
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.1

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington – Tacoma

MW 5:50-7:50 PM

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 11/16

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit
for completing

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

ONLINE DAILY FEEDBACK SURVEY

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.4

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.55 (- previous 6.30)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.41 (- previous 5.40)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

MATERIAL / PACE

 I am receiving many emails regarding the tutorials

 Many emails are regarding computer issues
(setting up required software dependencies, etc.)

 Other emails are regarding clarifications on what the
assignments require
 When confusing points are found, I make every effort to capture

valuable feedback, and post a revision to the tutorial

 Tutorials are living documents – your feedback and participation
actively makes them better - THANK YOU !!!

 AWS is continuously changing
 For example – location of where a function handler is configured in the

AWS Lambda GUI changed between posting of Tutorial 4 and 5

 Ubuntu and our working environments are continuously changing

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

TUTORIAL QUESTIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.2

 Can you elaborate on the differences between AWS
Lambda VPC and NO VPC function deployments
mentioned in
tutorial 4?

 Virtual Private Clouds (VPCs) enable users to customize
network settings and create virtual networks with unique
routing rules

 There are two aspects of networking:
 Security groups – define firewall rules which describe

which types of network traffic is allowed to pass across
the connection
 Routing rules – defines virtual networking paths that

enable traffic to transit in various ways

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

FEEDBACK FROM 11/9

October 24, 2016 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.8

 Can you talk about why you didn't want us to call the
Lambda function using AWS CLI for Caesar cipher ?

 For testing purposes, invoking a Lambda function using
the AWS CLI requires access credentials from tutorial 0

 These are the access_key and secret_key

 For the instructor to test your encryption pipeline using
the AWS CLI, you would need to provide access
credentials to a user defined in your AWS account with
permission to access the Lambda functions

 Setting up an IAM User & credentials requires addit ional effort

 Distributing keys securely is arduous and fault prone

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

FEEDBACK - 2

 For Tutorial 4 - Security through Obscurity:

 API gateway endpoints are unlikely to be attacked as the
URIs are quite cryptic

PLEASE DO DELETE API GATEWAY ENDPOINTS
ONCE TUTORIAL RECEIVES A GRADE

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

FEEDBACK - 3

 It would be great to have a "mind map" of the tutorials we
do, since sometimes it is hard to see the broader picture
after reading and doing it through.

 What I mean is nothing detailed, just a general
connection between the tutorials and bullet points within
a tutorial. Thank you!

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

FEEDBACK - 4

 Tutorials 1-7 graded and required

 Tutorials 8+ optional

Up to two optional tutorials can be completed to
replace the grade for tutorials 1-7

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

TUTORIALS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.3

 Provides introduction to:

 AWS Lambda

 API Gateway for HTTP/REST endpoints

 AWS CLI

 Serverless Application Analytics Framework (SAAF)

 Deploy script (optional)

 FaaS Runner Introduction: supports running experiments

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

TUTORIAL 4 OBJECTIVES

 Provides introduction to:

 Simple Storage Service

 Including dependencies in MAVEN projects
(AWS libraries, etc.)

 Security: use of roles and policies to manage fine-grained
access between AWS services

 CloudTrail: key idea is to expose events to CloudWatch

 CloudWatch: Rules to invoke targets when events occur

 CloudWatch: Viewing log files for AWS Lambda functions

 Providing event data to Lambda so that function can
obtain metadata about the triggering event (optional)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

TUTORIAL 5 OBJECTIVES

 SQLite databases & command-line client

 Using SQLite from Lambda

 Lambda function persistent data (static variables in Java)

 Concurrent Lambda function calls and function instances
(newcontainer attribute in SAAF)

 AWS Aurora MySQL Serverless databases

 Mysql command-line client

 Lambda functions w/ Virtual Private Clouds (VPCs)

 Using Aurora MySQL from Lambda

 Serverless freeze/thaw lifecycles

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

TUTORIAL 6 OBJECTIVES

 Tutorial 7 – Introduction to Docker Containerization

 Going further - optional tutorials:
 Ungraded or substitute

 Tutorial 8 – Introduction to FaaS IV: Step Functions and SQS

 Tutorial 9 – Asynchronous Function Profiling with SAAF

 Tutorial 10 – Automating Experiments with SAAF & FaaS
Runner

 Tutorial 11 – Scaling beyond a single client – concurrent
webservice benchmarking with multiple EC2 instances

