TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING [= Questions from 11/9]

= Quiz 2- due Mon 11/23 @ noon (note: no grace period)
= Group Presentatlon Overview:

Cloud Technology or Research Paper for 11/30 - 12/9
= Term Project Check-in - due Mon 11/30 @ 11:59p
= I[ntroduction to Containerization

OBJECTIVES - 11/18

Cloud Enabling Technology,
Containerization

= 2nd hour:
Wes J. Lloyd . Tutorial 7 b J
School of Engineering and Technology utorial 7 - to be poste
University of Washington - Tacoma = Introduction to Containerization cont’d
- . .
MW 5:50-7:50 PM Tutorial questions
= Team planning

ing for Cloud C

e i 2020]
T 2 22 o BT e o e R S = TRy

L1142

TCSS 562 - Online Daily Feedback Survey - 10/5

Started: Oct 7 at 1:13am

ONLINE DAILY FEEDBACK SURVEY Quiz Instructions

[Question1 05pts

= Daily Feedback Quiz in Canvas - Take After Each Class

On ascale of 1 to 10, please classify your perspective on material covered in today’s
= Extra Credit class:

forcompletmg + Upcoming Assignments 1 2 3 4 5 6 7 8 9 10

Discussions Wost

a1 Hostly
[Class Activity 1 - Implictvs. Expict Paralllism Review To Me New and Review New to Me
_— vl unl Oct 11 3¢ 1:5%m | Dus Ot 7 3t7:50pm | -/10pt=
Grades o Totorial 1- Linux
" Available until Oct 19 at 11:59pm | Due Oct 15 at 11:59pm | +/20 pts.
People
Pages
Files. * Past Assignments
Quizzes [Question2 ospts
% TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations ' Available until Dec 59pm | Due Oct 6 at 8:5%m | -/1 pts
Please rate the pace of today’s class:
U L ¢ TCSS 562 - Online Daily Feedback Survey - 9/30
UW Resources ¥ Available untl Dec 183t 11:59m | Due Oct 42t 8:3%m | /1pts 1 2 3 4 5 6 o 8 9 10
Stow Just Right Fast
November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] a3 November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of :chnology, y Tacoma g School of Engineering and Technology, University of Washington - Tacoma L144

MATERIAL / PACE FEEDBACK FROM 11/16

= Please classify your perspective on material covered in today’s
class (22 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.09 ({ - previous 6.55)

= Can you please explaln about If there Is any compatibility
required for the Host OS and Guest OS In the hypervisors?

= Type 1 Hypervisors generally require the Guest OS to

support being virtualized
= Please rate the pace of today’s class:

= 1-slow, 5-just right, 10-fast = Traditionally a special OS kernel was provided
s Average - 5.55 (1 - previous 5.41) = This kernel has special TRAPS where privileged

instructions/operations are trapped as running them
directly on the HW without emulation/simulation will
cause corruption

November 18, 2020 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall ?UZU]
school of chnology, y Tacoma

ues November 18, 2020 JLesssa; Software Ensinesrine fur Clopdlcomputing [Foll20201
School of Technology, Universiy of Tacoma

1146

Slides by Wes J. Lloyd L14.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TYPE 1 VS. TYPE 2 HYPERVISORS

= Comparison of:
Paravirtuallzation (type I) vs. Full (type 1l) hypervisors

= GOAL: run all user mode instructions directly on the CPU
= x86 instruction set has ~17 privileged user mode instructions

= MAJOR DIFFERENCE:

= Full virtuallzatlon: scan the EXE, insert code around privileged
instructions to divert control to the VMM
= THIS IS SOFTWARE EMULATION
= Imagine how this might be slow...

