TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

[Fall 2020]

OBJECTIVES - 11/16

| = Questions from 11/9 |
= Quiz 2 - to be posted this week
= Group Presentatlons for 11/30 - 12/9

= From: Cloud Computing Concepts, Technology & Architecture:
Chapter 5 - Cloud Enabling Technology

= 2nd hour:

= I[ntroduction to Containerization
= Tutorial questions (4, 5, 6)

= Team planning

ing for Cloud C

e i 2020]
R T 2 22 o BT e o e R S = TRy

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
= Extra Credit
for completing

Announcements

* Upcoming Assignments

Discussions | Class Activity 1 - Implicitvs. Expliit Parallelism
S ¥ Avalable until Oct 11 3¢ 11 59pm | Due Oct7at7:50pm | -/10pts.
Grades o Totorial 1- Linux

" Available until Oct 19 at 11:59pm | Due Oct 15 at 11:59pm | +/20 pts.
People
Pages
Files. * Past Assignments
Quizzes

% TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations ' vailable until Dec 18 a Due Oct 6 at 8:5%pm | -/1 pts
U L ¢ TCSS 562 - Online Daily Feedback Survey - 9/30
UW Resources ¥ Avaiable until Dec 18 3t 11:59pm | Due Oce 4 3t &:3%m | -/1pts

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] s
School of chnology, y Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5
Started: Oct 7 at 1:13am

Quiz Instructions

[Question1 05pts

©Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

2 2 3 4 5 6 i 8 9 10
wosta e wostly
Pavion To e e ama Baview Now to e
O Question2 05pts
Please rate the pace of today's class
1 2 3 4 s & 7 8 9 10
Stow Just gt Fast
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
Hcuem benlt 12Uz School of Engineering and Technology, University of Washington - Tacoma L134

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (22 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.55 (T - previous 6.30)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.41 (1 - previous 5.40)

November 16, 2020 TCSS562: Soft‘ware.Engineering for Cloud Fom?u(ing [Fall ?UZU] uss
school of chnology, y Tacoma

TUTORIAL QUESTIONS

= | am receiving many emails regarding the tutorials

= Many emails are regarding computer issues
(setting up required software dependencies, etc.)

= Other emails are regarding clarifications on what the
assignments require
= When confusing points are found, | make every effort to capture
valuable feedback, and post a revision to the tutorial
= Tutorials are living documents - your feedback and participation
actively makes them better - THANK YOU !!!
= AWS is continuously changing
For example - location of where a function handler is configured in the
AWS Lambda GUI changed between posting of Tutorial 4 and 5

= Ubuntu and our working environments are continuously changing

November 16, 2020 JLesssa; Software Ensinesrine fur Clopdlcomputing [Foll20201 s
School of Technology, Universiy of Tacoma

Slides by Wes J. Lloyd

L13.1

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

Is a security group (firewall) rule necessary in

FEEDBACK FROM 11/9

AWS to prevent undesired traffic between two

W cloud services where a network route has NOT
Lambda VPC and NO VPC function deployments been established and the cloud services are

= Can you elaborate on the differences between AWS

mentioned In o
tutorial 42 deployed on different subnetworks?

= Virtual Private Clouds (VPCs) enable users to customize
network settings and create virtual networks with unique

routing rules YES, always

= There are two aspects of networking: NONnever
= Securlty groups - define firewall rules which describe ’

which types of network traffic is allowed to pass across Rules 9"{;/ nee‘;itedff?r

the connection inbound traffic

= RoutIng rules - defines virtual networking paths that Rules only needed for

enable traffic to transit in various ways outbotindtaffic

November 16,2020 | 40 e rechnology Unveron ofwoihmgon- Tacoma - L
FEEDBACK - 2 FEEDBACK - 3
= Can you talk about why you didn't want us to call the = For Tutorial 4 - Securlty through Qbscurlty:
Lambda functlon using AWS CLI for Caesar clpher ? = API gateway endpoints are unlikely to be attacked as the
= For testing purposes, invoking a Lambda function using URIs are quite cryptic
the AWS CLI requires access credentials from tutorial O
" These are the access_key and secret_key = PLEASE DO DELETE APl GATEWAY ENDPOINTS
= For the instructor to test your encryption pipeline using ONCE TUTORIAL RECEIVES A GRADE
the AWS CLI, you would need to provide access
credentials to a user defined in your AWS account with
permission to access the Lambda functions
= Setting up an IAM User & credentlals requires addltlonal effort
= Distributing keys securely is arduous and fault prone
November 16,2020 | 40 Technetogy Liveren o Washington- Tacoma November 16,2020 | 40 Tochnaagy Univert f Wahingion - Tocoma a0

