
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.1

Cloud Enabling Technology,
Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington – Tacoma

MW 5:50-7:50 PM

TCSS 562:
SOFTWARE ENGINEERING
FOR CLOUD COMPUTING  Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 11/16

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit
for completing

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

ONLINE DAILY FEEDBACK SURVEY

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.4

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.55 ( - previous 6.30)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.41 ( - previous 5.40)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

MATERIAL / PACE

 I am receiving many emails regarding the tutorials

 Many emails are regarding computer issues
(setting up required software dependencies, etc.)

 Other emails are regarding clarifications on what the
assignments require
 When confusing points are found, I make every effort to capture

valuable feedback, and post a revision to the tutorial

 Tutorials are living documents – your feedback and participation
actively makes them better - THANK YOU !!!

 AWS is continuously changing
 For example – location of where a function handler is configured in the

AWS Lambda GUI changed between posting of Tutorial 4 and 5

 Ubuntu and our working environments are continuously changing

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

TUTORIAL QUESTIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.2

 Can you elaborate on the differences between AWS
Lambda VPC and NO VPC function deployments
mentioned in
tutorial 4?

 Virtual Private Clouds (VPCs) enable users to customize
network settings and create virtual networks with unique
routing rules

 There are two aspects of networking:
 Security groups – define firewall rules which describe

which types of network traffic is allowed to pass across
the connection
 Routing rules – defines virtual networking paths that

enable traffic to transit in various ways

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

FEEDBACK FROM 11/9

October 24, 2016 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.8

 Can you talk about why you didn't want us to call the
Lambda function using AWS CLI for Caesar cipher ?

 For testing purposes, invoking a Lambda function using
the AWS CLI requires access credentials from tutorial 0

 These are the access_key and secret_key

 For the instructor to test your encryption pipeline using
the AWS CLI, you would need to provide access
credentials to a user defined in your AWS account with
permission to access the Lambda functions

 Setting up an IAM User & credentials requires addit ional effort

 Distributing keys securely is arduous and fault prone

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

FEEDBACK - 2

 For Tutorial 4 - Security through Obscurity:

 API gateway endpoints are unlikely to be attacked as the
URIs are quite cryptic

PLEASE DO DELETE API GATEWAY ENDPOINTS
ONCE TUTORIAL RECEIVES A GRADE

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

FEEDBACK - 3

 It would be great to have a "mind map" of the tutorials we
do, since sometimes it is hard to see the broader picture
after reading and doing it through.

 What I mean is nothing detailed, just a general
connection between the tutorials and bullet points within
a tutorial. Thank you!

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

FEEDBACK - 4

 Tutorials 1-7 graded and required

 Tutorials 8+ optional

Up to two optional tutorials can be completed to
replace the grade for tutorials 1-7

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

TUTORIALS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.3

 Provides introduction to:

 AWS Lambda

 API Gateway for HTTP/REST endpoints

 AWS CLI

 Serverless Application Analytics Framework (SAAF)

 Deploy script (optional)

 FaaS Runner Introduction: supports running experiments

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

TUTORIAL 4 OBJECTIVES

 Provides introduction to:

 Simple Storage Service

 Including dependencies in MAVEN projects
(AWS libraries, etc.)

 Security: use of roles and policies to manage fine-grained
access between AWS services

 CloudTrail: key idea is to expose events to CloudWatch

 CloudWatch: Rules to invoke targets when events occur

 CloudWatch: Viewing log files for AWS Lambda functions

 Providing event data to Lambda so that function can
obtain metadata about the triggering event (optional)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

TUTORIAL 5 OBJECTIVES

 SQLite databases & command-line client

 Using SQLite from Lambda

 Lambda function persistent data (static variables in Java)

 Concurrent Lambda function calls and function instances
(newcontainer attribute in SAAF)

 AWS Aurora MySQL Serverless databases

 Mysql command-line client

 Lambda functions w/ Virtual Private Clouds (VPCs)

 Using Aurora MySQL from Lambda

 Serverless freeze/thaw lifecycles

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

TUTORIAL 6 OBJECTIVES

 Tutorial 7 – Introduction to Docker Containerization

 Going further - optional tutorials:
 Ungraded or substitute

 Tutorial 8 – Introduction to FaaS IV: Step Functions and SQS

 Tutorial 9 – Asynchronous Function Profiling with SAAF

 Tutorial 10 – Automating Experiments with SAAF & FaaS
Runner

 Tutorial 11 – Scaling beyond a single client – concurrent
webservice benchmarking with multiple EC2 instances