= Paravirtuallzatlon: special OS kernel eliminates side effects of
privileged instructions

= SPECIAL INSTRUCTIONS ARE TRAPPED BY A SPECIALIZED VERSION
OF THE OPERATIONG SYSTEM KERNEL AND HANDLED

[Fall 2020]

November 18, 2020 ua7

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University i Tacoma

TUTORIAL QUESTIONS

= Tutorial 5: Thursday Nov 19t" @ 11:59p

= Tutorial 6: Tuesday Nov 24th @ 11:59p

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020 Las

UPCOMING TUTORIALS

= Tutorial 7 - Introduction to Docker Containerization

= Going further - optional tutorials:
= Ungraded or substitute

= Tutorial 8 - Introduction to FaaS IV: Step Functions and SQS

= Tutorial 9 - Asynchronous Function Profiling with SAAF

= Tutorial 10 - Automating Experiments with SAAF & Faa$S
Runner

= Tutorial 11 - Scaling beyond a single client - concurrent
webservice benchmarking with multiple EC2 instances

November 18, 2020 ;crs‘zifz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2020]

chnology, y Tacoma

OBJECTIVES - 11/18

= Questions from 11/9
|l Quiz 2- due Mon 11/23 @ noon (note: no grace period) |

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Mon 11/30 @ 11:59p
= Introduction to Containerization

= 2nd hour:

= Tutorial 7 - to be posted

= Introduction to Containerization cont’d
= Tutorial questions

= Team planning

for Cloud C¢

TC i 2020]
R 12 L 2 Sehoslof Engineering andTech nolosylUnrversity ot Washinaton ek Teconta

ua10

OBJECTIVES - 11/18

= Questions from 11/9
|l Quiz 2- due Mon 11/23 @ noon (note: no grace period) |

= Group Prespaiatlie— n..—... Lo

R Quiz 2 Coverage: 30 - 12/9
= Term Projec L:
ity Focus on lectures 7 - 12

AWS

= 2nd hour: .
= Tutorial 7 -5 Utorlals

= Introduction to Containerization cont’d
= Tutorial questions
= Team planning

November 18, 2020 TC:;iEg;Soﬂmre Engineering for Cloud Computing [Fall 2020]

a1
Technology,

acoma

OBJECTIVES - 11/18

= Questions from 11/9
= Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentation Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Mon 11/30 @ 11:59p
= Introduction to Containerization

= 2nd hour:

= Tutorial 7 - to be posted

= Introduction to Containerization cont’d
= Tutorial questions

= Team planning

November 18, 2020 ua12

T i 2020]
School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L14.2

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

GROUP PRESENTATION OBJECTIVES - 11/18

= Questions from 11/9

= TWO OPTIONS:
= Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Cloud technology presentation

= Cloud research paper presentation = Group Presentatlon Overview:
= Recent & suggested papers will be posted at: Cloud Technology or Research Paper for 11/30 - 12/9
http://faculty.washington.edu/wlloyd/courses/tcss562/papers, |lTerm Project Check-in - due Mon 11/30 @ 11:59p I
= Submit presentation type and topics (paper or technology) = Introduction to Containerization
with desired dates of presentation via Canvas by Monday
November 23 @ 11:59pm = 2nd hour:

= Tutorial 7 - to be posted
= Introduction to Containerization cont’d
= Tutorial questions

" Presentation dates:
= Monday November 30, Wednesday December 2
= Monday December 7, Wednesday December 9
= Team planning

TC ineering for Cloud Computi 2020]
School of Engineeri Technology, University i - Tacoma

ua4

11413 November 18, 2020

November 18, 2020

TCS5562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineeri chnology, University i Tacoma

OBJECTIVES - 11/18

= Questions from 11/9
= Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentatlon Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Mon 11/30 @ 11:59p
| = Introduction to Containerization |

CONTAINERIZATION

= 2nd hour:

= Tutorial 7 - to be posted

= Introduction to Containerization cont’d
= Tutorial questions

= Team planning

TCS5562:Software Engineering for Cloud Computing [Fall 2020]
hool of Engineeri Technology, University i

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

Lais Wl Th D School of Engineering and Technology, University of Washington -

November 18, 2020

- Tacoma

MOTIVATION FOR CONTAINERIZATION CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:
= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution
= Linux cgroups, namespaces, etc.