FEEDBACK - 4 TUTORIALS

= |t would be great to have a "mind map" of the tutorials we = Tutorials 1-7 graded and required
do, since sometimes it is hard to see the broader picture = Tutorials 8+ optional

after reading and doing it through.

= Up to two optional tutorials can be completed to

= What | mean is nothing detailed, just a general replace the grade for tutorials 1-7

connection between the tutorials and bullet points within
a tutorial. Thank you!

TCS5562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

[EERES

November 16, 2020

[EERE)

Slides by Wes J. Lloyd L13.2

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

TUTORIAL 4 OBJECTIVES TUTORIAL 5 OBJECTIVES
= Provides introduction to: = Provides introduction to:
= AWS Lambda = Simple Storage Service
= AP| Gateway for HTTP/REST endpoints = Including dependencies in MAVEN projects
= AWS CLI (AWS libraries, etc.)
= Serverless Application Analytics Framework (SAAF) = Security: use of roles and policies to manage fine-grained

access between AWS services
= CloudTrail: key idea is to expose events to CloudWatch
= CloudWatch: Rules to invoke targets when events occur
= CloudWatch: Viewing log files for AWS Lambda functions

= Providing event data to Lambda so that function can
obtain metadata about the triggering event (optional)

= Deploy script (optlonal)
= FaaS Runner Introduction: supports running experiments

TCS5562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 [EERE] November 16, 2020 [EER7)

TUTORIAL 6 OBJECTIVES UPCOMING TUTORIALS
= SQLite databases & command-line client = Tutorial 7 - Introduction to Docker Containerization
= Using SQLite from Lambda
= Lambda function persistent data (static variables in Java) = Going further - optional tutorials:

= Concurrent Lambda function calls and function instances ? UG OF eTeiEns

(newcontainer attribute in SAAF)
= AWS Aurora MySQL Serverless databases
= Mysql command-line client

= Tutorial 8 - Introduction to FaaS IV: Step Functions and SQS
= Tutorial 9 - Asynchronous Function Profiling with SAAF
= Tutorial 10 - Automating Experiments with SAAF & FaaS

= Lambda functions w/ Virtual Private Clouds (VPCs) Runner
= Using Aurora MySQL from Lambda = Tutorial 11 - Scaling beyond a single client - concurrent
= Serverless freeze/thaw lifecycles webservice benchmarking with multiple EC2 instances

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 1135 November 16, 2020

TCS$562: Software Engineering for Cloud Computing [Fall 2020] 11
o e i ‘

Technology, y Tacoma

OBJECTIVES - 11/16 OBJECTIVES - 11/16
= Questions from 11/9 = Questions from 11/9
| = Quiz 2 - to be posted this week | = Quiz 2 - to be posted this week
= Group Presgzizt | = Group Presentatlons for 11/30 - 12/9 |
= From: Cloud [\?4%1F4 2 Coverage: Architecture: = From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Chapter 5 - Cloud Enabling Technology
Focus on lectures 7 - 12

= 2nd hour:
AWS, = Introduction to Containerization
Tutorials

= Tutorial qu e/SE—. = Tutorial questions (4, 5, 6)
= Team planning = Team planning

= 2nd hour:
= [ntroductiol

November 16, 2020 TC:;iEg;Soﬂmre Engineering for Cloud Computing [Fall 2020])

Technology, acoma

11317

November 16, 2020

[EEREY

T i 2020]
School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L13.3

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

GROUP PRESENTATION OBJECTIVES - 11/16
= TWO OPTIONS: = Questions from 11/9
= Cloud technology presentation = Quiz 2 - to be posted this week
= Cloud research paper presentation = Group Presentatlons for 11/30 - 12/9
= Recent & suggested papers will be posted at: = From: Cloud Computing Concepts, Technology & Architecture:
http://faculty.washington.edu/wlloyd/courses/tcss562/papers, Chapter 5 - Cloud Enabling Technology

