

MATERIAL / PACE

- Please classify your perspective on material covered in today's class (25 respondents):
- 1-mostly review, 5-equal new/review, 10-mostly new
- Average 6.60 (\downarrow previous 6.95)
- Please rate the pace of today's class:
- 1-slow, 5-just right, 10-fast
- Average 5.52 (\downarrow previous 6.14)

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.5

FEEDBACK FROM 10/28

- Can you please explain the difference between Metrics Server API and AWS Cloud Watch.
- As per my understanding CloudWatch is provided by AWS to monitor EC2 instances. Metrics Server API can also be used to monitor CPU Utilization, Network and disk I/O statistics but has to be manually installed.
- Can you please explain if there are more differences?
- The Metrics Server API is a monitoring tool for Kubernetes
- On AWS, the Elastic Kubernetes Service (EKS) can be used to automate the setup and management of Kubernetes container clusters
- The Metrics Server API is then installed onto the cluster:
- https://docs.aws.amazon.com/eks/latest/userguide/metric s-server.html

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.6

FEEDBACK - 2

- CloudWatch provides monitoring for a variety of AWS services
- Compute services: EC2, Lambda, Elastic Block Storage
- Others: S3, API Gateway
- CloudWatch also provides logging, alarms, and triggers
- By default metrics are available at fixed sampling intervals for FREE, but the sampling rate can be increased for a charge
- CloudWatch provides a breadth of "Free Tier" monitoring capabilities, as well as a number of more advanced features available for a charge
- Pricing policies become somewhat complex
- https://aws.amazon.com/cloudwatch/pricing/
- 14 pricing examples are presented ...

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.7

FEEDBACK - 3

- Monitoring can be accomplished by the user for FREE by using available frameworks, libraries, etc.
- Cloud providers restrict the user's observability to read various system properties
- For example, Google Cloud Functions limits information exposed by the Linux procfs (e.g. resource utilization: CPU, memory, disk, net)
 - Can be for security reasons to hide information (side channels)
- SAAF is an example of a programming framework that provides FREE monitoring within the constraints of the platform
- Psutil Python based cross-platform library for retrieving information on running processes and system utilization (CPU, memory, disks, network, sensors) https://psutil.readthedocs.io/

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.8

OBJECTIVES - 11/2

- Questions from 10/28
- Term Project Proposals
- Quiz 1 Review
- AWS overview and demonstration
- 2nd hour:
- Tutorial #5
- AWS overview and demonstration
- Cloud Enabling Technology
- Tutorial questions
- Team planning

November 2, 2020

TCSS562:Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.9

TERM PROJECTS

Group 1:

Application: Vehicle license plate optical character recognition

and data processing pipeline

Case Study: Performance Variability of FaaS

Group 2:

Application: TLQ Pipeline

Case Study: Programming Language Comparison Java/Python

Group 3:

Application: TLQ Pipeline

Case Study: FaaS Application Flow Control

Group 4:

Application: ML Pipeline

Case Study: FaaS Service Composition

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.10

TERM PROJECTS - 2

Group 5:

Application: TLQ Pipeline

Case Study: FaaS Alternate Cloud Platforms Comparison

Group 6:

Application: TLQ Pipeline

Case Study: Performance Variability of FaaS

Group 7:

Application: TLQ Pipeline

Case Study: FaaS Programming Language Comparison Java/C#

Alternate: FaaS Platform Comparison AWS/Azure

Group 8: TLQ Pipeline w/ Kinesis Streaming Case Study: Performance Variability of FaaS

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.11

TERM PROJECTS - 3

Group 9:

Application: Data Processing Pipeline w/ covid data **Case Study**: FaaS Backend Database Comparison,

NoSQL vs. rDBMS

Group 12:

Application: TLQ Pipeline

Case Study: FaaS Backend Database Comparison,

NoSQL vs. rDBMS

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.12

OBJECTIVES – 11/2 Questions from 10/28 Term Project Proposals Quiz 1 Review AWS overview and demonstration 2nd hour: Tutorial #5 AWS overview and demonstration Cloud Enabling Technology Tutorial questions Team planning November 2, 2020 TCSSS62-Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