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

UPCOMING TUTORIALS

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

OBJECTIVES – 11/16

Quiz 2 Coverage:

• Focus on lectures 7 – 12
• AWS
• Tutorials

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

OBJECTIVES – 11/16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.4

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation
 Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by Monday
November 23rd @ 11:59pm

 Presentation dates:
 Monday November 30, Wednesday December 2

 Monday December 7, Wednesday December 9

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

GROUP PRESENTATION

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

OBJECTIVES – 11/16

CLOUD ENABLING
TECHNOLOGY

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.21

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead
 Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be difficult to migrate
cross-clouds

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

VIRTUALIZATION MANAGEMENT

VIRTUAL INFRASTRUCTURE
MANAGEMENT (VIM)

Middleware to manage virtual machines and
infrastructure of IaaS “clouds”

Examples

OpenNebula

Nimbus

Eucalyptus

OpenStack

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

VIM FEATURES

Create/destroy VM Instances

 Image repository

Create/Destroy/Update images

Image persistence

Contextualization of VMs

Networking address assignment

DHCP / Static IPs

Manage SSH keys

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.5

VIM FEATURES - 2

Virtual network configuration/management

Public/Private IP address assignment

Virtual firewall management

 Configure/support isolated VLANs (private
clusters)

Support common virtual machine managers
(VMMs)

XEN, KVM, VMware

Support via libvirt library
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.25

VIM FEATURES - 3

Shared “Elastic” block storage

Facility to create/update/delete VM disk volumes

Amazon EBS

Eucalyptus SC

OpenStack Volume Controller

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

 Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

CONTAINER ORCHESTRATION
FRAMEWORKS

 Public cloud container cluster services
 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service
 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

CONTAINER SERVICES

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

CLOUD ENABLING TECHNOLOGY

 Each tenant (like in an apartment) has their own view of the
application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to
data and configuration that is not their own

 Customizable features
 UI, business process, data model, access control

 Application architecture
 User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

4. MULTITENANT APPLICATIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.6

 Forms the basis for SaaS (applications)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

MULTITENANT APPS - 2

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

 First generation web services

WSDL – web services description language

 UDDI – universal description discovery and integration

 SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

REST: REPRESENTATIONAL STATE TRANSFER

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.36

// SOAP REQUEST

POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.7

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.37

// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.38

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

USDA
Lat/Long
Climate
Service
Demo

 Just provide
a Lat/Long

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

REST CLIMATE SERVICES EXAMPLE

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some
kind of operation on one or more resources.

 Frequently services are CRUD operations
(create/read/update/delete)

 Create a new resource

 Read resource(s) matching criterion

 Update data associated with some resource

 Destroy a particular a resource

 Resources are often implemented as objects in OO
languages

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

REST - 2

 Per formance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

 Scalability : to support large numbers of services and
interactions among them

 Simplicity: of the Uniform Interface

 Modifiabil ity : of services to meet changing needs (even while the
application is running)

 Visibility : of communication between services

 Por tabil ity : of services by redeployment

 Reliabi li ty: resists failure at the system level as redundancy of
infrastructure is easy to ensure

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

REST ARCHITECTURAL ADVANTAGES

WE WILL RETURN AT
~7:13PM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.8

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

OBJECTIVES – 11/16

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

OBJECTIVES – 11/16

CONTAINERIZATION

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.45

 Containers provide “light-weight” alternative to full OS
vir tualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand
boxes” for execution

 Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

CONTAINER PERFORMANCE
– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

CONTAINER PERFORMANCE
– Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.9

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)
 Vir tualization: the simulation of the software and/or hardware

upon which other software runs. (800-125)

 System Vir tual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

OPERATING SYSTEM CONTAINERS

 Designed to package and run a single service

 All containers share host kernel

 Subtle differences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in
application containers

 Supports horizontal and vertical scaling

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific
for components, services
as needed

 Layering promotes reuse

 Reduces duplication of
data across images

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

APPLICATION CONTAINERS - 2

 Docker leverages overlay f i lesystems
 1st: AUFS - Advanced mult i- layered unif ication f i lesystem
 Now: overlay2
 Union mount f i le sys tem: combine multiple directories into one that

appears to contain combined contents

 Idea: Docker uses layered f ile systems
 Only the top layer is writeable
 Other layers are read-only
 Layers are merged to present the notion of a real f i le system
 Copy-on-write- implicit sharing

 Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-f ilesystem-
demystif ied-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x-lxc -talk-1/

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

OVERLAY FILE SYSTEMS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.10

 Dockerfile:

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image

Copy . /app

Run make /app

Python /app/app.py

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each
other?

