
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.1

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington – Tacoma

MW 5:50-7:50 PM

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 11/18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.2

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit
for completing

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

November 18, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.3

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.09 (- previous 6.55)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.55 (- previous 5.41)

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 Can you please explain about if there is any compatibility
required for the Host OS and Guest OS in the hypervisors?

 Type 1 Hypervisors generally require the Guest OS to
support being virtualized

 Traditionally a special OS kernel was provided

 This kernel has special TRAPS where privileged
instructions/operations are trapped as running them
directly on the HW without emulation/simulation will
cause corruption

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

FEEDBACK FROM 11/16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.4

 Comparison of:
Paravirtualization (type I) vs. Full (type II) hypervisors

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions

 MAJOR DIFFERENCE:
 Full virtualization: scan the EXE, insert code around privi leged

instructions to diver t control to the VMM
 THIS IS SOFTWARE EMULATION
 Imagine how this might be slow…

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions
 SPECIAL INSTRUCTIONS ARE TRAPPED BY A SPECIALIZED VERSION

OF THE OPERATIONG SYSTEM KERNEL AND HANDLED

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

TYPE 1 VS. TYPE 2 HYPERVISORS

 Tutorial 5: Thursday Nov 19th @ 11:59p

 Tutorial 6: Tuesday Nov 24th @ 11:59p

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

TUTORIAL QUESTIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.5

 Tutorial 7 – Introduction to Docker Containerization

 Going fur ther - optional tutorials:
 Ungraded or substitute

 Tutorial 8 – Introduction to FaaS IV: Step Functions and SQS

 Tutorial 9 – Asynchronous Function Profil ing with SAAF

 Tutorial 10 – Automating Experiments with SAAF & FaaS
Runner

 Tutorial 11 – Scaling beyond a single cl ient – concurrent
webservice benchmarking with multiple EC2 instances

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

UPCOMING TUTORIALS

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

OBJECTIVES – 11/18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.6

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 11/18

Quiz 2 Coverage:

• Focus on lectures 7 – 12
• AWS
• Tutorials

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

OBJECTIVES – 11/18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.7

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation
 Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by Monday
November 23rd @ 11:59pm

 Presentation dates:
 Monday November 30, Wednesday December 2

 Monday December 7, Wednesday December 9

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

GROUP PRESENTATION

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

OBJECTIVES – 11/18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.8

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

OBJECTIVES – 11/18

CONTAINERIZATION

November 18, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.9

 Containers provide “light-weight” alternative to full OS
virtualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand
boxes” for execution

 Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

CONTAINER PERFORMANCE
– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.10

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

CONTAINER PERFORMANCE
– Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.11

According to NIST (National Institute of Standards Technology)
 Virtualization: the simulation of the software and/or hardware

upon which other software runs. (800-125)

 System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

 Operating System Virtualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

OPERATING SYSTEM CONTAINERS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.12

 Designed to package and run a single service

 All containers share host kernel

 Subtle differences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in
application containers

 Supports horizontal and vertical scaling

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific
for components, services
as needed

 Layering promotes reuse

 Reduces duplication of
data across images

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

APPLICATION CONTAINERS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.13

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

2016 DOCKER SURVEY

 Docker application containers
 Leading containerization vehicle

 Docker daemon “dockerd”
 Implements docker engine that interprets CLI requests

and creates/manages
containers using backend
layered Docker architecture

 Starting in 2017 version
numbering switches from
1 .x to YR.x

 2017 releases: 17.03 – 17.12
 2018 releases: 18.01 – 18.09
 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

DOCKER

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.14

 (1) Original Docker engine relied on LXC

 LXC itself is a containerization tool predating Docker

 Original Docker API just called it

 LXC originally provided access
to Linux kernel features:
namespaces and cgroups

 LXC was Linux specific – caused
issues if wanting to be multi-platform

 Docker implemented their own
replacement for LXC

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

ORIGINAL DOCKER ENGINE
IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

Namespaces Capabilities

cgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC
as the default Docker daemon

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

Namespaces Capabilities

cgroups

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.15

 OCI created container standards for:
 Image specification
 Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards
 Essentially this introduced abstraction layers (i.e. generic interfaces

that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec
 Provides small, lightweight wrapper for libcontainer
 Can build and run OCI compliant containers directly using runc

provided in Docker, but it is “bare bones” and low-level.
 The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon
 Daemon calls containerd
 Containerd passes of request to runc
 Containerd converts docker image into

OCI compliant bundle
 This step would allow any OCI compliant container

to be plugged into the back-end

 Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits
 Shim remains as a daemonless stub to

implement the container
 Allows Docker to be upgraded w/o

stopping the container !!!