CLOUD 101 WORKSHOP

- From the eScience Institute @ UW Seattle:
- https://escience.washington.edu/
- Offers 1-day cloud workshops
- Introduction to AWS, Azure, and Google Cloud
- Task: Deploying a Python DJANGO web application
- Self-guided workshop materials available online:
- https://cloudmaven.github.io/documentation/r c_cloud101_immersion.html
- AWS Educate provides access to many online tutorials / learning resources

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.17

LIST OF TOPICS

- AWS Management Console
- Elastic Compute Cloud (EC2)
- Instance Storage: Virtual Disks on VMs
- Elastic Block Store: Virtual Disks on VMs
- Elastic File System (EFS)
- Amazon Machine Images (AMIs)
- EC2 Paravirtualization
- EC2 Full Virtualization (hvm)
- EC2 Virtualization Evolution

- (VM) Instance Actions
- EC2 Networking
- EC2 Instance Metadata Service
- Simple Storage Service (S3)
- AWS Command Line Interface (CLI)
- Legacy / Service Specific CLIs
- AMI Tools
- Signing Certificates
- Backing up live disks
- Cost Savings Measures

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.1

INSTANCE STORAGE

- Also called ephemeral storage
- Persisted using images saved to S3 (simple storage service)
 - ~2.3¢ per GB/month on S3
 - 5GB of free tier storage space on S3
- Requires "burning" an image
- Mutli-step process:
 - Create image files
 - Upload chunks to S3
 - Register image
- Launching a VM
 - Requires downloading image components from S3, reassembling them...
 is potentially slow
- VMs with instance store backed root volumes not pause-able
- Historically root volume limited to 10-GB max- faster imaging...

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.21

ELASTIC BLOCK STORE

- EBS cost model is different than instance storage (uses S3)
 - ~10¢ per GB/month
 - 30GB of free tier storage space
- EBS provides "live" mountable volumes
 - Listed under volumes
 - Data volumes: can be mounted/unmounted to any VM, dynamically at any time
 - Root volumes: hosts OS files and acts as a boot device for VM
 - In Linux drives are linked to a mount point "directory"
- Snapshots back up EBS volume data to S3
 - Enables replication (required for horizontal scaling)
 - EBS volumes not actively used should be snapshotted, and deleted to save EBS costs...

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.22

EBS VOLUME TYPES - 2

- Metric: I/O Operations per Second (IOPS)
- General Purpose 2 (GP2)
 - 3 IOPS per GB, Max 10,000 IOPS, 160MB/sec per volume
- Provisioned IOPS (IO1)
 - 32,000 IOPS, and 500 MB/sec throughput per volume
- Throughput Optimized HDD (ST1)
 - Up to 500 MB/sec throughput
 - 4.5 ¢ per GB/month
- Cold HDD (SC1)
 - Up to 250 MB/sec throughput
 - 2.5 ¢ per GB/month
- Magnetic
 - Up to 800 MB/sec throughput
 - 5 ¢ per GB/month

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.23

ELASTIC FILE SYSTEM (EFS)

- Network file system (based on NFSv4 protocol)
- Shared file system for EC2 instances
- Enables mounting (sharing) the same disk "volume" for R/W access across multiple instances at the same time
- Different performance and limitations vs. EBS/Instance store
- Implementation uses abstracted EC2 instances
- ~ 30 ¢ per GB/month storage default burstable throughput
- Throughput modes:
- Can modify modes only once every 24 hours
- **Burstable Throughput Model**:
 - Baseline 50kb/sec per GB
 - Burst 100MB/sec pet GB (for volumes sized 10GB to 1024 GB)
 - Credits .72 minutes/day per GB

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.24

ELASTIC FILE SYSTEM (EFS) - 2

- Burstable Throughput Rates
 - Throughput rates: baseline vs burst
 - Credit model for bursting: maximum burst per day

File System Size (GiB)	Baseline Aggregate Throughput (MiB/s)	Burst Aggregate Throughput (MiB/s)	Maximum Burst Duration (Min/Day)	% of Time File System Can Burst (Per Day)
10	0.5	100	7.2	0.5%
256	12.5	100	180	12.5%
512	25.0	100	360	25.0%
1024	50.0	100	720	50.0%
1536	75.0	150	720	50.0%
2048	100.0	200	720	50.0%
3072	150.0	300	720	50.0%
4096	200.0	400	720	50.0%

