TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

MW 5:50-7:50 PM

OBJECTIVES - 11/16

| = Questions from 11/9 |
® Quiz 2 - to be posted this week
= Group Presentations for 11/30 - 12/9

® From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

m 2nd hour:

® |Introduction to Containerization
® Tutorial questions (4, 5, 6)

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.2

Slides by Wes J. Lloyd

[Fall 2020]

L13.1

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Take After Each Class
® Extra Credit

Announcements

for completing v Upcoming Assigniernt
Assignments ipcoming Assignments

Diseussions _, Class Activity 1 - Implicit vs. Explicit Parallelism
Faom Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts
Grades Tutorial 1 - Linux
Available until Oct 19 at 11:59pm | Due Oct 15 at 11:59pm | -/20 pts

People
Pages
Files * Past Assignments
Quizzes

® TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations - Available until Dec 18 at 11:59pm | Due Oct & at 8:59pm | -/1pts
UW Libraries " .

“* TCSS 562 - Online Daily Feedback Survey - 2/30
W Resorirces * Available until Dec 18 3t 11:59pm | Due Oct 4 at 8:5%m | ~/1pts

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma H33
TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am
Quiz Instructions
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5] 7 8 9 ie
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5] 7 8 9 1e
Slow Just Right Fast
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] Ry

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2020]

L13.2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (22 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.55 (T - previous 6.30)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.41 (T - previous 5.40)

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L1135
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

TUTORIAL QUESTIONS

= | am receiving many emails regarding the tutorials

® Many emails are regarding computer issues
(setting up required software dependencies, etc.)

®m Other emails are regarding clarifications on what the
assignments require
= When confusing points are found, | make every effort to capture
valuable feedback, and post a revision to the tutorial

= Tutorials are living documents - your feedback and participation
actively makes them better - THANK YOU !!!

= AWS is continuously changing

For example - location of where a function handler is configured in the
AWS Lambda GUI changed between posting of Tutorial 4 and 5

= Ubuntu and our working environments are continuously changing

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.6
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.3

TCSS 562: Software Engineering for Cloud Computing

School of Engineering

and Technology, UW-Tacoma

FEEDBACK FROM 11/9

® Can you elaborate on the differences between AWS
Lambda VPC and NO VPC function deployments
mentioned in
tutorial 4?

® Virtual Private Clouds (VPCs) enable users to customize
network settings and create virtual networks with unique
routing rules

® There are two aspects of networking:

= Security groups - define firewall rules which describe
which types of network traffic is allowed to pass across
the connection

= Routing rules - defines virtual networking paths that
enable traffic to transit in various ways

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.7

Is a security group (firewall) rule necessary in
AWS to prevent undesired traffic between two

W cloud services where a network route has NOT
been established and the cloud services are

deployed on different subnetworks?

YES, always

NO, never

Rules only needed for
inbound traffic

Rules only needed for
outbound traffic

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Slides by Wes J. Lloyd

[Fall 2020]

L13.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 2

= Can you talk about why you didn't want us to call the
Lambda function using AWS CLI for Caesar cipher ?

® For testing purposes, invoking a Lambda function using
the AWS CLI requires access credentials from tutorial O

® These are the access_key and secret_key

® For the instructor to test your encryption pipeline using
the AWS CLI, you would need to provide access
credentials to a user defined in your AWS account with
permission to access the Lambda functions

m Setting up an IAM User & credentials requires additional effort

m Distributing keys securely is arduous and fault prone

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.9
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

FEEDBACK - 3

® For Tutorial 4 - Security through Obscurity:

= APl gateway endpoints are unlikely to be attacked as the
URIs are quite cryptic

=" PLEASE DO DELETE APl GATEWAY ENDPOINTS
ONCE TUTORIAL RECEIVES A GRADE

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.10
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK - 4

® |t would be great to have a "mind map" of the tutorials

we

do, since sometimes it is hard to see the broader picture

after reading and doing it through.

