TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

MW 5:50-7:50 PM

OBJECTIVES - 11/18

| = Questions from 11/9 |
® Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Mon 11/30 @ 11:59p
® Introduction to Containerization

m 2" hour:

® Tutorial 7 - to be posted

® |Introduction to Containerization cont’d
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.2

Slides by Wes J. Lloyd

[Fall 2020]

L14.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Take After Each Class
® Extra Credit

Announcements

for completing v Upcoming Assigniernt
Assignments ipcoming Assignments

Diseussions _, Class Activity 1 - Implicit vs. Explicit Parallelism
Faom Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts
Grades Tutorial 1 - Linux
Available until Oct 19 at 11:59pm | Due Oct 15 at 11:59pm | -/20 pts

People
Pages
Files * Past Assignments
Quizzes

® TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations - Available until Dec 18 at 11:59pm | Due Oct & at 8:59pm | -/1pts
UW Libraries " .

“* TCSS 562 - Online Daily Feedback Survey - 2/30
W Resorirces * Available until Dec 18 3t 11:59pm | Due Oct 4 at 8:5%m | ~/1pts

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma t143
TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am
Quiz Instructions
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5] 7 8 9 ie
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5] 7 8 9 1e
Slow Just Right Fast
November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] 0

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2020]

L14.2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (22 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.09 ({ - previous 6.55)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.55 (T - previous 5.41)

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.5
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

FEEDBACK FROM 11/16

B Can you please explain about if there is any compatibility
required for the Host OS and Guest OS in the hypervisors?

® Type 1 Hypervisors generally require the Guest OS to
support being virtualized

® Traditionally a special OS kernel was provided
® This kernel has special TRAPS where privileged
instructions/operations are trapped as running them

directly on the HW without emulation/simulation will
cause corruption

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.6
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TYPE 1 VS. TYPE 2 HYPERVISORS

= Comparison of:
Paravirtualization (type I) vs. Full (type IlI) hypervisors
® GOAL: run all user mode instructions directly on the CPU

m x86 instruction set has ~17 privileged user mode instructions

= MAJOR DIFFERENCE:

® Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM
= THIS IS SOFTWARE EMULATION
= Imagine how this might be slow...

® Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

= SPECIAL INSTRUCTIONS ARE TRAPPED BY A SPECIALIZED VERSION
OF THE OPERATIONG SYSTEM KERNEL AND HANDLED

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.7
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

TUTORIAL QUESTIONS

® Tutorial 5: Thursday Nov 19" @ 11:59p

m Tutorial 6: Tuesday Nov 24th @ 11:59p

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.8
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.4

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

UPCOMING TUTORIALS

® Tutorial 7 - Introduction to Docker Containerization

® Going further - optional tutorials:
= Ungraded or substitute

® Tutorial 8 - Introduction to Faa$S IV: Step Functions and SQS
® Tutorial 9 - Asynchronous Function Profiling with SAAF

® Tutorial 10 - Automating Experiments with SAAF & Faa$S
Runner

® Tutorial 11 - Scaling beyond a single client - concurrent
webservice benchmarking with multiple EC2 instances

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.9
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

OBJECTIVES - 11/18

® Questions from 11/9
| ® Quiz 2- due Mon 11/23 @ noon (note: no grace period) |

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Mon 11/30 @ 11:59p
® Introduction to Containerization

m 2" hour:

® Tutorial 7 - to be posted

® |Introduction to Containerization cont’d
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

L14.10
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd L14.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/9

® Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Prescntotisn Nuaws, Hecras

Cloud TechrfOLrA2 A&\ T=I=F-{-H 30 - 12/9

® Term Projec
Anaeeneieyy Focus on lectures 7 - 12
AWS

Tutorials

= 2nd hour:
= Tutorial 7 -
= Introduction to Containerization cont’d
® Tutorial questions

®E Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES - 11/18

® Questions from 11/9
® Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

® Term Project Check-in - due Mon 11/30 @ 11:59p
® Introduction to Containerization

m 2" hour:

® Tutorial 7 - to be posted

® |Introduction to Containerization cont’d
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.12

Slides by Wes J. Lloyd

[Fall 2020]

L14.6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GROUP PRESENTATION

= TWO OPTIONS:
® Cloud technology presentation

® Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

® Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by Monday
November 23" @ 11:59pm

® Presentation dates:
= Monday November 30, Wednesday December 2
= Monday December 7, Wednesday December 9

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.13

OBJECTIVES - 11/18

® Questions from 11/9
® Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Mon 11/30 @ 11:59p

® |[ntroduction to Containerization

m 2" hour:

® Tutorial 7 - to be posted

® |Introduction to Containerization cont’d
® Tutorial questions

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.14

Slides by Wes J. Lloyd

[Fall 2020]

L14.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/9

® Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 - 12/9
® Term Project Check-in - due Mon 11/30 @ 11:59p

E |Introduction to Containerization

m 2nd hour:

® Tutorial 7 - to be posted

= Introduction to Containerization cont’d
® Tutorial questions

® Team planning

November 18, 2020

TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

CONTAINERIZATION

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

[Fall 2020]

L14.8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MOTIVATION FOR CONTAINERIZATION

® Containers provide “light-weight” alternative to full OS
virtualization provided by a hypervisor

® Containers do not provide a full “machine”

® [nstead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
® Containers can run on bare metal, or atop of VMs

E

M|(VMm VM

{ypervisor engine

crercrererclc Container P ~
ofollo/e|lo|o|o | o k
/ v pplication
O = (Y 0T
Host OS's bins/libs _— al :

Hypervisor engine | ™.
|

Containers engine Host OS

Host OS Containers Type 1 Hardware

Hypervisor'VM .2

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

530

A
%

7777
Z 77

2%

.

o
-
ey

DA\

7
%

MFlops (higher is beiter)

50

518

727

516

KVM LXC NATIVE 0sy

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.18
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.9

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

1800

1750

1700

1650

1600

1550

Seconds (smaller is better)

1400

1350

1300

Performance data from IC2E 2015:

1500 -

1450

BKVM A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

BDOCKER
BLXC
BENATIVE

Computation Time Total Time

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:

250000
T
Z 200000
z
=
=
&
= 150000
2
2
Z 100000
-
=0
2
=
-
= 50000
z
g

A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

EKVM EDOCKER BLXC ENATIVE

N

F IS,

77
%

77

70

N

7

77 R
tﬁ

7

72

Block Output

Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown,

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

Slides by Wes J. Lloyd

[Fall 2020]

L14.10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

114.21
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

OPERATING SYSTEM CONTAINERS

® Virtual environments: share the host kernel

® Provide user space isolation

® Replacement for VMs: run multiple processes, services
® Mix different Linux distros on same host

Host OS Host OS
® Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 14.04 14.04 14.04 7 6.6

Container Container Container Container Container Container

Linux Vserver,
BSD Jails,
Solaris zones

CentOS 6.6 image

RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.04 image

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack.com/operating-system-containers-vs-application-containers/

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.22
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.11

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

APPLICATION CONTAINERS

® Desighed to package and run a single service

= All containers share host kernel

® Subtle differences from operating system containers

= Examples: Docker, Rocket

® Docker: runs a single process on creation

® OS containers: run many OS services, for an entire 0S

® Create application containers for each component of an app
® Supports a micro-services architecture

® DevOPS: developers can package their own components in
application containers

® Supports horizontal and vertical scaling

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

114.23
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

APPLICATION CONTAINERS - 2

® Container images are “layered”
®m Base image: common for all components

®m Add layers that are specific
for components, services . referancas
as needed parent

= Layering promotes reuse Image

® Reduces duplication of
data across images

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.24
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

2016 DOCKER SURVEY

® Docker application containers
= [eading containerization vehicle

80% <

say Docker is part
of cloud strategy

0,
° want application want to avoid
plan to use Docker to portability across cloud vendor
migrate workloads to cloud P lnmenta lock-in

& docker

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.25

DOCKER

Docker daemon “dockerd”

= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

Starting in 2017 version
numbering switches from o A0
1.x to YR.x

2017 releases: 17.03 - 17.12 Docker Dsemon
2018 releases: 18.01 - 18.09
2019 releases: 19.03.0 - 19.03.13 g

) G Ui

Docker Clients. Docker Containers

r Client- itect
Credit: https://hackernoon.com/docker-containerd-standalone-runtimes- DockerQlignt-ServerArchitactire

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.26

Slides by Wes J. Lloyd

[Fall 2020]

L14.13

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

® (1) Original Docker engine relied on LXC
= LXC itself is a containerization tool predating Docker
= Original Docker API just called it

= LXC originally provided access $Docker client
to Linux kernel features: I
namespaces and cgroups dockerd

= LXC was Linux specific - caused o; er
issues if wanting to be multi-platform LXC

= Docker implemented their own
replacement for LXC

Host Kernel

Capabilities

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: libcontainer introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

dockerd

!

libcontainer

Capabilities

Host Kernel

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

114.28

Slides by Wes J. Lloyd

[Fall 2020]

L14.14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OPEN CONTAINER INITIATIVE (OCI)

® OCl created container standards for:
= Image specification
= Container runtime specification

® Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

® Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer

= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.