November 2, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

ELASTIC FILE SYSTEM (EFS) - 3

- Throughput Models
- Provisioned Throughput Model
- For applications with: high performance requirements, but low storage requirements
- Get high levels of performance w/o overprovisioning capacity
- \$6 MB/s-Month (Virginia Region)
 - Default is 50kb/sec for 1 GB, .05 MB/s = 30 ¢ per GB/month
- If file system metered size has higher baseline rate based on size, file system follows default Amazon EFS Bursting Throughput model
 - No charges for Provisioned Throughput below file system's entitlement in Bursting Throughput mode
 - Throughput entitlement = 50kb/sec per GB

November 2, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.26

AMAZON MACHINE IMAGES

- AMIS
- Unique for the operating system (root device image)
- Two types
 - Instance store
 - Elastic block store (EBS)
- Deleting requires multiple steps
 - Deregister AMI
 - Delete associated data (files in S3) for EBS: deleting snapshot
- Forgetting both steps leads to costly "orphaned" data
 - No way to instantiate a VM from deregistered AMIs
 - Data still in S3 resulting in charges

November 2, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.28

EC2 VIRTUALIZATION - PARAVIRTUAL

- 1st, 2nd, 3rd, 4th generation → XEN-based
- 5th generation instances → AWS Nitro virtualization
- XEN two virtualization modes
- XEN Paravirtualization "paravirtual"
 - 10GB Amazon Machine Image base image size limit
 - Addressed poor performance of old XEN HVM mode
 - I/O performed using special XEN kernel with XEN paravirtual mode optimizations for better performance
 - Requires OS to have an available paravirtual kernel
 - PV VMs: will use common <u>AKI</u> files on AWS Amazon kernel image(s)
 - Look for common identifiers

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.29

EC2 VIRTUALIZATION - HVM

- XEN HVM mode
 - Full virtualization no special OS kernel required
 - Computer entirely simulated
 - MS Windows runs in "hvm" mode
 - Allows work around: 10GB instance store root volume limit
 - Kernel is on the root volume (under /boot)
 - No AKIs (kernel images)
 - Commonly used today (EBS-backed instances)

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.30

EC2 VIRTUALIZATION - NITRO

- Nitro based on Kernel-based-virtual-machines
 - Stripped down version of Linux KVM hypervisor
 - Uses KVM core kernel module
 - I/O access has a direct path to the device
- Goal: provide indistinguishable performance from bare metal

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.31

INSTANCE ACTIONS

- Stop
 - Costs of "pausing" an instance
- Terminate
- Reboot
- Image management
- Creating an image
 - EBS (snapshot)
- Bundle image
 - Instance-store

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.33

EC2 INSTANCE: NETWORK ACCESS

- Public IP address
- Elastic IPs
 - Costs: in-use FREE, not in-use ~12 \$\psi/day
 - Not in-use (e.g. "paused" EBS-backed instances)
- Security groups
 - E.g. firewall
- Identity access management (IAM)
 - AWS accounts, groups
- VPC / Subnet / Internet Gateway / Router
- NAT-Gateway

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.34

INSPECTING INSTANCE INFORMATION

- EC2 VMs run a local metadata service
- Can query instance metadata to self discover cloud configuration attributes
- Find your instance ID:

```
curl http://169.254.169.254/
curl http://169.254.169.254/latest/
curl http://169.254.169.254/latest/meta-data/
curl http://169.254.169.254/latest/meta-data/instance-id; echo
```

- ec2-get-info command
- Python API that provides easy/formatted access to metadata

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.37

SIMPLE STORAGE SERVICE (S3)

- Key-value blob storage
- What is the difference vs. key-value stores (NoSQL DB)?
- Can mount an S3 bucket as a volume in Linux
 - Supports common file-system operations
- Provides eventual consistency
- Can store Lambda function state for life of container.