® What | mean is nothing detailed, just a general

connection between the tutorials and bullet points within

a tutorial. Thank you!

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.11

TUTORIALS

= Tutorials 1-7 graded and required
= Tutorials 8+ optional

= Up to two optional tutorials can be completed to
replace the grade for tutorials 1-7

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.12

Slides by Wes J. Lloyd

[Fall 2020]

L13.6

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 4 OBJECTIVES

® Provides introduction to:
= AWS Lambda
= AP| Gateway for HTTP/REST endpoints
= AWS CLI
m Serverless Application Analytics Framework (SAAF)
= Deploy script (optional)
= FaaS Runner Introduction: supports running experiments

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.13
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

TUTORIAL 5 OBJECTIVES

® Provides introduction to:
B Simple Storage Service

E [ncluding dependencies in MAVEN projects
(AWS libraries, etc.)

® Security: use of roles and policies to manage fine-grained
access between AWS services

® CloudTrail: key idea is to expose events to CloudWatch
® CloudWatch: Rules to invoke targets when events occur
®m CloudWatch: Viewing log files for AWS Lambda functions

® Providing event data to Lambda so that function can
obtain metadata about the triggering event (optional)

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.14
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 6 OBJECTIVES

®m SQLite databases & command-line client
® Using SQLite from Lambda
® Lambda function persistent data (static variables in Java)

® Concurrent Lambda function calls and function instances
(newcontainer attribute in SAAF)

® AWS Aurora MySQL Serverless databases

® Mysql command-line client

® Lambda functions w/ Virtual Private Clouds (VPCs)
= Using Aurora MySQL from Lambda

m Serverless freeze/thaw lifecycles

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.15
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

UPCOMING TUTORIALS

® Tutorial 7 - Introduction to Docker Containerization

® Going further - optional tutorials:
= Ungraded or substitute

® Tutorial 8 - Introduction to FaaS IV: Step Functions and SQS
® Tutorial 9 - Asynchronous Function Profiling with SAAF

® Tutorial 10 - Automating Experiments with SAAF & Faa$S
Runner

® Tutorial 11 - Scaling beyond a single client - concurrent
webservice benchmarking with multiple EC2 instances

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.16
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.8

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/16

® Questions from 11/9
| " Quiz 2 - to be posted this week |

u GrOUp Presguototinme fau 44 /90 An /0
Il Quiz 2 Coverage:

Chapter 5 -

Architecture:

Focus on lectures 7 - 12
AWS

m 2nd hour:

Tutorials

®E Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

113.17
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

OBJECTIVES - 11/16

® Questions from 11/9
® Quiz 2 - to be posted this week
II_Group Presentations for 11/30 - 12/9

= From: Cloud Computing Concepts, Technology & Architecture:
Chapter 5 - Cloud Enabling Technology

m 2nd hour:

® |Introduction to Containerization
® Tutorial questions (4, 5, 6)

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

L13.18
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.9

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GROUP PRESENTATION

= TWO OPTIONS:
® Cloud technology presentation

® Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

® Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by Monday
November 23" @ 11:59pm

® Presentation dates:
= Monday November 30, Wednesday December 2
= Monday December 7, Wednesday December 9

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.19

OBJECTIVES - 11/16

® Questions from 11/9
® Quiz 2 - to be posted this week
= Group Presentations for 11/30 - 12/9

® From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

m 2nd hour:

® |Introduction to Containerization
® Tutorial questions (4, 5, 6)

® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.20

Slides by Wes J. Lloyd

[Fall 2020]

L13.10

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

CLOUD ENABLING
TECHNOLOGY

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

VIRTUALIZATION MANAGEMENT

® Virtual infrastructure management (VIM) tools
® Tools that manage pools of virtual machines, resources, etc.
® Private cloud software systems can be considered as a VIM

® Considerations:
® Performance overhead

= Paravirtualization: custom OS kernels, I/0 passed directly to HW w/
special drivers