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

UPCOMING TUTORIALS

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

OBJECTIVES – 11/16

Quiz 2 Coverage:

• Focus on lectures 7 – 12
• AWS
• Tutorials

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

OBJECTIVES – 11/16

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.4

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation
 Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by Monday
November 23rd @ 11:59pm

 Presentation dates:
 Monday November 30, Wednesday December 2

 Monday December 7, Wednesday December 9

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

GROUP PRESENTATION

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

OBJECTIVES – 11/16

CLOUD ENABLING
TECHNOLOGY

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.21

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead
 Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for vir tualization

 Portability: vir tual resources tend to be difficult to migrate
cross-clouds

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

VIRTUALIZATION MANAGEMENT

VIRTUAL INFRASTRUCTURE
MANAGEMENT (VIM)

Middleware to manage virtual machines and
infrastructure of IaaS “clouds”

Examples

OpenNebula

Nimbus

Eucalyptus

OpenStack

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

VIM FEATURES

Create/destroy VM Instances

 Image repository

Create/Destroy/Update images

Image persistence

Contextualization of VMs

Networking address assignment

DHCP / Static IPs

Manage SSH keys

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.5

VIM FEATURES - 2

Virtual network configuration/management

Public/Private IP address assignment

Virtual firewall management

 Configure/support isolated VLANs (private
clusters)

Support common virtual machine managers
(VMMs)

XEN, KVM, VMware

Support via libvirt library
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.25

VIM FEATURES - 3

Shared “Elastic” block storage

Facility to create/update/delete VM disk volumes

Amazon EBS

Eucalyptus SC

OpenStack Volume Controller

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

 Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

CONTAINER ORCHESTRATION
FRAMEWORKS

 Public cloud container cluster services
 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service
 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

CONTAINER SERVICES

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

CLOUD ENABLING TECHNOLOGY

 Each tenant (like in an apartment) has their own view of the
application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to
data and configuration that is not their own

 Customizable features
 UI, business process, data model, access control

 Application architecture
 User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

4. MULTITENANT APPLICATIONS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.6

 Forms the basis for SaaS (applications)

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

MULTITENANT APPS - 2

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

 First generation web services

WSDL – web services description language

 UDDI – universal description discovery and integration

 SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

REST: REPRESENTATIONAL STATE TRANSFER

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.36

// SOAP REQUEST

POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.7

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.37

// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.38

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

USDA
Lat/Long
Climate
Service
Demo

 Just provide
a Lat/Long

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

REST CLIMATE SERVICES EXAMPLE

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some
kind of operation on one or more resources.

 Frequently services are CRUD operations
(create/read/update/delete)

 Create a new resource

 Read resource(s) matching criterion

 Update data associated with some resource

 Destroy a particular a resource

 Resources are often implemented as objects in OO
languages

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

REST - 2

 Per formance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

 Scalability : to support large numbers of services and
interactions among them

 Simplicity: of the Uniform Interface

 Modifiabil ity : of services to meet changing needs (even while the
application is running)

 Visibility : of communication between services

 Por tabil ity : of services by redeployment

 Reliabi li ty: resists failure at the system level as redundancy of
infrastructure is easy to ensure

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

REST ARCHITECTURAL ADVANTAGES

WE WILL RETURN AT
~7:13PM

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.8

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

OBJECTIVES – 11/16

 Questions from 11/9

 Quiz 2 – to be posted this week

 Group Presentations for 11/30 – 12/9
 From: Cloud Computing Concepts, Technology & Architecture:

Chapter 5 - Cloud Enabling Technology

 2nd hour:

 Introduction to Containerization

 Tutorial questions (4, 5, 6)

 Team planning

November 16, 2020 TCSS562:Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

OBJECTIVES – 11/16

CONTAINERIZATION

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.45

 Containers provide “light-weight” alternative to full OS
vir tualization provided by a hypervisor

 Containers do not provide a full “machine”

 Instead use operating system constructs to provide “sand
boxes” for execution

 Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

CONTAINER PERFORMANCE
– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

CONTAINER PERFORMANCE
– Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.9

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)
 Vir tualization: the simulation of the software and/or hardware

upon which other software runs. (800-125)

 System Vir tual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

OPERATING SYSTEM CONTAINERS

 Designed to package and run a single service

 All containers share host kernel

 Subtle differences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in
application containers

 Supports horizontal and vertical scaling

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific
for components, services
as needed

 Layering promotes reuse

 Reduces duplication of
data across images

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

APPLICATION CONTAINERS - 2

 Docker leverages overlay f i lesystems
 1st: AUFS - Advanced mult i- layered unif ication f i lesystem
 Now: overlay2
 Union mount f i le sys tem: combine multiple directories into one that

appears to contain combined contents

 Idea: Docker uses layered f ile systems
 Only the top layer is writeable
 Other layers are read-only
 Layers are merged to present the notion of a real f i le system
 Copy-on-write- implicit sharing

 Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-f ilesystem-
demystif ied-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x-lxc -talk-1/

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

OVERLAY FILE SYSTEMS

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.10

 Dockerfile:

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image 

Copy . /app 

Run make /app 

Python /app/app.py 

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each
other?