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.38

AWS CLI - 3

- Export the config file
 - Add to /home/ubuntu/.bashrc

export AWS_CONFIG_FILE=\$HOME/.aws/config

- Try some commands:
 - aws help
 - aws command help
 - aws ec2 help
 - aws ec2 describes-instances --output text
 - aws ec2 describe-instances --output json
 - aws s3 1s
 - aws s3 1s vmscaleruw

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.41

LEGACY / SERVICE SPECIFIC CLI(S)

- sudo apt install ec2-api-tools
- Provides more concise output
- Additional functionality
- Define variables in .bashrc or another sourced script:
- export AWS_ACCESS_KEY={your access key}
- export AWS_SECRET_KEY={your secret key}
- ec2-describe-instances
- ec2-run-instances
- ec2-request-spot-instances
- EC2 management from Java:
- http://docs.aws.amazon.com/AWSJavaSDK/latest/javad oc/index.html
- Some AWS services have separate CLI installable by package

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.42

AMI TOOLS

- Amazon Machine Images tools
- For working with disk volumes
- Can create live copies of any disk volume
 - Your local laptop, ec2 root volume (EBS), ec2 ephemeral disk
- Installation:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html

- AMI tools reference:
- https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami -tools-commands.html
- Some functions may require private key & certificate files

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.43

PRIVATE KEY AND CERTIFICATE FILE

- Install openssl package on VM
- # generate private key file
 \$openssl genrsa 2048 > mykey.pk
- # generate signing certificate file \$openssl req -new -x509 -nodes -sha256 -days 36500 -key mykey.pk -outform PEM -out signing.cert
- Add signing.cert to IAM | Users | Security Credentials | -- new signing certificate --
- From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-up-ami-tools.html?icmpid=docs_iam_console#ami-tools-create-certificate

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.44

PRIVATE KEY, CERTIFICATE FILE

- These files, combined with your AWS_ACCESS_KEY and AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to publish new images from the CLI
- Objective:
- 1. Configure VM with software stack
- 2. Burn new image for VM replication (horizontal scaling)
- An alternative to bundling volumes and storing in S3 is to use a containerization tool such as Docker. . .
- Create image script . . .

November 2, 2020

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.45

110.46

SCRIPT: CREATE A NEW INSTANCE STORE IMAGE FROM LIVE DISK VOLUME

```
echo "Burn image $image"
echo "$image" > image.id
mkdir /mnt/tmp
AWS_KEY_DIR=/home/ubuntu/.aws
export EC2_URL=http://ec2.amazonaws.com
export S3_URL=https://s3.amazonaws.com
export EC2_PRIVATE_KEY=${AWS_KEY_DIR}/mykey.pk
export EC2_CERT=${AWS_KEY_DIR}/signing.cert
export AWS_USER_ID={your account id}
export AWS_ACCESS_KEY={your aws access key}
export AWS_SECRET_KEY={your aws secret key}
ec2-bundle-vol -s 5000 -u ${AWS_USER_ID} -c ${EC2_CERT} -k ${EC2_PRIVATE_KEY}
--ec2cert /etc/ec2/amitools/cert-ec2.pem --no-inherit -r x86_64 -p $image -i
/etc/ec2/amitools/cert-ec2.pem
cd /tmp
ec2-upload-bundle -b tcss562 -m $image.manifest.xml -a ${AWS_ACCESS_KEY} -s ${AWS_SECRET_KEY} --url http://s3.amazonaws.com --location US
ec2-register tcss562/$image.manifest.xml --region us-east-1 --kernel aki-
88aa75e1
```

Slides by Wes J. Lloyd L10.23

TCSS562: Software Engineering for Cloud Computing [Fall 2020]

School of Engineering and Technology, University of Washington - Tacoma

COST SAVINGS MEASURES

- From Tutorial 3:
- #1: ALWAYS USE SPOT INSTANCES FOR COURSE/RESEARCH RELATED PROJECTS
- #2: NEVER LEAVE AN EBS VOLUME IN YOUR ACCOUNT THAT IS NOT ATTACHED TO A RUNNING VM
- #3: BE CAREFUL USING PERSISTENT REQUESTS FOR SPOT INSTANCES
- #4: TO SAVE/PERSIST DATA, USE EBS SNAPSHOTS AND THEN
- #5: DELETE EBS VOLUMES FOR TERMINATED EC2 INSTANCES.
- #6: UNUSED SNAPSHOTS AND UNUSED EBS VOLUMES SHOULD BE PROMPTLY DELETED !!
- #7: USE PERSISTENT SPOT REQUESTS AND THE "STOP" FEATURE TO PAUSE VMS DURING SHORT BREAKS