® Hardware compatibility for virtualization

® Portability: virtual resources tend to be difficult to migrate
cross-clouds

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.22
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd L13.11

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

= Middleware to manage virtual machines and
infrastructure of laaS “clouds”

= Examples

=OpenNebula

=Nimbus

=Eucalyptus
=OpenStack

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

VIM FEATURES

= Create/destroy VM Instances

®lmage repository
=Create/Destroy/Update images
*"Image persistence

= Contextualization of VMs
" Networking address assignment
DHCP / Static IPs
*Manage SSH keys

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

Slides by Wes J. Lloyd

[Fall 2020]

L13.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

®=Virtual network configuration/management

VIM FEATURES - 2

=Public/Private IP address assighment
=Virtual firewall management

e Configure/support isolated VLANs (private

clusters)

®Support common virtual machine managers

(VMMs)

=XEN, KVM, VMware
=Support via libvirt library

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

VIM FEATURES - 3

mShared “Elastic” block storage
= Facility to create/update/delete VM disk volumes
Amazon EBS
Eucalyptus SC
OpenStack Volume Controller

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

Slides by Wes J. Lloyd

[Fall 2020]

L13.13

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)

® Considered Infrastructure-as-a-Service

= Opensource
® Kubernetes framework

® Docker swarm
® Apache Mesos/Marathon

= Proprietary
® Amazon Elastic Container Service

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.27
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

CONTAINER SERVICES

= Public cloud container cluster services

®m Azure Kubernetes Service (AKS)

® Amazon Elastic Container Service for Kubernetes (EKS)
®m Google Kubernetes Engine (GKE)

= Container-as-a-Service

®m Azure Container Instances (ACI - April 2018)

= AWS Fargate (November 2017)

® Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.28
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.14

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD ENABLING TECHNOLOGY

® Broadband networks and internet architecture
= Data center technology

= Virtualization technology

® Multitenant technology

= Web/web services technology

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.29
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

4. MULTITENANT APPLICATIONS

® Each tenant (like in an apartment) has their own view of the
application

® Tenants are unaware of their neighbors 1

Qi
® Tenants can only access their data, no access to ,,;}”
data and configuration that is not their own n
mama momm
=l =El E
® Customizable features
=
= Ul, business process, data model, access control

® Application architecture

= User isolation, data security, recovery/backup by tenant, scalability
for a tenant, for tenants, metered usage, data tier isolation

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.30
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.15

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MULTITENANT APPS - 2

® Forms the basis for SaaS (applications)

Organization A Organization B

cloud cloud
service service
consumer consumer

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

CLOUD ENABLING TECHNOLOGY

® Broadband networks and internet architecture

= Data center technology

= Virtualization technology

® Multitenant technology

= Web/web services technology

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

Slides by Wes J. Lloyd

[Fall 2020]

L13.16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

5. WEB SERVICES/WEB

® Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

® SOAP - “Simple” object access protocol
= First generation web services
= WSDL - web services description language
= UDDI - universal description discovery and integration
= SOAP services have their own unique interfaces

= REST - instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

= HTTP GET, PUT, POST, DELETE

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.33

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

® An ASCIlI-based request/reply protocol for transferring
information on the web

B HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request

B HTTP response from server HTTP status codes:
= Protocol version & status code > 2xx — all is well
- Response headers 3IXX — resource moved

dxx — access problem
* Response body Sxx — server error

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.34

Slides by Wes J. Lloyd

[Fall 2020]

L13.17

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST: REPRESENTATIONAL STATE TRANSFER

® Web services protocol
® Supersedes SOAP - Simple Object Access Protocol

® Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

® Requests are made to a URI

® Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

= HTTP verbs: GET, POST, PUT, DELETE, ...

