
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.1

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington – Tacoma

MW 5:50-7:50 PM

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING  Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.2

OBJECTIVES – 11/18

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit
for completing

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.4

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.09 ( - previous 6.55)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.55 ( - previous 5.41)

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 Can you please explain about if there is any compatibility
required for the Host OS and Guest OS in the hypervisors?

 Type 1 Hypervisors generally require the Guest OS to
support being virtualized

 Traditionally a special OS kernel was provided

 This kernel has special TRAPS where privileged
instructions/operations are trapped as running them
directly on the HW without emulation/simulation will
cause corruption

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

FEEDBACK FROM 11/16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.2

 Comparison of :
Paravirtualization (type I) vs. Full (type II) hypervisors

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 MAJOR DIFFERENCE:
 Full v ir tualization: scan the EXE, insert code around privileged

instructions to divert control to the VMM
 THIS IS SOFTWARE EMULATION
 Imagine how this might be slow…

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions
 SPECIAL INSTRUCTIONS ARE TRAPPED BY A SPECIALIZED VERSION

OF THE OPERATIONG SYSTEM KERNEL AND HANDLED

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

TYPE 1 VS. TYPE 2 HYPERVISORS

 Tutorial 5: Thursday Nov 19th @ 11:59p

 Tutorial 6: Tuesday Nov 24th @ 11:59p

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

TUTORIAL QUESTIONS

 Tutorial 7 – Introduction to Docker Containerization

 Going further - optional tutorials:
 Ungraded or substitute

 Tutorial 8 – Introduction to FaaS IV: Step Functions and SQS

 Tutorial 9 – Asynchronous Function Profiling with SAAF

 Tutorial 10 – Automating Experiments with SAAF & FaaS
Runner

 Tutorial 11 – Scaling beyond a single client – concurrent
webservice benchmarking with multiple EC2 instances

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

UPCOMING TUTORIALS

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.10

OBJECTIVES – 11/18

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.11

OBJECTIVES – 11/18

Quiz 2 Coverage:

• Focus on lectures 7 – 12
• AWS
• Tutorials

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.12

OBJECTIVES – 11/18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.3

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation
 Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by Monday
November 23rd @ 11:59pm

 Presentation dates:
 Monday November 30, Wednesday December 2

 Monday December 7, Wednesday December 9

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

GROUP PRESENTATION

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.14

OBJECTIVES – 11/18

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.15

OBJECTIVES – 11/18

CONTAINERIZATION

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.16

 Containers provide “light-weight” alternative to full OS
vir tualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand
boxes” for execution

 Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

CONTAINER PERFORMANCE
– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.4

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

CONTAINER PERFORMANCE
– Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)
 Vir tualization: the simulation of the software and/or hardware

upon which other software runs. (800-125)

 System Vir tual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

OPERATING SYSTEM CONTAINERS

 Designed to package and run a single service

 All containers share host kernel

 Subtle differences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in
application containers

 Supports horizontal and vertical scaling

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific
for components, services
as needed

 Layering promotes reuse

 Reduces duplication of
data across images

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

APPLICATION CONTAINERS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.5

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

2016 DOCKER SURVEY

 Docker application containers
 Leading containerization vehicle

 Docker daemon “dockerd”
 Implements docker engine that interprets CLI requests

and creates/manages
containers using backend
layered Docker architecture

 Starting in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12
 2018 releases: 18.01 – 18.09
 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

DOCKER

 (1) Original Docker engine relied on LXC

 LXC itself is a containerization tool predating Docker

 Original Docker API just called it

 LXC originally provided access
to Linux kernel features:
namespaces and cgroups

 LXC was Linux specific – caused
issues if wanting to be multi-platform

 Docker implemented their own
replacement for LXC

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

ORIGINAL DOCKER ENGINE
IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

Namespaces Capabilities

cgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC
as the default Docker daemon

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

Namespaces Capabilities

cgroups

 OCI created container standards for:
 Image specification
 Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards
 Essentially this introduced abstraction layers (i.e. generic interfaces

that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec
 Provides small, lightweight wrapper for libcontainer
 Can build and run OCI compliant containers directly using runc

provided in Docker, but it is “bare bones” and low-level.
 The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon
 Daemon calls containerd
 Containerd passes of request to runc
 Containerd converts docker image into

OCI compliant bundle
 This step would allow any OCI compliant container

to be plugged into the back-end

 Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits
 Shim remains as a daemonless stub to

implement the container
 Allows Docker to be upgraded w/o

stopping the container !!!