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.47

WE WILL RETURN AT ~7:10PM

OBJECTIVES - 11/2 Questions from 10/28 Term Project Proposals Quiz 1 Review AWS overview and demonstration 2nd hour: Tutorial #5 AWS overview and demonstration Cloud Enabling Technology Tutorial questions Team planning November 2, 2020 TCSSS62:Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

CLOUD ENABLING TECHNOLOGY

- Broadband networks and internet architecture
- Data center technology
- Virtualization technology
- Multitenant technology
- Web/web services technology

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.52

1. BROADBAND NETWORKS AND INTERNET ARCHITECTURE

- Clouds must be connected to a network
- Inter-networking: Users' network must connect to cloud's network
- Public cloud computing relies heavily on the internet

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.53

INTERNETWORKING KEY POINTS

- Cloud consumers and providers typically communicate via the internet
- Decentralized provisioning and management model is not controlled by the cloud consumers or providers
- Inter-networking (internet) relies on connectionless packet switching and route-based interconnectivity
- Routers and switches support communication
- Network bandwidth and latency influence QoS, which is heavily impacted by network congestion

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.56

DATA CENTER TECHNOLOGY – KEY COMPONENTS

- Remote operation / management
- High availability support: **redundant everything** Includes: power supplies, cabling, environmental control systems, communication links, duplicate warm replica hardware
- Secure design: physical and logical access control
- Servers: rackmount, etc.
- Storage: hard disk arrays (RAID), storage area network (SAN): disk array with dedicated network, network attached storage (NAS): disk array on network for NFS, etc.
- Network hardware: backbone routers (WAN to LAN connectivity), firewalls, VPN gateways, managed switches/routers

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.59

3. VIRTUALIZATION TECHNOLOGY

- Convert a physical IT resource into a virtual IT resource
- Servers, storage, network, power (virtual UPSs)
- Virtualization supports:
 - Hardware independence
 - Server consolidation
 - Resource replication
 - Resource pooling
 - Elastic scalability
- Virtual servers
 - Operating-system based virtualization
 - Hardware-based virtualization

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.60

VIRTUAL MACHINES

- Emulation/simulation of a computer in software
- Provides a substitute for a real computer or server
- Virtualization platforms provide functionality to run an entire operating system
- Allows running multiple different operating systems, or operating systems with different versions simultaneously on the same computer

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.61

KEY VIRTUALIZATION TRADEOFF

■ Tradeoff space:

What is the "right" level of abstraction?

Degree of Hardware Abstraction

Concerns:
Overhead
Performance
Isolation
Security

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.62

TYPE 1 HYPERVISOR

- Acts as a control program
- Miniature OS kernel that manages VMs
- Boots and runs on bare metal
- Also known as Virtual Machine Monitor (VMM)
- Paravirtualization: Kernel includes I/O drivers
- VM guest OSes must use special kernel to interoperate
- Paravirtualization provides hooks to the guest VMs
- Kernel traps instructions (i.e. device I/O) to implement sharing & multiplexing
- User mode instructions run directly on the CPU
- Objective: minimize virtualization overhead
- Classic example is XEN (dom0 kernel)

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.64

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.65

XEN - 3

- Physical machine boots special XEN kernel
- Kernel provides paravirtual API to manage CPU & device multiplexing
- Guests require modified XEN-aware kernels
- Xen supports full-virtualization for unmodified OS guests in hym mode
- Amazon EC2 largely based on modified version of XEN hypervisor (EC2 gens 1-4)
- XEN provides its own CPU schedulers, I/O scheduling

November 2, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.68

KERNEL BASED VIRTUAL MACHINES (KVM)

- ■x86 HW notoriously difficult to virtualize
- Extensions added to 64-bit Intel/AMD CPUs
 - Provides hardware assisted virtualization
 - New "guest" operating mode
 - Hardware state switch
 - Exit reason reporting
 - •Intel/AMD implementations different
 - Linux uses vendor specific kernel modules