= Containers can run on bare metal, or atop of VMs

crercererere Container
olofofofofoo
HERHEHE v [V [
[S VMJVM][VM]VM 5
Host OS's bins /libs — [Hypervisor engine | ",

30

1Flops (higher is better)

M

Suest OS i & 5 4 5
Containers engine [Hardware Host OS. KM DOCKER Lxc NATIVE osv
E] Containers Type1l H - Hardware Fig. 4. The value of Linpack results on each platform over 15 runs. This is
Hardvare ypervisor Type2 the particular case of N=1000.
November 18, 2020 ;CrS‘SSEZ: Sof(‘ware_Engineering for Cloud Fom;::u(ing [Fall ?UZU] L1417 November 18, 2020 TCSS562: 0 y - e \.qudf.‘ p " _ZOZO] s
ool of Technology, y Tacoma School of Technology, University of Tacoma

Slides by Wes J. Lloyd L14.3

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:

1800 ;
EKVM \ A Performance Comparison

[Fall 2020]

Hypervisors vs. Lightweight Virtualization:

17501 lapocker

1700 | |BLXC

ENATIVE

1400

1350

1300

Computation Time Total Time

November 18, 2020 ‘ TCS$562: Software Engineering for Cloud Computing [Fall 2020] s

School of Engineering and Technology, University of Washington - Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
250000 1 A Performance Comparison

BKVM EDOCKER BLXC ENATIVE |

150000

N
NN
N

100000

N

-
7

30000

Disk Throughput (Kb/s - higher is better)

7777
7/
7

A
7

0
Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie+ (test file of 25 GiB)

Results for sequential writes and sequential read are shown,

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machlne: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

November 18, 2020 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall ?UZU]
school of Technology, y Tacoma

L1421

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host OS
= Examples: LXC,
Ubuntu Ubt Ubunty
OpenVz, 1401 oh Aot
. Container Container Container
Linux Vserver,
BSD Jails,

Solaris zones

Ubuntu 14,04 image

Identical OS containers Different flavoured OS containers

+ Credit nttpsi//bi SO
TCSS562: i ing for Cloud C i 2020]
(e RS D School of Engineering and Technology, University of Washington - Tacoma Lz

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

November 18, 2020 ;crs‘zifz' Software Engineering for Cloud Computing [Fall 2020] ez

chnology, y Tacoma

APPLICATION CONTAINERS - 2

= Container images are “layered”
= Base image: common for all components

= Add layers that are specific
for components, services teferences
as needed parent

= Layering promotes reuse image

= Reduces duplication of
data across images

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020 1424

Slides by Wes J. Lloyd

L14.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80%

o,

plan 1o usa Dockr 1o
migrate workloads to cloud

oy
4%
‘want application
porahiy sctoss
o

b docker

[Fall 2020]

Tesss62: ineering for Cloud Computii 2020]
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020 11425

DOCKER

= Docker daemon “dockerd”
= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

= Starting in 2017 version

o

numbering switches from g N
1.x to YR.x W0
® 2017 releases: 17.03 - 17.12 Dosker Dssmon

® 2018 releases: 18.01 - 18.09
= 2019 releases: 19.03.0 - 19.03.13 g

Docker Crents Docker Contaners

Docker Client-Server Architecture
= Credit: hitps://hackernoon.com/docker-containerd-standalone-runtimes

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

L42s

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

= (1) Original Docker engine relied on LXC
= LXC itself is a containerization tool predating Docker
= Original Docker API just called it

= LXC originally provided access
to Linux kernel features:
namespaces and cgroups

$Docker client

= LXC was Linux specific - caused

issues if wanting to be multi-platform

= Docker implemented their own
replacement for LXC

Host Kernel

November 18, 2020 TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma a2

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: llbcontalner introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

| libcontainer |

Namespaces

Host Kernel

November 18, 2020 TCSS562: ineering for Cloud C¢

2020] 11428
School of Engineering and Technology, University of Washington - Tacoma

OPEN CONTAINER INITIATIVE (OCI)

CREATING A CONTAINER

= OCI created container standards for:
= Image specification
= Container runtime specification
= Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards
= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCl standard
= Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer
= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.
The Docker APl is much more user friendly

= Support for OCl compliant images was added to Contalnerd

November 18, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma L9

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo

= Daemon calls contalnerd

= Containerd passes of request to runc
= Contalnerd converts docker image into
0OCI compliant bundle containerd |
= This step would allow any OCI compliant container t
to be plugged into the back-end
= Runc interfaces with the Linux kernel