The Docker APl is much more user friendly
® Support for OCl compliant images was added to Containerd

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

114.29
School of Engineering and Technology, University of Washington - Tacoma

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
® Docker CLI posts request to Docker daemo

® Daemon calls containerd I
® Containerd passes of request to runc dockerd
= Containerd converts docker image into t
OCI compliant bundle containerd
= This step would allow any OCI compliant container t
to be plugged into the back-end -
® Runc interfaces with the Linux kernel Shl'm
(namespaces, cgroups, etc.) to create container runc
® Shim: once a container is created, runc exits tt
= Shim remains as a daemonless stub to

implement the container Capabilities

= Allows Docker to be upgraded w/o

stopping the container !!! Host Kernel

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.30
School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2020]

L14.15

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CREATING A CONTAINER - 2

- X s N

H}: Docker Engine Containerd

j — . <

Docker CLIUI

Runc and other OCI runtimes

Containerd Integration Architecture

® Docker CLI: interfaces with dockerd daemon

® Docker engine: dockerd daemon, interfaces with containerd

= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;

® runc: lightweight command-line tool for running containers;

Interfaces with Linux cgroups, namespaces; Runs an OCI
container

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

114.31
School of Engineering and Technology, University of Washington - Tacoma

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

® Modularity of Docker implementation supports
“execution drivers concept”:

® Enables docker to support many _*
alternate container backends Docker
®m OpenVZ, system-nspawn, libvirt-Ixc, ‘ l l mimd_
libvirt-sandbox, gemu/kvm, s b nspawn
BSD Jails, Solaris Zones, and chroot [] l
Linux

cgroups namespaces netlink

selinux netfilter 0
capabilities apparmor =
Ode

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.32

Slides by Wes J. Lloyd

[Fall 2020]

L14.16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LINUX KERNEL NAMESPACES

® Partitions kernel resources
® Processes see only their set of resources
® Provides isolation

® Namespaces are hierarchical

® Parent processes canh see down the hierarchy
® 7 namespaces in Linux (cgroups not shown)

® Each process can only see resources associated
with the namespace, and descendent hamespaces

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.33

root@35bfc3dfoc3e: /
$34:29 up 6:24, 0 load average: 0.00, 0.00, 0.00
total, 1 running, sleeping, 0 stopped, 0 zombie
6.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

%
: 3853100 total, 2798844 free, 157568 used, 896688 buff/cache
—J : 0 total, 0 free, 0 used. 3500784 avail Mem

PID USER PR NI VIRT RES OMMAND
1 root 8 18376 3632 .6 0. ntrypoint_te+
5 root 8 4532 764 0
6 root 0 18508 3476

14 root (] 36596 3228

® Provides isolation of OS
entities for containers

® mnt: separate filesystems
® pid: independent PIDs; first process in container is PID 1

® jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...

m yser: user identification and privilege isolation
among separate containers

® net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.34

Slides by Wes J. Lloyd

[Fall 2020]

L14.17

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTROL GROUPS (CGROUPS)

Collection of Linux processes
Group-level resource allocation: CPU, memory, disk 1/0, network 1/0

Resource limiting
= Memory, disk cache

Prioritization

= CPU share

= Disk I/0 throughput

Accounting

= Track resource utilization

= For resource management and/or billing purposes

Control

= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

CGROUPS - 2

Control groups are hierarchical
Groups inherent limits from parent groups

® Linux has multiple cgroup controllers (subsystems)
® |s /proc/cgroups
® “memory” controller limits memory use
“ » #subsys_name | hierarchy | num_cgroups | enabled
® “cpuacct” controller accounts et 2 > 2
for CPU usage cpu 5 97 1
Ccpuacct 7] 97 1
blkio 8 97 1
memory 9 218 1
m cgroup filesystem: devices 6 a7 1
lireezer 4 2 1
m /sys/fs/cgrou net_cls 2 2 1
/ y / / g P . i perf_event 10 2 1
® Can browse resource utilization net_prio 2 2 1
. hugetlb 7 2 1
of containers... oids T 98 1

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

Slides by Wes J. Lloyd

[Fall 2020]

L14.18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalelix-Ixc-talk-1/

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.37

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04
® Dockerfile: copy . rapp
RUN make /app
CMD python /app/app.py

! Thin R/W layer §~— Container layer

| i ! l l
Python /app/app.py = St EEEs

-

Run make /app = e E 1.895 KB

> Image layers (R/O)

Copy . /app 2| | ZRuEE 7L 194.5 KB

Ubuntu base image > FEEREEEEEE 188.1 MB

ubuntu:15.04

Container

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

114.38

Slides by Wes J. Lloyd

[Fall 2020]

L14.19

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

THREE-TIER ARCHITECTURE

Node.js
Postgres
+ Node.js Nginx
» Posigres
* Nginx

OS containers App containers

Meant to used as an OS - run multiple
services

= No layered filesystems by default

* Built on cgroups, namespaces, native
process resource isclation

» Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

. e e .