= Submit presentation type and topics (paper or technology) = 2nd hour:
with desired dates of presentation via Canvas by Monday _—
November 23 @ 11:59pm = I[ntroduction to Containerization

= Tutorial questions (4, 5, 6)
= Team planning

" Presentation dates:
= Monday November 30, Wednesday December 2
= Monday December 7, Wednesday December 9

ing for Cloud C

TCS5562: Software Engineering for Cloud Computing [Fall 2020] TC: i 2020]
School of Engineering and Technology, University of Washington - Tacoma

Wil 242, P AT 1 T SR e e o T T T o T L3 R T 2 22 320

VIRTUALIZATION MANAGEMENT

= Virtual infrastructure management (VIM) tools
= Tools that manage pools of virtual machines, resources, etc.
= Private cloud software systems can be considered as a VIM

= Considerations:

CLOUD ENABLING :.: = Performance overhead
TEC H N O LOGY - . SP::\i/;zt::‘lli:?stion: custom OS kernels, I/0 passed directly to HW w/

= Hardware compatibility for virtualization

= Portability: virtual resources tend to be difficult to migrate
cross-clouds

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 132

VIRTUAL INFRASTRUCTURE T TR

MANAGEMENT (VIM)

= Middleware to manage virtual machines and = Create/destroy VM Instances
infrastructure of laaS “clouds” E|mage repository
=Create/Destroy/Update images
= Examples =*Image persistence
=OpenNebula
=Nimbus = Contextualization of VMs
=Eucalyptus =Networking address assignment
=OpenStack DHCP / Static IPs

=Manage SSH keys

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 ;crs‘zifz;sm_ware_zngvneering for Cloud Computing [Fall 2020]

1323
chnology, y Tacoma

November 16, 2020 1324

Slides by Wes J. Lloyd L13.4

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

VIM FEATURES - 2

= Virtual network configuration/management
=Public/Private IP address assighment
=Virtual firewall management

e Configure/support isolated VLANs (private
clusters)

= Support common virtual machine managers
(VMMs)

=XEN, KVM, VMware
=Support via libvirt library

VIM FEATURES - 3

mShared “Elastic” block storage
=Facility to create/update/delete VM disk volumes
Amazon EBS
Eucalyptus SC
OpenStack Volume Controller

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma L

‘ November 16, 2020 ‘

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 1326

CONTAINER ORCHESTRATION
FRAMEWORKS

= Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)

= Considered Infrastructure-as-a-Service

= Opensource

= Kubernetes framework

= Docker swarm

= Apache Mesos/Marathon

= Proprletary
= Amazon Elastic Container Service

CONTAINER SERVICES

= Publlc cloud contalner cluster services

= Azure Kubernetes Service (AKS)

= Amazon Elastic Container Service for Kubernetes (EKS)
= Google Kubernetes Engine (GKE)

= Contalner-as-a-Service

= Azure Container Instances (ACI - April 2018)

= AWS Fargate (November 2017)

= Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma L2

November 16, 2020

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 11328

CLOUD ENABLING TECHNOLOGY

= Broadband networks and internet architecture
= Data center technology

= Virtualization technology

|l Multitenant technology

= Web/web services technology

4. MULTITENANT APPLICATIONS

= Each tenant (like in an apartment) has their own view of the
application
= Tenants are unaware of their neighbors 4
= Tenants can only access their data, no access to Ma”
data and configuration that is not their own ﬁ m
=1 =1
= Customizable features
:
= Ul, business process, data model, access control

= Application architecture

= User isolation, data security, recovery/backup by tenant, scalability
for a tenant, for tenants, metered usage, data tier isolation

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma L9

November 16, 2020

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 11330

Slides by Wes J. Lloyd

L13.5

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

MULTITENANT APPS - 2

= Forms the basis for SaaS (applications)