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

Namespaces Capabilities

cgroups

shim

runc

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.6

 Docker CLI: interfaces with dockerd daemon
 Docker engine: dockerd daemon, interfaces with containerd
 Containerd: simple daemon, interfaces with runc to manage

containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API  Google RPC (gRPC) interface;

 runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container
November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.31

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports
“execution drivers concept”:

 Enables docker to support many
alternate container backends

 OpenVZ, system-nspawn, libvir t-lxc,
libvir t-sandbox, qemu/kvm,
BSD Jails, Solaris Zones, and chroot

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

SUPPORT FOR
ALTERNATE CONTAINER RUNTIMES

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated
with the namespace, and descendent namespaces

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS
entit ies for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
… provides expected VM like isolation…

 user: user identification and privilege isolation
among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX time sharing): provides separate host and domain
names
November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.34

NAMESPACES - 2

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting
 Memory, disk cache

 Prioritization
 CPU share

 Disk I/O throughput

 Accounting
 Track resource utilization

 For resource management and/or billing purposes

 Control
 Pause/resume processes

 Checkpointing  Checkpoint/Restore in Userspace (CRIU)

 https://criu.org

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts
for CPU usage

 cgroup filesystem:

 /sys/fs/cgroup

 Can browse resource utilization
of containers…

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

CGROUPS - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.7

 Docker leverages overlay f i lesystems
 1st: AUFS - Advanced multi- layered unif ication f i lesystem
 Now: overlay2
 Union mount f i le system: combine multiple directories into one that

appears to contain combined contents

 Idea: Docker uses layered f ile systems
 Only the top layer is writeable
 Other layers are read-only
 Layers are merged to present the notion of a real f i le system
 Copy-on-write- implicit sharing

 Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-f i lesystem-
demystif ied-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x-lxc -talk -1/

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

OVERLAY FILE SYSTEMS

 Dockerfile:

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image 

Copy . /app 

Run make /app 

Python /app/app.py 

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each
other?

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host
using a single Linux kernel

Control groups(cgroups)

 Including in Linux kernels => 2.6.24

Limit and prioritize sharing of CPU, memory,
block/network I/O

 Linux namespaces

Docker initially based on LXC

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

LXC (LINUX CONTAINERS)

 Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

 Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

 Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

OTHER DOCKER TOOLS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.8

Framework(s) to deploy multiple containers
Provide container clusters using cloud VMs
Similar to “private clusters”
Reduce VM idle CPU time in public clouds
Better leverage “sunk cost” resources
Compact multiple apps onto shared public cloud

infrastructure
Generate to cost savings
Reduce vendor lock-in

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

CONTAINER ORCHESTRATION
FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

 Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

Many public cloud provides moving to offer Kubernetes-as-
a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service
 Serverles containers without managing clusters

 Azure Container Instances, AWS Fargate…

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

WE WILL RETURN AT
~7:05PM

 Questions from 11/9

 Quiz 2– due Mon 11/23 @ noon (note: no grace period)

 Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 – 12/9

 Term Project Check-in – due Mon 11/30 @ 11:59p

 Introduction to Containerization

 2nd hour:

 Tutorial 7 – to be posted

 Introduction to Containerization cont’d

 Tutorial questions

 Team planning
November 18, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.47

OBJECTIVES – 11/18

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 18, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -
Tacoma

L14.48

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L14.9

 Docker CLI  Docker Enginer (dockerd)  containerd  runc

 Concepts:

 Docker installation

 Working with docker files

 Docker run – create a container

 Docker ps – list containers

 Docker exec –it – run a process in an existing container

 Docker stop –stop container

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

TUTORIAL COVERAGE

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.50

Docker CLI

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

TUTORIAL 7 QUESTIONS

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.52