Meant to run far a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

CONTAINER ISOLATION

®|s the host isolated from application containers?

= Are application containers isolated from each

other?

Application
containers

App App
Bins/libs Bins/libs

Container
runtime

VM kernel

Application
containers

App App
Bins/libs Bins/libs

Container
runtime

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

Slides by Wes J. Lloyd

[Fall 2020]

L14.20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LXC (LINUX CONTAINERS)

®m QOperating system level virtualization

®" Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
"Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

®Linux namespaces
= Docker initially based on LXC

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.41
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

OTHER DOCKER TOOLS

® Docker Machine:

automatically provision |
and manage sets of contatinerd

docker hosts to
B BTN
= Docker Swarm: _
Clusters multiple docker hosts together to manage as a

cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.42
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.21

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

" Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

114.43
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

KEY ORCHESTRATION FEATURES

® Management of container hosts
® Launching set of containers
®m Rescheduling failed containers
® Linking containers to support workflows
® Providing connectivity to clients outside the container cluster
® Firewall: control network/port accessibility
® Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
® Load balancing over groups of containers
® Rolling upgrades of containers for application

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L14.44
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm

= Apache mesos/marathon

® Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-

a-service

® Amazon elastic container service (ECS)

®= Apache aurora

® Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

WE WILL RETURN AT

~7:05PM

Slides by Wes J. Lloyd

[Fall 2020]

L14.23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/18

® Questions from 11/9

® Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentation Overview:

Cloud Technology or Research Paper for 11/30 - 12/9
® Term Project Check-in - due Mon 11/30 @ 11:59p

E |Introduction to Containerization

m 2nd hour:

| = Tutorial 7 - to be posted |

E |[ntroduction to Containerization cont’d
® Tutorial questions
®E Team planning

November 18, 2020

TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 18, 2020

TUTORIAL #7

TCSS562: Software Engineering for Cloud Computing [Fajie020]
School of Engineering and Technology, University of Wasiiligton -
Tacoma

Slides by Wes J. Lloyd

[Fall 2020]

L14.24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

Concepts:

Docker stop

TUTORIAL COVERAGE

® Docker installation

Working with docker files

® Docker run - create a container
Docker ps - list containers

-stop container

Docker CLI > Docker Enginer (dockerd) > containerd 2 runc

® Docker exec -it - run a process in an existing container

November 18, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma

L14.49

Commands:

attach Attach local standard input, output, and error streams to a running container

build Build an image from a Dockerfile

commit Create a new image from a container's changes
cp Copy files/folders between a container and the local filesystem
create Create a new contailner

deploy Deploy a new stack or update an existing stack
diff Inspect changes to files or directories on a container's filesystem
events Get real time events from the server

exec Run a command in a running container

export Export a container's filesystem as a tar archive
history Show the history of an image

images List images

import Import the contents from a tarball to create a filesystem image
info Display system-wide information
inspect Return low-level information on Docker objects

kill Kill one or

more running containers

load Load an image from a tar archive or STDIN

login Log in to a

Docker registry

logout Log out from a Docker registry

logs Fetch the logs of a container

pause Pause all processes within one or more containers
port List port mappings or a specific mapping for the container
ps List containers

pull Pull an image or a repository from a registry
push Push an image or a repository to a registry
rename Rename a container

restart Restart one or more containers

rm Remove one or more containers

rmi Remove one or more images

run Run a command in a new container

save Save one or more images to a tar archive (streamed to STDOUT by default)
search Search the Docker Hub for images
start Start one or more stopped containers
stats Display a live stream of container(s) resource usage statistics

stop Stop one or

more running containers

tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
top Display the running processes of a container

unpause Unpause all processes within one or more containers
update Update configuration of one or more containers
version Show the Docker version information

wait Block until one or more containers stop, then print their exit codes

Docker CLI

Slides by Wes J. Lloyd

[Fall 2020]

L14.25

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 7

® Linux performance benchmarks

® stress-ng
® 100s of CPU, memory, disk, network stress tests

®m Sysbench
® Used in tutorial for memory stress test

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 18, 2020 School of Engineering and Technology, University of Washington - Tacoma

L14.51

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -

November 18, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L14.26

