Pod runs on a single node (host)

= Pods share:
= Interprocess communication (IPC) namespace
= Memory, Volumes, Network stack

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.64
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.32

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PODS - 3

® Pods provide a “fenced” environment to run containers

® Provide a “sandbox”

® Only tightly coupled containers are deployed with a single pod

m Best practice: decouple individual containers to separate pods
= What is the best container composition into pods? (1:1, 1:many)

m Scaling
= Pods are the unit of scaling
= Add and remove pods to scale up/down
= Do not add containers to a pod, add pod instances
= Pod instances can be scheduled on the same or different host

= Atomic Operation

= Pods are either fully up and running their service (i.e. port
open/exposed), or pods are down / offline

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.65
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

= Pod Lifecycle
= An application should not be tightly bound or dependent on a
specific Pod instance

= Pods are designed to fail and be replaced

= Use of service objects in Kubernetes help decouple pods to offer
resiliency upon failure

= Deployments
= Higher level controllers often used to deploy pods

= Controllers implement a controller and watch loop:

= “Deployments” - offer scalability & rolling updates

= “DaemonSets” - run instance of service on every cluster node

= “StatefulSets” - used for stateful components

= “CronJobs” - for short lived tasks that need to run at specified times

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.66
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.33

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CORE KUBERNETES COMPONENTS

® Kubernetes DNS

® Pods

mServices

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.67
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

KUBERNETES “SERVICES”

B Pods managed with “Deployments” or “DameonSets”
controllers are automatically replaced when they die

= This provides resiliency for the application
= KEY IDEA: Pods are unreliable

m Services provide reliability by acting as a “GATEWAY”
to pods that implement the services

= They underlying pods can change over time
= The services endpoints remain and are always available

m Service objects provide an abstraction layer w/ a reliable
name and load balancing of requests to a set of pods

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L15.68
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L15.34

TCSS 562: Software Engineering for Cloud Computing

School of Engineering

and Technology, UW-Tacoma

SERVICES

= Provide reliable front-end with:
= Stable DNS name
= |P Address
= Port
® Services do not posses application intelligence
® No support for application-layer host and path routing

m Services have a “label selector” which is a set of lables
® Requests/traffic is only sent to Pods with matching labels

m Services only send traffic to healthy Pods

= KEY IDEA: Services bring stable IP addresses and DNS
names to unstable Pods

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
115.69
November 23, 2020 School of Engineering and Technology, University of Washington - Tacoma
Kubemnetes Cluster
Pod app:safrontend
Services Y i m SA - Frontend
/
Client Application
Service targets
pods with label:
-app: sa-frontend
apiVersion: v1 [:N

kind: Pod apiVersion: v1

kind: Pod
metadata:
metadata:
name: sa-frontend name: sa-frontend2
labels: label;-
app: sa-frontend app: sa-frontend
spec: spec:
containers: containers:

- image: rinormal oku/sentiment-analysis-frontend
name: sa-frontend
ports:

- containerPort: 80

- image: rinormal oku/sentiment-analysis-frontend
name: sa-frontend
ports:

sa-frontend-pod.yan - containerPort: 80

sa-frontend-pod2 yam

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

povembey2232020 School of Engineering and Technology, University of Washington - Tacoma L15.70

Slides by Wes J. Lloyd

[Fall 2020]

L15.35

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

povembey2232020 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

[Fall 2020]

L15.36