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.71

KVM - 3

- KVM has /dev/kvm device file node
 - Linux character device, with operations:
 - Create new VM
 - Allocate memory to VM
 - Read/write virtual CPU registers
 - Inject interrupts into vCPUs
 - Running vCPUs
- VMs run as Linux processes
 - Scheduled by host Linux OS
 - Can be pinned to specific cores with "taskset"

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.73

KVM PARAVIRTUALIZED I/O

- KVM Virtio
 - Custom Linux based paravirtual device drivers
 - Supersedes QEMU hardware emulation (full virt.)
 - Based on XEN paravirtualized I/O
 - Custom block device driver provides paravirtual device emulation
 - Virtual bus (memory ring buffer)
 - Requires hypercall facility
 - Direct access to memory

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.74

KVM DIFFERENCES FROM XEN

- KVM requires CPU VMX support
 - Virtualization management extensions
- KVM can virtualize any OS without special kernels
 - Less invasive
- KVM was originally separate from the Linux kernel, but then integrated
- KVM is type 1 hypervisor because the machine boots Linux which has integrated support for virtualization
- Different than XEN because XEN kernel alone is not a full-fledged OS

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.75

KVM ENHANCEMENTS

- Paravirtualized device drivers
 - Virtio
- Guest Symmetric Multiprocessor (SMP) support
 - Leverages multiple on-board CPUs
 - Supported as of Linux 2.6.23
- VM Live Migration
- Linux scheduler integration
 - Optimize scheduler with knowledge that KVM processes are virtual machines

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.76

VIRTUALIZATION MANAGEMENT

- Virtual infrastructure management (VIM) tools
- Tools that manage pools of virtual machines, resources, etc.
- Private cloud software systems can be considered as a VIM
- Considerations:
- Performance overhead
 - Paravirtualization: custom OS kernels, I/O passed directly to HW w/ special drivers
- Hardware compatibility for virtualization
- Portability: virtual resources tend to be difficult to migrate cross-clouds

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.77

VIRTUAL INFRASTRUCTURE MANAGEMENT (VIM)

- Middleware to manage virtual machines and infrastructure of laaS "clouds"
- Examples
 - OpenNebula
 - Nimbus
 - Eucalyptus
 - OpenStack

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.78

VIM FEATURES

- Create/destroy VM Instances
- Image repository
 - Create/Destroy/Update images
 - Image persistence
- Contextualization of VMs
 - Networking address assignment
 - DHCP / Static IPs
 - Manage SSH keys

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.79

VIM FEATURES - 2

- Virtual network configuration/management
 - Public/Private IP address assignment
 - Virtual firewall management
 - Configure/support isolated VLANs (private clusters)
- Support common virtual machine managers (VMMs)
 - XEN, KVM, VMware
 - Support via libvirt library

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.80

VIM FEATURES - 3

- Shared "Elastic" block storage
 - Facility to create/update/delete VM disk volumes
 - Amazon EBS
 - Eucalyptus SC
 - OpenStack Volume Controller

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.81

CONTAINER ORCHESTRATION FRAMEWORKS

- Middleware to manage Docker application container deployments across virtual clusters of Docker hosts (VMs)
- Considered Infrastructure-as-a-Service
- Opensource
- Kubernetes framework
- Docker swarm
- Apache Mesos/Marathon
- Proprietary
- Amazon Elastic Container Service

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.82

CONTAINER SERVICES

- Public cloud container cluster services
- Azure Kubernetes Service (AKS)
- Amazon Elastic Container Service for Kubernetes (EKS)
- Google Kubernetes Engine (GKE)
- Container-as-a-Service
- Azure Container Instances (ACI April 2018)
- AWS Fargate (November 2017)
- Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.83

4. MULTITENANT APPLICATIONS

- Each tenant (like in an apartment) has their own view of the application
- Tenants are unaware of their neighbors
- Tenants can only access their data, no access to data and configuration that is not their own
- O 11 Mar of the Comment

- Customizable features
 - UI, business process, data model, access control
- Application architecture
 - User isolation, data security, recovery/backup by tenant, scalability for a tenant, for tenants, metered usage, data tier isolation