OrganzasonA Organzaton &

mutenant hosting
appicaion vitua semer

CLOUD ENABLING TECHNOLOGY

= Broadband networks and internet architecture
= Data center technology
= Virtualization technology

= Multitenant technology

|I Web/web services technology

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma s

November 16, 2020

TCSS562: 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 1332

5. WEB SERVICES/WEB

= Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

= SOAP - “Simple” object access protocol
= First generation web services
= WSDL - web services description language
= UDDI - universal description discovery and integration
= SOAP services have their own unique interfaces

= REST - instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

= HTTP GET, PUT, POST, DELETE

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

= An ASClI-based request/reply protocol for transferring
information on the web

= HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request

HTTP status codes:
2xx — all is well

3xx — resource moved
4xx — access problem
5Xx — server error

= HTTP response from server
= Protocol version & status code >
= Response headers
= Response body

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma L

November 16, 2020

TCSS562: ing for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 1334

REST: REPRESENTATIONAL STATE TRANSFER

= Web services protocol
= Supersedes SOAP - Simple Object Access Protocol

= Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

= Requests are made to a URI

= Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

= HTTP verbs: GET, POST, PUT, DELETE, ...

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma s

November 16, 2020

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

Hcuembenlt f2u2l School of Engineering and Technology, University of Washington - Tacoma L1336

Slides by Wes J. Lloyd

L13.6

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

// WSDL Service Definition

p:/ /1 a1
xmlns : tns="htep: // e e
xmlns :soap="http: //schenas .xnlsoap.org/wsdl/soap/ "
/ fwww w3 001 /XML

// SOAP RESPONSE el st e orploza

POST /InStock HTTP/1.1 TS type="xsd:date"/>

Host: www.bookshop.org e i

Content-Type: application/soap+xml; charset=utf-8 Imessage>

Content-Length: nnn D IO P e

frieck”>
DayOfWeekInput” />
DayOfieekResponse"” />

<?xml version="1.0"?> B
<bindi 5
<soap:Envelope <oospibinding siyle-docment® |
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope" B e et e o
soap:encodingStyle="http://www.w3.0rg/2001/12/soap- T
encoding"> <soapibody ues=rencaded”
<soap:Body xmlns:m="http://www.bookshop.org/prices"> e tp://schy 1 >
<m:GetBookPriceResponse> SOMBUEY oy usemrencoded
<m: Price>10.95</m: Price> e c "
: P:
</m:GetBookPriceResponse> e
</soap:Body> </oinging>
<service name="DayOfWeekService" >
</soap:Envelope> i comenCation
Returns the day-of-week name for a given date
</documentation>
<port name=' g="
="http://: />
</port>
</service>
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] ST TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma L1337 November 16, 2020

School of Engineering and Technology, University of Washington - Tacoma L1338

REST CLIMATE SERVICES EXAMPLE REST - 2

= USDA // REST/JSON = App manipulates one or more types of resources.
Lat/Long 0 s i e S TaED = Everything the app does can be characterized as some
Climate { kind of operation on one or more resources.
" " ter":))
Service l{mnme er”: [= Frequently services are CRUD operations
Demo "name": "latitude", (create/read/update/delete)
; falu=giliziiz2s = Create a new resource
{ = Read resource(s) matching criterion
a "name": "longitude", . o
= Just provide nvalue":-122.4443 = Update data associated with some resource
a Lat/Long } = Destroy a particular a resource
1
} = Resources are often implemented as objects in 00
languages
[November o200 o [] November 1,200 | TS S e o 0 s weo |

REST ARCHITECTURAL ADVANTAGES

= Performance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

= Scalability: to support large numbers of services and
interactions among them

= Simplicity: of the Uniform Interface WE WILL RETURN AT

= ModIflablllty: of services to meet changing needs (even while the .
application is running) ~7.13PM

= Vislbllity: of communication between services
= Portabllity: of services by redeployment

= Reliability: resists failure at the system level as redundancy of
infrastructure is easy to ensure

November 16, 2020 Tsfrs\zilsz! Software Engineering for Cloud Computing [Fall 2020]

s
Technology, y Tacoma ‘ ‘

Slides by Wes J. Lloyd L13.7

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

OBJECTIVES - 11/16

= Questions from 11/9
= Quiz 2 - to be posted this week
= Group Presentatlons for 11/30 - 12/9