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

Namespaces Capabilities

cgroups

shim

runc

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.16

 Docker CLI: inter faces with dockerd daemon
 Docker engine: dockerd daemon, inter faces with containerd
 Containerd: simple daemon, inter faces with runc to manage

containers; CRUD inter face for containers, images, volumes,
networks, builds; HTTP API Google RPC (gRPC) interface;

 runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports
“execution drivers concept”:

 Enables docker to support many
alternate container backends

 OpenVZ, system-nspawn, libvirt- lxc,
l ibvirt -sandbox, qemu/kvm,
BSD Jails, Solaris Zones, and chroot

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

SUPPORT FOR
ALTERNATE CONTAINER RUNTIMES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.17

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated
with the namespace, and descendent namespaces

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS
entities for containers

 mnt: separate fi lesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in dif ferent containers
to reuse the same identifiers without confl ict.
… provides expected VM like isolation…

 user: user identification and privilege isolation
among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing): provides separate host and domain
names
November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.34

NAMESPACES - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.18

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting
 Memory, disk cache

 Priorit ization
 CPU share

 Disk I/O throughput

 Accounting
 Track resource utilization

 For resource management and/or billing purposes

 Control
 Pause/resume processes

 Checkpointing Checkpoint/Restore in Userspace (CRIU)

 https://criu.org

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent l imits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts
for CPU usage

 cgroup filesystem:

 /sys/fs/cgroup

 Can browse resource uti lization
of containers…

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

CGROUPS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.19

 Docker leverages overlay fi lesystems
 1st: AUFS - Advanced multi - layered unif ication f i lesystem
 Now: overlay2
 Union mount f i le system: combine multiple directories into one that

appears to contain combined contents

 Idea: Docker uses layered fi le systems
 Only the top layer is writeable
 Other layers are read-only
 Layers are merged to present the notion of a real f i le system
 Copy -on-write- implicit sharing

 Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystif ied-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

OVERLAY FILE SYSTEMS

 Dockerfi le:

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image

Copy . /app

Run make /app

Python /app/app.py

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.20

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each
other?

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.21

Operating system level virtualization

Run multiple isolated Linux systems on a host
using a single Linux kernel

Control groups(cgroups)

 Including in Linux kernels => 2.6.24

Limit and prioritize sharing of CPU, memory,
block/network I/O

 Linux namespaces

Docker initially based on LXC

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

LXC (LINUX CONTAINERS)

 Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

 Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

 Docker Compose: Config file (YAML) for multi -container
application; Describes how to deploy and configure multiple
containers

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

OTHER DOCKER TOOLS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.22

 Framework(s) to deploy multiple containers
Provide container clusters using cloud VMs
Similar to “private clusters”
Reduce VM idle CPU time in public clouds
Better leverage “sunk cost” resources
Compact multiple apps onto shared public cloud

infrastructure
Generate to cost savings
Reduce vendor lock-in

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

CONTAINER ORCHESTRATION
FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall : control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

 Scale in/out, add/remove containers

 Load balancing over groups of containers

 Roll ing upgrades of containers for application

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

KEY ORCHESTRATION FEATURES

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.23

 Docker swarm

 Apache mesos/marathon

 Kubernetes

Many public cloud provides moving to offer Kubernetes-as-
a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service
 Serverles containers without managing clusters

 Azure Container Instances, AWS Fargate…

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

WE WILL RETURN AT
~7:05PM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.24

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning

November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

OBJECTIVES – 11/18

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 18, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -
Tacoma

L14.48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.25

 Docker CLI Docker Enginer (dockerd) containerd runc

 Concepts:

 Docker installation

 Working with docker files

 Docker run – create a container

 Docker ps – list containers

 Docker exec –it – run a process in an existing container

 Docker stop –stop container

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

TUTORIAL COVERAGE

November 18, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.50

Docker CLI

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.26

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

TUTORIAL 7

QUESTIONS

November 18, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.52