(namespaces, cgroups, etc.) to create container
= Shim: once a container is created, runc exits

= Shim remains as a daemonless stub to

Host Kernel

stopping the container !!!

implement the container
= Allows Docker to be upgraded w/o
TCSS562: i ing for Cloud C 2020]
R T2 L 22 ISehosl of Engineenng andTech nology/Unrversity ofWashinaton i Tacoma

ua30

Slides by Wes J. Lloyd

L14.5

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

SUPPORT FOR

CREATING A CONTAINER - 2

& (=

Decker CLIU

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

= Enables docker to support many &
e — alternate container backends Docker
Containerd Integration Architecture Besioes l l l
. . = OpenVZ, system-nspawn, libvirt-Ixc, oy
= Docker CLI..mterfaces with docke.rd daemon .) libvirt-sandbox, gemu,/kvm, livire e pr
= Docker engine: dockerd daemon, interfaces with containerd BSDhailNSoisZoneandlchroot l l l
= Contalnerd: simple daemon, interfaces with runc to manage 5
containers; CRUD interface for containers, images, volumes, Linux
networks, builds; HTTP APl - Google RPC (gRPC) interface; cgroups namespaces netlink
= runc: lightweight command-line tool for running containers; - sellux nedficer (¥
Interfaces with Linux cgroups, namespaces; Runs an OCI e apparmor
container

TC55562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

‘ L1431 ‘ November 18, 2020 a3 ‘

LINUX KERNEL NAMESPACES

NAMESPACES - 2

PID USER PR NI VIAT _ RES _ SHA S _KCPU SNEW _ TINE:

= Provides Isolatlon of 0S
entities for containers
= mnt: separate filesystems
= pld: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharlng): provides separate host and domain

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

TC55562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

‘ 11433 ‘ November 18, 2020 1434 ‘

CONTROL GROUPS (CGROUPS) CGROUPS - 2

= Collection of Linux processes = Control groups are hierarchical
= Group-level resource allocation: CPU, memory, disk I/0, network 1/0 = Groups inherent limits from parent groups
. . s
Resource limiting = Linux has multiple cgroup controllers (subsystems)

= Memory, disk cache = |s /proc/cgroups
= Prloritizatlion

u ” L
= CPU share = “memory” controller limits memory use
« Disk I/0 throughput = “cpuacct” controller accounts [
= Accounting for CPU usage E;Lﬂam
= Track resource utilization '"‘k_‘ﬂ
memory B
= For resource management and/or billing purposes = cgroup filesystem: evices
Freezer
= Control = /sys/fs/cgroup e
= Pause/resume processes . . pott event il
= Can browse resource utilization ':_et_r%'
. . .) A *
Checkpointing > Checkpoint/Restore in Userspace (CRIU) of containers... it - =
= https://criu.org
TCSS562: Software Engineering for Cloud Computing [Fall 2020] TCSS562: i i loud C¢ 2020]
(R AT D School of Engineering and Technology, University of Washington - Tacoma ‘ e ‘ (e S D SchoolofEnginssringandTechr::'l:gy,UniversilvofWashingloanacuma Lz ‘

Slides by Wes J. Lloyd L14.6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

OVERLAY FILE SYSTEMS

LAYERED FS: BUILDING A CONTAINER

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalelix-Ixc-talk-1,

FROM ubuntu:18.04
= Dockerfile: copy . sapp
RUN make /app
CMD python /app/app.py

Thin R/W layer {+—— Container layer

Python /app/app.py > e
Run make /app | FEZETE
Image layers (R/O)

[TNETT AN c22013c84729 sasks [l

Ubuntu base image - [ESTEEE

ubuntu:15.04

Container

11437

November 18, 2020 g:rs‘zifz;sm_ware_sngineeﬁng for Cloud Computing [Fall 2020]