= From: Cloud Computing Concepts, Technology & Architecture:
Chapter 5 - Cloud Enabling Technology

= 2nd hour:
= Introduction to Containerization

| = Tutorial questions (4, 5, 6) |
= Team planning

November 16, 2020 11343

TCS5562:Software Engineering for Cloud Computing [Fall 2020]
hool of Engineeri hnology, University i -

Tacoma

OBJECTIVES - 11/16

= Questions from 11/9
= Quiz 2 - to be posted this week
= Group Presentatlons for 11/30 - 12/9

= From: Cloud Computing Concepts, Technology & Architecture:
Chapter 5 - Cloud Enabling Technology

= 2nd hour:

|l Introduction to Containerization I

= Tutorial questions (4, 5, 6)
= Team planning

ing for Cloud C i 2020]

o "
Wi 2, Ly e BT AT e e ey e

wa |

CONTAINERIZATION

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

ST 7 1 2720 School of Engineering and Technology, University of Washington -

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

cye|e[e[ele|e ‘ Container o
ofofofofo]ofo b
HEHHEEE VM|[vVM][vm|[vu] VM

Host OS's bins/libs

Containers engine Hardware Host OS
Host OS . Type 1 Hardware
Containers . :
Hardware Hypervisor/lVM Type2
TCSS562: i ing for Cloud C i 2020]
‘ Wi 2, Ly Sehosl o Enineerng andTech nolosyjUnivers ty/ot Washi Tecoma s ‘

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Ci i

= Solve linear equations - matrix algebra

s

s

MFlops (igher i betier)

sl

KVM DOCKER A NATIVE osv

Fig.4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

L13.47

November 16, 2020 ;crs“sjfz;st’ﬁ_ware_sngineeﬁng for Cloud Computing [Fall 2020]
y

Technology, Uni

acoma

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
| A Performance Comparison

GKVM

17501 lapocker

1700 | |BLXC

ENATIVE

1650

is better)

2 1600

=F 1550
Z 1500
8
£ 1m0

1400

1350

1300

Computation Time Total Time
TCssse2: ineering for Cloud Computing [Fall 2020]
Wi 2 2, 2y Sehodl of Engineenng and TechnolosyUniversity/ot Washi Tacoma L ‘

Slides by Wes J. Lloyd

L13.8

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
250000 1 A Per C i
@KVM EDOCKER ELXC BNATIVE |

S so000
2

Block Output Black Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown

TCS$562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ L4 ‘

November 16, 2020 ‘

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)
= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 11350

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host 0S Ho:

= Examples: LXC,

Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 04 14.04 it Y
. Container Container Container Container Container
Linux Vserver,
BSD Jails,

CentOS 6.6 image

Solaris zones

RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.0:

Identical OS containers Different flavoured OS containers

= Credit: httpsi//blog.ri tack

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineeri chnology, University i Tacoma

November 16, 2020

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 1352

APPLICATION CONTAINERS - 2

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
faosr:::;zznents, services ;%fgﬁpces

= Layering promotes reuse image

= Reduces duplication of
data across images

November 16, 2020 ;crs‘zifz;sm_ware_zngvneering for Cloud Computing [Fall 2020]

Technology, y Tacoma

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scalelix-Ixc-talk-1

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 1354

Slides by Wes J. Lloyd

L13.9

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04
® Dockerfile: copy . /app
RUN make /app
CMD python /app/app.py

Thin R/W layer { «—— Container layer

! | ! | |
Python /app/app.py > BB

Run make /app =>| [EZETE 1895KB

[l Image layers (R/0)
Copy . lapp | [EEGEE L 1945 KB,

Ubuntu base image - [EESTEERTE 188.1 M8

ubuntu:15.04

Container

TCS$562: Software Engineering for Cloud Computing [Fall 2020]

Wil 242, P ‘ AT 1 T SR e e o T T T o T

[Fall 2020]