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

11335
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/socap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

povembergl632020 School of Engineering and Technology, University of Washington - Tacoma L13.36

Slides by Wes J. Lloyd

[Fall 2020]

L13.18

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

WS eey 6, 20y School of Engineering and Technology, University of Washington - Tacoma

L13.37

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek .wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek .wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>
</message>
name="DayoO: k ">
<part name="dayOfWeek" type="xsd:string"/>
</message>
<portType name='"DayOfWeekPortType'">
<operation name="GetDayOfWeek'">
<input message="tns:DayOfWeekInput"/>
<output tns:DayOfWeek
</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>
</operation>
</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date
</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek" />
</port>
</service>
</definitions>
November 16, 2020

w/>

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

Slides by Wes J. Lloyd

[Fall 2020]

L13.19

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST CLIMATE SERVICES EXAMPLE

"USDA // REST/JSON
Lat/Long // Request climate data for Washington
Climate {
Service "parameter": [
{
Demo "name": "latitude",

"wvalue'" :47.2529

b,
{
"name": "longitude",

= Just provide "value":-122.4443

a Lat/Long ;

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.39

REST - 2

®E App manipulates one or more types of resources.

® Everything the app does can be characterized as some
kind of operation on one or more resources.

® Frequently services are CRUD operations
(create/read/update/delete)
= Create a new resource
= Read resource(s) matching criterion
= Update data associated with some resource
= Destroy a particular a resource

® Resources are often implemented as objects in 00
languages

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.40

Slides by Wes J. Lloyd

[Fall 2020]

L13.20

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

REST ARCHITECTURAL ADVANTAGES

= Performance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

= Scalability: to support large numbers of services and
interactions among them

= Simplicity: of the Uniform Interface

= Modifiability: of services to meet changing needs (even while the

application is running)
= Visibility: of communication between services

= Portability: of services by redeployment

= Reliability: resists failure at the system level as redundancy of

infrastructure is easy to ensure

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.41

WE WILL RETURN AT

~7:13PM

Slides by Wes J. Lloyd

[Fall 2020]

L13.21

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/16

® Questions from 11/9
® Quiz 2 - to be posted this week
= Group Presentations for 11/30 - 12/9

= From: Cloud Computing Concepts, Technology & Architecture:
Chapter 5 - Cloud Enabling Technology

= 2nd hour:
= |Introduction to Containerization

| = Tutorial questions (4, 5, 6) |
®E Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

113.43
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

OBJECTIVES - 11/16

® Questions from 11/9
® Quiz 2 - to be posted this week
= Group Presentations for 11/30 - 12/9

® From: Cloud Computing Concepts, Technology & Architecture:
Chapter 5 - Cloud Enabling Technology

m 2nd hour:
|- Introduction to Containerization |

® Tutorial questions (4, 5, 6)
® Team planning

TCSS562:Software Engineering for Cloud Computing [Fall 2020]

L13.44
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.22

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

povembergl632020 School of Engineering and Technology, University of Washington -

MOTIVATION FOR CONTAINERIZATION

® Containers provide “light-weight” alternative to full OS
virtualization provided by a hypervisor
® Containers do not provide a full “machine”
® [nstead use operating system constructs to provide “sand
boxes” for execution
= Linux cgroups, hamespaces, etc.
® Containers can run on bare metal, or atop of VMs

Container P

Type 1 Hardware

iR
TB o0

Host OS'

bins/libs

”

Containers engine

Host OS

Containers ;
Hardware Hypervisor/VM —
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma H13.46

Slides by Wes J. Lloyd

[Fall 2020]

L13.23

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

® Solve linear equations - matrix algebra

530

528

n wh wn
- va =
g 4 =

MFlops thigher is betier)
wn %

-

MMMIMIY

wn
=

Performance data from IC2E 2015:

Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

I

516

KVM DOCKER

LXC

NATIVE 0osv

Fig. 4. The value of Linpack results on cach platform over 15 runs. This is
the particular case of N=1000.