Technology, y Tacoma

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020 1438 ‘

THREE-TIER ARCHITECTURE

CONTAINER ISOLATION

Node.js
Postgres

* Node.js Nginx

* Postgres
* Naginx

OS containers App containers

Meant to run for a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

Meant to used as an OS - run multiple
services

No layered filesystems by default

Built on cgroups, namespaces, native
process resource isolation

Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

u|s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

Application

App | App containers
s | sins/ins

App | App

S

November 18, 2020 11439

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University i Tacoma

TCSS562: ineering for Cloud Computi 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020

=

LXC (LINUX CONTAINERS)

OTHER DOCKER TOOLS

= Operating system level virtualization

= Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network I/0

= Linux namespaces
= Docker initially based on LXC

= Docker Machlne: Docker Engine
automatically provision
and manage sets of contatnerd
docker hosts to == -
form a cluster contatnerd-shim J§ containerd-shin

= Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

L14.41

November 18, 2020 ;crs‘zifz;sm_ware;ngineeﬁng for Cloud Computing [Fall 2020]

Technology, y Tacoma

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 18, 2020 ra.a2 ‘

Slides by Wes J. Lloyd

L14.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
" Reduce vendor lock-in

[Fall 2020]

November 18, 2020 ;crs‘zifz;mﬁ_ware_sngineeﬁng for Cloud Computing [Fall 2020]

L1443
Technology, y Tacoma

KEY ORCHESTRATION FEATURES

= Management of container hosts
®= Launching set of containers
= Rescheduling failed containers
® Linking containers to support workflows
= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers
= Rolling upgrades of containers for application

TCSS562: ineering for Cloud Computi 2020)
School of Engineeri Technology, University i Tacoma

November 18, 2020

=

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

November 18, 2020 Tsfrs\zilsz! Software Engineering for Cloud Computing [Fall 2020] s

Technology, y Tacoma

WE WILL RETURN AT

~7:05PM

OBJECTIVES - 11/18

= Questions from 11/9
= Quiz 2- due Mon 11/23 @ noon (note: no grace period)

= Group Presentatlon Overview:
Cloud Technology or Research Paper for 11/30 - 12/9

= Term Project Check-in - due Mon 11/30 @ 11:59p
= Introduction to Containerization

= 2nd hour:

| = Tutorial 7 - to be posted |

= Introduction to Containerization cont’d
= Tutorial questions

= Team planning

November 18, 2020 TCSSSEZ:Sof(?Wre anineering for Cloud C.omp‘u(ing [Fall zOZO]
hool of hnology, y -

L14.47

Tacoma

Slides by Wes J. Lloyd

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Fafi020]
November 18, 2020 School of Engineering and Technology, University of Was|

Tacoma

L14.8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL COVERAGE

Docker CLI > Docker Englner (dockerd) > contalnerd - runc

Concepts:

Docker installation
Working with docker files
Docker run - create a container

Docker ps - list containers
Docker exec -it - run a process in an existing container
Docker stop -stop container

November 18, 2020

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ L9 ‘

ommanas :
attach Attach local standard input, output, and error streams to a running container

build Build an image from a Dockerfil
commit Create a new image from a container's changes

cp Copy files/fol between a container and the local filesystem

create Create a new container
deploy Deploy a new stack or update an existing stack

diff Inspect changes to files or directories on a container's filesystem

events Get real time events from the server
Run a command in a running container
xport a container's filesystem as a tar archive
show the history of an image
List images

Import the contents from a tarball to create a filesystem image

Display system-wide information
turn low-level information on Docker objects
Kill one or more running containers
Load an image from a tar archive or STDIN
Log in to a Docker registry
Log out from a Docker registry
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
Restart one or more containers
Remove one or more contai s
move one or more images
Run a command in a new containe

ve one or more images to a tar archive (streamed to STDOUT by default)

search the Docker Hub for image:
start one or more stopped container

Display a live stream of container(s) resource usage
Stop one or more running containers

Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
Display the running processes of a container

Unpause all proce! within one or more containers
Update configuration of one or more containers

show the Docker version information

Block until one or more containers stop, then print their exit codes

Docker CLI

[Fall 2020]

TUTORIAL 7

Linux performance benchmarks

stress-ng

100s of CPU, memory, disk, network stress tests

Sysbench

Used in tutorial for memory stress test

November 18, 2020

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ st ‘

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

Wl Th D School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L14.9