THREE-TIER ARCHITECTURE

Node.js
Postgres

+ Nodeijs Nginx

* Postgres
+ Nainx

OS containers App containers

Meant to used as an OS - run multiple Meant to run for a single service
services + Layered filesystems

No layered filesystems by default Built on top of OS container technologies
Built on cgroups, namespaces, native Examples - Docker, Rocket

process resource isolation

Examples - LXC, OpenVZ, Linux VServer,

BSD Jails, Solaris Zones

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

L3se

CONTAINER ISOLATION

LXC (LINUX CONTAINERS)

®|s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

Application
App | App containers
gins/is | Bins/tis

App | App
Container / =
runtime Bins/libs. Bins/libs.

runtime

November 16, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineeri chnology, University i Tacoma

E QOperating system level virtualization

" Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

ELinux namespaces
= Docker initially based on LXC

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020 11358

LINUX KERNEL NAMESPACES

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy
= 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

L1359

November 16, 2020 ;crs‘zifz;sm_ware_zngvneering for Cloud Computing [Fall 2020]

chnology, y Tacoma

Slides by Wes J. Lloyd

NAMESPACES - 2

= Provides Isolatlon of 0S
entities for containers
" mnt: separate filesystems
= pild: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharlng): provides separate host and domain

TCSS562: i 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

weo |

L13.10

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk I/0, network I/0
" Resource limiting
= Memory, disk cache
= Prloritizatlion
= CPU share
= Disk I/0 throughput
" Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing - Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

TCS5562: Software Engineering for Cloud Computing [Fall 2020]

Wil 242, P AT 1 T SR e e o T T T o T

[Fall 2020]

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts I—Y—E’fufj % Jothc | IO | oA G | Bt
for CPU usage v __
puace
blkio
memory B
= cgroup filesystem: P\cas
reezer
= /sys/fs/cgroup xﬁf:‘iem E
= Can browse resource utilization Lot
: ugel
of containers... pios it 98
TCSS562: i 2020]
November 16, 2020 School of Engineering and Technology, University of Washington - Tacoma 1362

2016 DOCKER SURVEY

DOCKER EXECUTION ENVIRONMENTS

= Docker application containers
= Leading containerization vehicle

o,

oy
4%
‘want application
porahiy sctoss
o

plan 1o usa Dockr 1o
migrate workloads to cloud

b docker

Tesss62: ineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

= (1) Original default Docker execution enviornment: LXC
= (2) Docker v0.9: libcontainer introduced (~2014)

= (3) Now runc (2015) !

= Provides Docker access to Linux Docker
container APIs B | | |
H i libvirt Ixe systemd-
= Execution drivers concept: l l mTwn

= Enable docker to leverage many 0S
containers as the exec environment

= OpenVZ, system-nspawn, libvirt-Ixc,

I selinux 7
libvirt-sandbox, gemu/kvm, capabibies s netflter

;) apparmor
BSD Jails, Solaris Zones, and chroot i

Linux

cgroups namespaces netlink

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

we |

DOCKER

= Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ g

= Open Container Initiative

® June 2015: Industry standard
for container runtimes and g : N @
formats E

Dosker Dasman

= Ensure containers are portable
among different execution
environments (engines) L

Docker Crens Docker Contaiers
Docker Client-Server Architecture

= Credit: hitps://hack 55426

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

2l Sehoolof Engineernaandiechnolosyilnvers Y ciiWes hinetonETecoms

L1365

DOCKER - 2

R e T

Docker CLIUI

Runc and other OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with Containerd

= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: ineering for Cloud C 2020)
School of Engineering and Technology, University of Washington - Tacoma

November 16, 2020

e |

Slides by Wes J. Lloyd

L13.11

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

DOCKER - 3
FRAMEWORKS
= Docker architecture: = Framework(s) to deploy multiple containers
T = Provide container clusters using cloud VMs
= Other Docker tools:

=Similar to “private clusters”

automatically provision Uikl Gl = Reduce VM idle CPU time in public clouds
and manage sets of _ = Better leverage “sunk cost” resources
docker hosts to

o & IS Ipompact multiple apps onto shared public cloud
= Docker Swarm: Clusters multiple docker hosts together to infrastructure
manage as a cluster. = Generate to cost savings
= Docker Compose: Config file (YAML) for multi-container = Reduce vendor lock-in
application; Describes how to deploy and configure multiple
containers
Wil 242, P lfrs\zifg;sz:;:’::i:2gai::erreiQﬁriz::gl\:usn?:er:‘swgﬁ?sl:\iz:g?n—Tmma e R T 2 22 Iﬁzilstz};Engineeﬁng;ndTechnulugwUniversilyofWash;ogztgLrTacuma a6 ‘

CONTAINER ORCHESTRATION

KEY ORCHESTRATION FEATURES FRAMEWORKS - 2

= Management of container hosts = Docker swarm
® Launching set of containers = Apache mesos/marathon
= Rescheduling failed containers = Kubernetes

® Linking containers to support workflows = Many public cloud provides moving to offer Kubernetes-as-

a-service
= Amazon elastic container service (ECS)
= Apache aurora

= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers

- A o] .
= Rolling upgrades of containers for application Container-as-a-Service

= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS562: ineering for Cloud C¢

TCSS562: Software Engineering for Cloud Computing [Fall 2020] 2020]
e SerooleiEr sincets en q Sehoallof Engineenng andTech nology/Unrversity ofWashinaton i Tacoma

chnology, y Tacoma

L1369

November 16, 2020 1370

DOCKER CLI

= Docker CLI 2> Docker Englner (dockerd) > contalnerd - runc

= Docker installation
= Docker file

= Docker run

= Docker ps

= Docker exec -it

= Docker stop

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Fafii020]

November 16, 2020 School of Engineering and Technology, University of WasHilkton = November 16, 2020 JIesssea: M EEE

2020]
School of Engineering and Technology, University of Washington - Tacoma

[EEET

Tacoma

Slides by Wes J. Lloyd L13.12

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MManas :
ch

a Attach local standard input, output, and error streams to a running container
build Build an image from a Dockerfile
commit cate a new image from a contatner'

oy a new stack or update an ex
Inspect changes to files or dir
Get real time events from the
Run a conmand in a running contai
container's filesyst
ory of an imag

images s
import ents from a tarball to create a fi tem image
inf i ide information
nsp. - information on Docker objects
kill ill one or more running containers
load Load an image from a tar archiv
Tlogin Log in to a Docker registry
logout Log out from reg
h the log a container
Pause all processes within one or more containe
List port mappings or a specific mapping for the container
List contai
Pull an image or a repository from a reg
Push an image or a repository to a registr
Rename a container
tart one or more containers
one or contat

TDOUT by default)
arch the Docker Hub for image
stopped container
ream of container(s
Stop one or running containei
Create a tag TARGET_IMAGE that
Display the running proc of a
within one or more containers
f one or more containers
show the Docker version information
Block until one or more containers stop, then print their exit code

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

ST 7 1 2720 School of Engineering and Technology, University of Washington -

TCSS 562

OFFICE HOURS

PLEASE SAY HELLO

Slides by Wes J. Lloyd

TUTORIAL 7

= Linux performance benchmarks

= stress-ng
= 100s of CPU, memory, disk, network stress tests

= Sysbench
= Used in tutorial for memory stress test

TCSS562: i ing for Cloud C i 2020]
School of Engineering and Technology, Universi i Tacoma

November 16, 2020

QUESTIONS

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
Hoven beyeiauzy School of Engineering and Technology, University of Washington -

TCSS 562
OFFICE HOURS

HAVE STEPPED OUT

WILL RETURN
SHORTLY

[Fall 2020]

L13.13

TCSS 562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, UW-Tacoma

AREAS OF THE CLOUD

= Area: Serverless Computing
= Function-as-a-Service
= Container-as-a-Service
= Infrastructure-as-a-Service Cloud
= Virtual Machines
= Containers & container clusters (Kubernetes)
= Perspective: cloud provider vs. cloud consumer
= Applicatlons: tsunami modeling, bioinformatics,
environmental modeling
= Problem: driven by the area & perspective
= Common problems: what is the right abstraction? >
observability

= resource contention, resource heterogeneity, provisioning variation,
performance variability (delta between min/max performance)

Slides by Wes J. Lloyd L13.14