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host
using a single Linux kernel

Control groups(cgroups)

 Including in Linux kernels => 2.6.24

Limit and prioritize sharing of CPU, memory,
block/network I/O

 Linux namespaces

Docker initially based on LXC

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

LXC (LINUX CONTAINERS)

 Partitions kernel resources

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 7 namespaces in Linux (cgroups not shown)

 Each process can only see resources associated
with the namespace, and descendent namespaces

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS
entit ies for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
… provides expected VM like isolation…

 user: user identification and privilege isolation
among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX time sharing): provides separate host and domain
names
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.60

NAMESPACES - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.11

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting
 Memory, disk cache

 Prioritization
 CPU share

 Disk I/O throughput

 Accounting
 Track resource utilization

 For resource management and/or billing purposes

 Control
 Pause/resume processes

 Checkpointing  Checkpoint/Restore in Userspace (CRIU)

 https://criu.org

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts
for CPU usage

 cgroup filesystem:

 /sys/fs/cgroup

 Can browse resource utilization
of containers…

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

CGROUPS - 2

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

2016 DOCKER SURVEY

 Docker application containers
 Leading containerization vehicle

 (1) Original default Docker execution enviornment: LXC

 (2) Docker v0.9: libcontainer introduced (~2014)

 (3) Now runc (2015)

 Provides Docker access to Linux
container APIs

 Execution drivers concept:

 Enable docker to leverage many OS
containers as the exec environment

 OpenVZ, system-nspawn, libvir t-lxc,
libvir t-sandbox, qemu/kvm,
BSD Jails, Solaris Zones, and chroot

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

DOCKER EXECUTION ENVIRONMENTS

 Docker daemon “dockerd”
 Provides docker services to Linux

 Docker 1.11+
 Open Container Initiative
 June 2015: Industry standard

for container runtimes and
formats

 Ensure containers are portable
among different execution
environments (engines)

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

DOCKER

 Docker CLI: interfaces with dockerd daemon
 Docker engine: dockerd daemon, interfaces with Containerd
 Containerd: simple daemon, interfaces with runc to manage

containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API  Google RPC (gRPC) interface;

 runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container
November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.66

DOCKER - 2

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.12

 Docker architecture:

 Other Docker tools:

 Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

 Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

 Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

DOCKER - 3

 Framework(s) to deploy multiple containers
Provide container clusters using cloud VMs
Similar to “private clusters”
Reduce VM idle CPU time in public clouds
Better leverage “sunk cost” resources
Compact multiple apps onto shared public cloud

infrastructure
Generate to cost savings
Reduce vendor lock-in

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

CONTAINER ORCHESTRATION
FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

 Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

Many public cloud provides moving to offer Kubernetes-as-
a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service
 Serverles containers without managing clusters

 Azure Container Instances, AWS Fargate…

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

November 16, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington -
Tacoma

L13.71

 Docker CLI  Docker Enginer (dockerd)  containerd  runc

 Docker installation

 Docker file

 Docker run

 Docker ps

 Docker exec -it

 Docker stop

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

DOCKER CLI

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.13

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.73

 Linux performance benchmarks

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

TUTORIAL 7

QUESTIONS

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.75

QUESTIONS

November 16, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.76

TCSS 562

OFFICE HOURS

PLEASE SAY HELLO

TCSS 562
OFFICE HOURS

HAVE STEPPED OUT

WILL RETURN
SHORTLY

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2020]

Slides by Wes J. Lloyd L13.14

 Area: Serverless Computing
 Function-as-a-Service
 Container-as-a-Service

 Infrastructure-as-a-Service Cloud
 Virtual Machines
 Containers & container clusters (Kubernetes)

 Perspective: cloud provider vs. cloud consumer
 Applications: tsunami modeling, bioinformatics,

environmental modeling
 Problem: driven by the area & perspective
 Common problems: what is the right abstraction? 

observability
 resource contention, resource heterogeneity, provisioning variation,

performance variability (delta between min/max performance)

AREAS OF THE CLOUD