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.84

WEB SERVICES/WEB

- Web services technology is a key foundation of cloud computing's "as-a-service" cloud delivery model
- SOAP "Simple" object access protocol
 - First generation web services
 - WSDL web services description language
 - UDDI universal description discovery and integration
 - SOAP services have their own unique interfaces
- REST instead of defining a custom technical interface REST services are built on the use of HTTP protocol
- HTTP GET, PUT, POST, DELETE

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.86

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

- An ASCII-based request/reply protocol for transferring information on the web
- HTTP request includes:
 - request method (GET, POST, etc.)
 - Uniform Resource Identifier (URI)
 - HTTP protocol version understood by the client
 - headers—extra info regarding transfer request
- HTTP response from server
 - Protocol version & status code →
 - Response headers
 - Response body

HTTP status codes:

2xx — all is well

3xx — resource moved

4xx — access problem

5xx — server error

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.87

REST: REPRESENTATIONAL STATE TRANSFER

- Web services protocol
- Supersedes SOAP Simple Object Access Protocol
- Access and manipulate web resources with a predefined set of stateless operations (known as web services)
- Requests are made to a URI
- Responses are most often in JSON, but can also be HTML, ASCII text, XML, no real limits as long as text-based
- HTTP verbs: GET, POST, PUT, DELETE, ...

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.88

```
// SOAP REQUEST
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn
<?xml version="1.0"?>
<soap:Envelope</pre>
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
  <m:GetBookPrice>
    <m:BookName>The Fleamarket</m:BookName>
  </m:GetBookPrice>
</soap:Body>
</soap:Envelope>
                TCSS562: Software Engineering for Cloud Computing [Fall 2020]
November 2, 2020
                School of Engineering and Technology, University of Washington - Tacoma
```

```
// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn
<?xml version="1.0"?>
<soap:Envelope</pre>
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
  <m:GetBookPriceResponse>
     <m: Price>10.95</m: Price>
  </m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>
                   TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma
 November 2, 2020
                                                                      L10.90
```

```
   </portType>
   <soap:operation soapAction="getdayofweek"/>
          nput>

soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
        </input>

<contput>
<scap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
        </output>
   <p
     <documentation>
     Returns the day-of-week name for a given date </documentation>
     </port>
</service>
</definitions>
                                           TCSS562: Software Engineering for Cloud Computing [Fall 2020]
          November 2, 2020
                                           School of Engineering and Technology, University of Washington - Tacoma
```

```
REST CLIMATE SERVICES EXAMPLE
USDA
                    // REST/JSON
                    // Request climate data for Washington
 Lat/Long
 Climate
                     "parameter": [
 Service
 Demo
                        "name": "latitude",
                         "value":47.2529
                      },
                        "name": "longitude",
Just provide
                        "value":-122.4443
 a Lat/Long
                      }
                      ]
                    }
                 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
  November 2, 2020
                                                                 L10.92
                 School of Engineering and Technology, University of Washington - Tacoma
```

REST - 2

- App manipulates one or more types of resources.
- Everything the app does can be characterized as some kind of operation on one or more resources.
- Frequently services are CRUD operations (create/read/update/delete)
 - Create a new resource
 - Read resource(s) matching criterion
 - Update data associated with some resource
 - Destroy a particular a resource
- Resources are often implemented as objects in OO languages

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.93

REST ARCHITECTURAL ADVANTAGES

- Performance: component interactions can be the dominant factor in user-perceived performance and network efficiency
- Scalability: to support large numbers of services and interactions among them
- Simplicity: of the Uniform Interface
- Modifiability: of services to meet changing needs (even while the application is running)
- Visibility: of communication between services
- Portability: of services by redeployment
- Reliability: resists failure at the system level as redundancy of infrastructure is easy to ensure

November 2, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L10.94

OBJECTIVES - 11/2 Questions from 10/28 Term Project Proposals Quiz 1 Review AWS overview and demonstration 2nd hour: Tutorial #5 AWS overview and demonstration Cloud Enabling Technology Tutorial questions Team planning November 2, 2020 TCSSS62:Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