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host
using a single Linux kernel

Control groups(cgroups)

 Including in Linux kernels => 2.6.24

Limit and prioritize sharing of CPU, memory,
block/network I/O

 Linux namespaces

Docker initially based on LXC

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

LXC (LINUX CONTAINERS)

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated
with the namespace, and descendent namespaces

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS
entit ies for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
… provides expected VM like isolation…

 user: user identification and privilege isolation
among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX time sharing): provides separate host and domain
names
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.60

NAMESPACES - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.11

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting
 Memory, disk cache

 Prioritization
 CPU share

 Disk I/O throughput

 Accounting
 Track resource utilization

 For resource management and/or billing purposes

 Control
 Pause/resume processes

 Checkpointing Checkpoint/Restore in Userspace (CRIU)

 https://criu.org

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts
for CPU usage

 cgroup filesystem:

 /sys/fs/cgroup

 Can browse resource utilization
of containers…

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

CGROUPS - 2

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

2016 DOCKER SURVEY

 Docker application containers
 Leading containerization vehicle

 (1) Original default Docker execution enviornment: LXC

 (2) Docker v0.9: libcontainer introduced (~2014)

 (3) Now runc (2015)

 Provides Docker access to Linux
container APIs

 Execution drivers concept:

 Enable docker to leverage many OS
containers as the exec environment

 OpenVZ, system-nspawn, libvir t-lxc,
libvir t-sandbox, qemu/kvm,
BSD Jails, Solaris Zones, and chroot

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

DOCKER EXECUTION ENVIRONMENTS

 Docker daemon “dockerd”
 Provides docker services to Linux

 Docker 1.11+
 Open Container Initiative
 June 2015: Industry standard

for container runtimes and
formats

 Ensure containers are portable
among different execution
environments (engines)

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

DOCKER

 Docker CLI: interfaces with dockerd daemon
 Docker engine: dockerd daemon, interfaces with Containerd
 Containerd: simple daemon, interfaces with runc to manage

containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API Google RPC (gRPC) interface;

 runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.66

DOCKER - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.12

 Docker architecture:

 Other Docker tools:

 Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

 Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

 Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

DOCKER - 3

 Framework(s) to deploy multiple containers
Provide container clusters using cloud VMs
Similar to “private clusters”
Reduce VM idle CPU time in public clouds
Better leverage “sunk cost” resources
Compact multiple apps onto shared public cloud

infrastructure
Generate to cost savings
Reduce vendor lock-in

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

CONTAINER ORCHESTRATION
FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

 Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

Many public cloud provides moving to offer Kubernetes-as-
a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service
 Serverles containers without managing clusters

 Azure Container Instances, AWS Fargate…

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 16, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -
Tacoma

L13.71

 Docker CLI Docker Enginer (dockerd) containerd runc

 Docker installation

 Docker file

 Docker run

 Docker ps

 Docker exec -it

 Docker stop

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

DOCKER CLI

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.13

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.73

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

TUTORIAL 7

QUESTIONS

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.75

QUESTIONS

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.76

TCSS 562

OFFICE HOURS

PLEASE SAY HELLO

TCSS 562
OFFICE HOURS

HAVE STEPPED OUT

WILL RETURN
SHORTLY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.14

 Area: Serverless Computing
 Function-as-a-Service
 Container-as-a-Service

 Infrastructure-as-a-Service Cloud
 Virtual Machines
 Containers & container clusters (Kubernetes)

 Perspective: cloud provider vs. cloud consumer
 Applications: tsunami modeling, bioinformatics,

environmental modeling
 Problem: driven by the area & perspective
 Common problems: what is the right abstraction?

observability
 resource contention, resource heterogeneity, provisioning variation,

performance variability (delta between min/max performance)

AREAS OF THE CLOUD