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

1800

1750

1700

1650

1600

1550

Seconds (smaller is better)

1400

1350

1300

EKVM
BpPOCKER
BLXC

BENATIVE

1500 -

1450

Computation Time

Performance data from IC2E 2015:

Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

Total Time

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

Slides by Wes J. Lloyd

[Fall 2020]

L13.24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE - BONNIE++

250000

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

EKVM EDOCKER BLXC BNATIVE

200000

150000

LOGG00

0000

Disk Throughput (Kh/s - higher is better)

7

7
S

77

77
7

7

7

2N

A

Block Output

Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).

Results for sequential writes and sequential read are shown.

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)
® Virtualization: the simulation of the software and/or hardware

upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-

180 draft). E.g., Docker (containerd), rkt

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

Slides by Wes J. Lloyd

[Fall 2020]

L13.25

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

® Provide user space isolation

® Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host OS Host OS
® Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 14.04 14.04 14.04 7 6.6

Container Container Container Container Container Container

Linux Vserver,
BSD Jails,
Solaris zones

Cent0S 6.6 image
RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.04 image

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack.com/operating-system-containers-vs-application-containers/

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.51

APPLICATION CONTAINERS

®m Desighed to package and run a single service

= All containers share host kernel

® Subtle differences from operating system containers

® Examples: Docker, Rocket

® Docker: runs a single process on creation

® OS containers: run many OS services, for an entire 0S

® Create application containers for each component of an app
® Supports a micro-services architecture

® DevOPS: developers can package their own components in
application containers

® Supports horizontal and vertical scaling

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.52

Slides by Wes J. Lloyd

[Fall 2020]

L13.26

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

® Container images are “layered”

= Base image: common for all components

= Add layers that are specific
for components, services
as needed

® Layering promotes reuse

® Reduces duplication of
data across images

APPLICATION CONTAINERS - 2

references
parent
image

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma

L13.53

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems

Now: overlay2

appears to contain combined contents

Idea: Docker uses layered file systems
Only the top layer is writeable
Other layers are read-only

Copy-on-write- implicit sharing
= Implement duplicate copy

1st: AUFS - Advanced multi-layered unification filesystem

Layers are merged to present the notion of a real file system

Union mount file system: combine multiple directories into one that

= https://medium.com/@nagarwal/docker-containers-filesystem-

demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scaledix-Ixc-talk-1/

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020

School of Engineering and Technology, University of Washington - Tacoma

L13.54

Slides by Wes J. Lloyd

[Fall 2020]

L13.27

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04

® Dockerfile: copy . /app
RUN make /app

CMD python /app/app.py

Thin R/W layer

{ «—— Container layer

|

i

I I l

Python /app/app.py > LR

Run make /app 2> Pz T

Copy . /app 2| | RUEE L

Ubuntu base image 2> FEEREE T

~

1.895 KB

194.5KB

188.1 MB

ubuntu:15.04

Container

> Image layers (R/0)

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

THREE-TIER ARCHITECTURE

Node.js
Postgres
Nginx

OS containers

= Meant to used as an OS - run multiple
services

* No layered filesystems by default

* Built on cgroups, namespaces, native
process resource isclation

* Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

« s s w

App containers

Meant to run for a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

Slides by Wes J. Lloyd

[Fall 2020]

L13.28

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ISOLATION

®|s the host isolated from application containers?

= Are application containers isolated from each

other?

Application
containers

Application
App | App containers
Bins/libs. Bins/libs

App App

Bins/libs Bins/libs

Container
runtime

runtime

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.57
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

LXC (LINUX CONTAINERS)

®m QOperating system level virtualization

® Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
"|Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network I/0

® Linux namespaces
= Docker initially based on LXC

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.58
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.29

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LINUX KERNEL NAMESPACES

® Partitions kernel resources
® Processes see only their set of resources
® Provides isolation

® Namespaces are hierarchical

® Parent processes canh see down the hierarchy
® 7 namespaces in Linux (cgroups not shown)

® Each process can only see resources associated
with the namespace, and descendent hamespaces

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.59

root@35bfc3dfoc3e: /
$34:29 up 6:24, 0 load average: 0.00, 0.00, 0.00
total, 1 running, sleeping, 0 stopped, 0 zombie
6.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

%
: 3853100 total, 2798844 free, 157568 used, 896688 buff/cache
—J : 0 total, 0 free, 0 used. 3500784 avail Mem

PID USER PR NI VIRT RES OMMAND
1 root 8 18376 3632 .6 0. ntrypoint_te+
5 root 8 4532 764 0
6 root 0 18508 3476

14 root (] 36596 3228

® Provides isolation of OS
entities for containers

® mnt: separate filesystems
® pid: independent PIDs; first process in container is PID 1

® jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...

m yser: user identification and privilege isolation
among separate containers

® net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.60

Slides by Wes J. Lloyd

[Fall 2020]

L13.30

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTROL GROUPS (CGROUPS)

Collection of Linux processes
Group-level resource allocation: CPU, memory, disk 1/0, network 1/0

Resource limiting
= Memory, disk cache

Prioritization

= CPU share

= Disk I/0 throughput

Accounting

= Track resource utilization

= For resource management and/or billing purposes

Control

= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

CGROUPS - 2

Control groups are hierarchical
Groups inherent limits from parent groups

® Linux has multiple cgroup controllers (subsystems)
® |s /proc/cgroups
® “memory” controller limits memory use
“ » #subsys_name | hierarchy | num_cgroups | enabled
® “cpuacct” controller accounts et 2 > 2
for CPU usage cpu 5 97 1
Ccpuacct 7] 97 1
blkio 8 97 1
memory 9 218 1
m cgroup filesystem: devices 6 a7 1
lireezer 4 2 1
m /sys/fs/cgrou net_cls 2 2 1
/ y / / g P . i perf_event 10 2 1
® Can browse resource utilization net_prio 2 2 1
. hugetlb 7 2 1
of containers... oids T 98 1

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

Slides by Wes J. Lloyd

[Fall 2020]

L13.31

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

2016 DOCKER SURVEY

® Docker application containers
= [eading containerization vehicle

80% <

say Docker is part
of cloud strategy

0,
° want application want to avoid
plan to use Docker to portability across cloud vendor
migrate workloads to cloud P lnmenta lock-in

& docker

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.63

DOCKER EXECUTION ENVIRONMENTS

® (1) Original default Docker execution enviornment: LXC
® (2) Docker v0.9: libcontainer introduced (~2014)

® (3) Now runc (2015) I

® Provides Docker access to Linux Docker
container APIs Iheoscaloes l 1 |
. f libvirt e systemd-
= Execution drivers concept: nspawn

= Enable docker to leverage many 0OS l . l
containers as the exec environment Linux
= OpenVZ, system-nspawn, libvirt-Ixc, gracps "al_mes"“e‘ ol
libvirt-sandbox, gemu/kvm, i
. " apparmor
BSD Jails, Solaris Zones, and chroot i

capabilities

|

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.64

Slides by Wes J. Lloyd

[Fall 2020]

L13.32

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER

® Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ -
® Open Container Initiative
® June 2015: Industry standard @

for container runtimes and g
formats

m Ensure containers are portable SRS
among different execution
environments (engines) 27
Docker Clients Docker Containers

Docker Client-Server Architecture

Credit: https://hackernoon.com/docker-containerd-standalone-runtimes-heres-what-you-should-know-b834ef155426

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.65

DOCKER - 2

- %X e ™

k Docker Engina Containerd

—_— e

Docker CLIUI

Runc and other OCI runtimes

Containerd Integration Architecture

Docker CLI: interfaces with dockerd daemon

® Docker engine: dockerd daemon, interfaces with Containerd
Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;
runc: lightweight command-line tool for running containers;

Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L13.66

Slides by Wes J. Lloyd

[Fall 2020]

L13.33

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER - 3

® Docker architecture:

containerd

= Other Docker tools:
= Docker Machine: _ _ : —
) .. containerd-shim containerd-shim
automatically provision ‘
ond manage ccts of U QR (RN
docker hosts to
form a cluster

® Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.67
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
mSimilar to “private clusters”

® Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.68
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.34

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KEY ORCHESTRATION FEATURES

® Management of container hosts
® Launching set of containers
® Rescheduling failed containers
® Linking containers to support workflows
® Providing connectivity to clients outside the container cluster
® Firewall: control network/port accessibility
® Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
® Load balancing over groups of containers
® Rolling upgrades of containers for application

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

113.69
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm
B Apache mesos/marathon
® Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

B Amazon elastic container service (ECS)
® Apache aurora

®m Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

L13.70
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

Slides by Wes J. Lloyd

[Fall 2020]

L13.35

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 16, 2020

TUTORIAL #7

Tacoma

TCSS562: Software Engineering for Cloud Computing [Fajje020]
School of Engineering and Technology, University of Wastgllgton -

DOCKER CLI

= Docker CLI > Docker Enginer (dockerd) 2> containerd 2 runc

B Docker installation

® Docker file
®E Docker run
® Docker ps

® Docker exec -it

® Docker stop

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

Slides by Wes J. Lloyd

[Fall 2020]

L13.36

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

commit
cp
create
deploy
diff
events
exec
export
history
images
import
info
inspect
kill
load
login
logout
logs
pause

restart
rm

rmi

run
save
search
start
stats
stop
tag

top
unpause
update
version
wait

Attach local standard input, output, and error streams to a running container

Build an image from a Dockerfile

Create a new image from a container's changes

Copy files/folders between a container and the local filesystem
Create a new container

Deploy a new stack or update an existing stack

Inspect changes to files or directories on a container's filesystem
Get real time events from the server

Run a command in a running container

Export a container's filesystem as a tar archive

Show the history of an image

List images

Import the contents from a tarball to create a filesystem image
Display system-wide information

Return low-level information on Docker objects

Kill one or more running containers

Load an image from a tar archive or STDIN

Log in to a Docker registry

Log out from a Docker registry

Fetch the logs of a container

Pause all processes within one or more containers

List port mappings or a specific mapping for the container

List containers

Pull an image or a repository from a registry

Push an image or a repository to a registry

Rename a container

Restart one or more containers

Remove one or more containers

Remove one or more images

Run a command in a new container

Save one or more images to a tar archive (streamed to STDOUT by default)
Search the Docker Hub for images

Start one or more stopped containers

Display a live stream of container(s) resource usage statistics
Stop one or more running containers

Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

Display the running processes of a container

Unpause all processes within one or more containers

Update configuration of one or more containers

Show the Docker version information

Block until one or more containers stop, then print their exit codes

TUTORIAL 7

Linux performance benchmarks

® stress-ng
100s of CPU, memory, disk, network stress tests

Sysbench
Used in tutorial for memory stress test

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

Slides by Wes J. Lloyd

[Fall 2020]

L13.37

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

povembergl632020 School of Engineering and Technology, University of Washington -

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

Roiembeigiagan2g School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

[Fall 2020]

L13.38

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562

OFFICE HOURS

PLEASE SAY HELLO

TCSS 562
OFFICE HOURS

HAVE STEPPED OUT | ‘=g |

WILL RETURN
SHORTLY

Slides by Wes J. Lloyd

[Fall 2020]

L13.39

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

AREAS OF THE CLOUD

m Area: Serverless Computing
= Function-as-a-Service
= Container-as-a-Service
® [nfrastructure-as-a-Service Cloud
= Virtual Machines
= Containers & container clusters (Kubernetes)
® Perspective: cloud provider vs. cloud consumer

® Applications: tsunami modeling, bioinformatics,
environmental modeling

= Problem: driven by the area & perspective

= Common problems: what is the right abstraction? 2>
observability

= resource contention, resource heterogeneity, provisioning variation,
performance variability (delta between min/max performance)

Slides by Wes J. Lloyd L13.40

